/* * Management Module Support for MPT (Message Passing Technology) based * controllers * * This code is based on drivers/scsi/mpt3sas/mpt3sas_ctl.c * Copyright (C) 2012-2014 LSI Corporation * Copyright (C) 2013-2014 Avago Technologies * (mailto: MPT-FusionLinux.pdl@avagotech.com) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * NO WARRANTY * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is * solely responsible for determining the appropriateness of using and * distributing the Program and assumes all risks associated with its * exercise of rights under this Agreement, including but not limited to * the risks and costs of program errors, damage to or loss of data, * programs or equipment, and unavailability or interruption of operations. * DISCLAIMER OF LIABILITY * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, * USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include "mpt3sas_base.h" #include "mpt3sas_ctl.h" static struct fasync_struct *async_queue; static DECLARE_WAIT_QUEUE_HEAD(ctl_poll_wait); /** * enum block_state - blocking state * @NON_BLOCKING: non blocking * @BLOCKING: blocking * * These states are for ioctls that need to wait for a response * from firmware, so they probably require sleep. */ enum block_state { NON_BLOCKING, BLOCKING, }; /** * _ctl_display_some_debug - debug routine * @ioc: per adapter object * @smid: system request message index * @calling_function_name: string pass from calling function * @mpi_reply: reply message frame * Context: none. * * Function for displaying debug info helpful when debugging issues * in this module. */ static void _ctl_display_some_debug(struct MPT3SAS_ADAPTER *ioc, u16 smid, char *calling_function_name, MPI2DefaultReply_t *mpi_reply) { Mpi2ConfigRequest_t *mpi_request; char *desc = NULL; if (!(ioc->logging_level & MPT_DEBUG_IOCTL)) return; mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); switch (mpi_request->Function) { case MPI2_FUNCTION_SCSI_IO_REQUEST: { Mpi2SCSIIORequest_t *scsi_request = (Mpi2SCSIIORequest_t *)mpi_request; snprintf(ioc->tmp_string, MPT_STRING_LENGTH, "scsi_io, cmd(0x%02x), cdb_len(%d)", scsi_request->CDB.CDB32[0], le16_to_cpu(scsi_request->IoFlags) & 0xF); desc = ioc->tmp_string; break; } case MPI2_FUNCTION_SCSI_TASK_MGMT: desc = "task_mgmt"; break; case MPI2_FUNCTION_IOC_INIT: desc = "ioc_init"; break; case MPI2_FUNCTION_IOC_FACTS: desc = "ioc_facts"; break; case MPI2_FUNCTION_CONFIG: { Mpi2ConfigRequest_t *config_request = (Mpi2ConfigRequest_t *)mpi_request; snprintf(ioc->tmp_string, MPT_STRING_LENGTH, "config, type(0x%02x), ext_type(0x%02x), number(%d)", (config_request->Header.PageType & MPI2_CONFIG_PAGETYPE_MASK), config_request->ExtPageType, config_request->Header.PageNumber); desc = ioc->tmp_string; break; } case MPI2_FUNCTION_PORT_FACTS: desc = "port_facts"; break; case MPI2_FUNCTION_PORT_ENABLE: desc = "port_enable"; break; case MPI2_FUNCTION_EVENT_NOTIFICATION: desc = "event_notification"; break; case MPI2_FUNCTION_FW_DOWNLOAD: desc = "fw_download"; break; case MPI2_FUNCTION_FW_UPLOAD: desc = "fw_upload"; break; case MPI2_FUNCTION_RAID_ACTION: desc = "raid_action"; break; case MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH: { Mpi2SCSIIORequest_t *scsi_request = (Mpi2SCSIIORequest_t *)mpi_request; snprintf(ioc->tmp_string, MPT_STRING_LENGTH, "raid_pass, cmd(0x%02x), cdb_len(%d)", scsi_request->CDB.CDB32[0], le16_to_cpu(scsi_request->IoFlags) & 0xF); desc = ioc->tmp_string; break; } case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL: desc = "sas_iounit_cntl"; break; case MPI2_FUNCTION_SATA_PASSTHROUGH: desc = "sata_pass"; break; case MPI2_FUNCTION_DIAG_BUFFER_POST: desc = "diag_buffer_post"; break; case MPI2_FUNCTION_DIAG_RELEASE: desc = "diag_release"; break; case MPI2_FUNCTION_SMP_PASSTHROUGH: desc = "smp_passthrough"; break; case MPI2_FUNCTION_TOOLBOX: desc = "toolbox"; break; case MPI2_FUNCTION_NVME_ENCAPSULATED: desc = "nvme_encapsulated"; break; } if (!desc) return; ioc_info(ioc, "%s: %s, smid(%d)\n", calling_function_name, desc, smid); if (!mpi_reply) return; if (mpi_reply->IOCStatus || mpi_reply->IOCLogInfo) ioc_info(ioc, "\tiocstatus(0x%04x), loginfo(0x%08x)\n", le16_to_cpu(mpi_reply->IOCStatus), le32_to_cpu(mpi_reply->IOCLogInfo)); if (mpi_request->Function == MPI2_FUNCTION_SCSI_IO_REQUEST || mpi_request->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH) { Mpi2SCSIIOReply_t *scsi_reply = (Mpi2SCSIIOReply_t *)mpi_reply; struct _sas_device *sas_device = NULL; struct _pcie_device *pcie_device = NULL; sas_device = mpt3sas_get_sdev_by_handle(ioc, le16_to_cpu(scsi_reply->DevHandle)); if (sas_device) { ioc_warn(ioc, "\tsas_address(0x%016llx), phy(%d)\n", (u64)sas_device->sas_address, sas_device->phy); ioc_warn(ioc, "\tenclosure_logical_id(0x%016llx), slot(%d)\n", (u64)sas_device->enclosure_logical_id, sas_device->slot); sas_device_put(sas_device); } if (!sas_device) { pcie_device = mpt3sas_get_pdev_by_handle(ioc, le16_to_cpu(scsi_reply->DevHandle)); if (pcie_device) { ioc_warn(ioc, "\tWWID(0x%016llx), port(%d)\n", (unsigned long long)pcie_device->wwid, pcie_device->port_num); if (pcie_device->enclosure_handle != 0) ioc_warn(ioc, "\tenclosure_logical_id(0x%016llx), slot(%d)\n", (u64)pcie_device->enclosure_logical_id, pcie_device->slot); pcie_device_put(pcie_device); } } if (scsi_reply->SCSIState || scsi_reply->SCSIStatus) ioc_info(ioc, "\tscsi_state(0x%02x), scsi_status(0x%02x)\n", scsi_reply->SCSIState, scsi_reply->SCSIStatus); } } /** * mpt3sas_ctl_done - ctl module completion routine * @ioc: per adapter object * @smid: system request message index * @msix_index: MSIX table index supplied by the OS * @reply: reply message frame(lower 32bit addr) * Context: none. * * The callback handler when using ioc->ctl_cb_idx. * * Return: 1 meaning mf should be freed from _base_interrupt * 0 means the mf is freed from this function. */ u8 mpt3sas_ctl_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index, u32 reply) { MPI2DefaultReply_t *mpi_reply; Mpi2SCSIIOReply_t *scsiio_reply; Mpi26NVMeEncapsulatedErrorReply_t *nvme_error_reply; const void *sense_data; u32 sz; if (ioc->ctl_cmds.status == MPT3_CMD_NOT_USED) return 1; if (ioc->ctl_cmds.smid != smid) return 1; ioc->ctl_cmds.status |= MPT3_CMD_COMPLETE; mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); if (mpi_reply) { memcpy(ioc->ctl_cmds.reply, mpi_reply, mpi_reply->MsgLength*4); ioc->ctl_cmds.status |= MPT3_CMD_REPLY_VALID; /* get sense data */ if (mpi_reply->Function == MPI2_FUNCTION_SCSI_IO_REQUEST || mpi_reply->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH) { scsiio_reply = (Mpi2SCSIIOReply_t *)mpi_reply; if (scsiio_reply->SCSIState & MPI2_SCSI_STATE_AUTOSENSE_VALID) { sz = min_t(u32, SCSI_SENSE_BUFFERSIZE, le32_to_cpu(scsiio_reply->SenseCount)); sense_data = mpt3sas_base_get_sense_buffer(ioc, smid); memcpy(ioc->ctl_cmds.sense, sense_data, sz); } } /* * Get Error Response data for NVMe device. The ctl_cmds.sense * buffer is used to store the Error Response data. */ if (mpi_reply->Function == MPI2_FUNCTION_NVME_ENCAPSULATED) { nvme_error_reply = (Mpi26NVMeEncapsulatedErrorReply_t *)mpi_reply; sz = min_t(u32, NVME_ERROR_RESPONSE_SIZE, le16_to_cpu(nvme_error_reply->ErrorResponseCount)); sense_data = mpt3sas_base_get_sense_buffer(ioc, smid); memcpy(ioc->ctl_cmds.sense, sense_data, sz); } } _ctl_display_some_debug(ioc, smid, "ctl_done", mpi_reply); ioc->ctl_cmds.status &= ~MPT3_CMD_PENDING; complete(&ioc->ctl_cmds.done); return 1; } /** * _ctl_check_event_type - determines when an event needs logging * @ioc: per adapter object * @event: firmware event * * The bitmask in ioc->event_type[] indicates which events should be * be saved in the driver event_log. This bitmask is set by application. * * Return: 1 when event should be captured, or zero means no match. */ static int _ctl_check_event_type(struct MPT3SAS_ADAPTER *ioc, u16 event) { u16 i; u32 desired_event; if (event >= 128 || !event || !ioc->event_log) return 0; desired_event = (1 << (event % 32)); if (!desired_event) desired_event = 1; i = event / 32; return desired_event & ioc->event_type[i]; } /** * mpt3sas_ctl_add_to_event_log - add event * @ioc: per adapter object * @mpi_reply: reply message frame */ void mpt3sas_ctl_add_to_event_log(struct MPT3SAS_ADAPTER *ioc, Mpi2EventNotificationReply_t *mpi_reply) { struct MPT3_IOCTL_EVENTS *event_log; u16 event; int i; u32 sz, event_data_sz; u8 send_aen = 0; if (!ioc->event_log) return; event = le16_to_cpu(mpi_reply->Event); if (_ctl_check_event_type(ioc, event)) { /* insert entry into circular event_log */ i = ioc->event_context % MPT3SAS_CTL_EVENT_LOG_SIZE; event_log = ioc->event_log; event_log[i].event = event; event_log[i].context = ioc->event_context++; event_data_sz = le16_to_cpu(mpi_reply->EventDataLength)*4; sz = min_t(u32, event_data_sz, MPT3_EVENT_DATA_SIZE); memset(event_log[i].data, 0, MPT3_EVENT_DATA_SIZE); memcpy(event_log[i].data, mpi_reply->EventData, sz); send_aen = 1; } /* This aen_event_read_flag flag is set until the * application has read the event log. * For MPI2_EVENT_LOG_ENTRY_ADDED, we always notify. */ if (event == MPI2_EVENT_LOG_ENTRY_ADDED || (send_aen && !ioc->aen_event_read_flag)) { ioc->aen_event_read_flag = 1; wake_up_interruptible(&ctl_poll_wait); if (async_queue) kill_fasync(&async_queue, SIGIO, POLL_IN); } } /** * mpt3sas_ctl_event_callback - firmware event handler (called at ISR time) * @ioc: per adapter object * @msix_index: MSIX table index supplied by the OS * @reply: reply message frame(lower 32bit addr) * Context: interrupt. * * This function merely adds a new work task into ioc->firmware_event_thread. * The tasks are worked from _firmware_event_work in user context. * * Return: 1 meaning mf should be freed from _base_interrupt * 0 means the mf is freed from this function. */ u8 mpt3sas_ctl_event_callback(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply) { Mpi2EventNotificationReply_t *mpi_reply; mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply); if (mpi_reply) mpt3sas_ctl_add_to_event_log(ioc, mpi_reply); return 1; } /** * _ctl_verify_adapter - validates ioc_number passed from application * @ioc_number: ? * @iocpp: The ioc pointer is returned in this. * @mpi_version: will be MPI2_VERSION for mpt2ctl ioctl device & * MPI25_VERSION | MPI26_VERSION for mpt3ctl ioctl device. * * Return: (-1) means error, else ioc_number. */ static int _ctl_verify_adapter(int ioc_number, struct MPT3SAS_ADAPTER **iocpp, int mpi_version) { struct MPT3SAS_ADAPTER *ioc; int version = 0; /* global ioc lock to protect controller on list operations */ spin_lock(&gioc_lock); list_for_each_entry(ioc, &mpt3sas_ioc_list, list) { if (ioc->id != ioc_number) continue; /* Check whether this ioctl command is from right * ioctl device or not, if not continue the search. */ version = ioc->hba_mpi_version_belonged; /* MPI25_VERSION and MPI26_VERSION uses same ioctl * device. */ if (mpi_version == (MPI25_VERSION | MPI26_VERSION)) { if ((version == MPI25_VERSION) || (version == MPI26_VERSION)) goto out; else continue; } else { if (version != mpi_version) continue; } out: spin_unlock(&gioc_lock); *iocpp = ioc; return ioc_number; } spin_unlock(&gioc_lock); *iocpp = NULL; return -1; } /** * mpt3sas_ctl_reset_handler - reset callback handler (for ctl) * @ioc: per adapter object * * The handler for doing any required cleanup or initialization. */ void mpt3sas_ctl_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc) { int i; u8 issue_reset; dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__)); for (i = 0; i < MPI2_DIAG_BUF_TYPE_COUNT; i++) { if (!(ioc->diag_buffer_status[i] & MPT3_DIAG_BUFFER_IS_REGISTERED)) continue; if ((ioc->diag_buffer_status[i] & MPT3_DIAG_BUFFER_IS_RELEASED)) continue; /* * add a log message to indicate the release */ ioc_info(ioc, "%s: Releasing the trace buffer due to adapter reset.", __func__); mpt3sas_send_diag_release(ioc, i, &issue_reset); } } /** * mpt3sas_ctl_reset_handler - clears outstanding ioctl cmd. * @ioc: per adapter object * * The handler for doing any required cleanup or initialization. */ void mpt3sas_ctl_clear_outstanding_ioctls(struct MPT3SAS_ADAPTER *ioc) { dtmprintk(ioc, ioc_info(ioc, "%s: clear outstanding ioctl cmd\n", __func__)); if (ioc->ctl_cmds.status & MPT3_CMD_PENDING) { ioc->ctl_cmds.status |= MPT3_CMD_RESET; mpt3sas_base_free_smid(ioc, ioc->ctl_cmds.smid); complete(&ioc->ctl_cmds.done); } } /** * mpt3sas_ctl_reset_handler - reset callback handler (for ctl) * @ioc: per adapter object * * The handler for doing any required cleanup or initialization. */ void mpt3sas_ctl_reset_done_handler(struct MPT3SAS_ADAPTER *ioc) { int i; dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__)); for (i = 0; i < MPI2_DIAG_BUF_TYPE_COUNT; i++) { if (!(ioc->diag_buffer_status[i] & MPT3_DIAG_BUFFER_IS_REGISTERED)) continue; if ((ioc->diag_buffer_status[i] & MPT3_DIAG_BUFFER_IS_RELEASED)) continue; ioc->diag_buffer_status[i] |= MPT3_DIAG_BUFFER_IS_DIAG_RESET; } } /** * _ctl_fasync - * @fd: ? * @filep: ? * @mode: ? * * Called when application request fasyn callback handler. */ static int _ctl_fasync(int fd, struct file *filep, int mode) { return fasync_helper(fd, filep, mode, &async_queue); } /** * _ctl_poll - * @filep: ? * @wait: ? * */ static __poll_t _ctl_poll(struct file *filep, poll_table *wait) { struct MPT3SAS_ADAPTER *ioc; poll_wait(filep, &ctl_poll_wait, wait); /* global ioc lock to protect controller on list operations */ spin_lock(&gioc_lock); list_for_each_entry(ioc, &mpt3sas_ioc_list, list) { if (ioc->aen_event_read_flag) { spin_unlock(&gioc_lock); return EPOLLIN | EPOLLRDNORM; } } spin_unlock(&gioc_lock); return 0; } /** * _ctl_set_task_mid - assign an active smid to tm request * @ioc: per adapter object * @karg: (struct mpt3_ioctl_command) * @tm_request: pointer to mf from user space * * Return: 0 when an smid if found, else fail. * during failure, the reply frame is filled. */ static int _ctl_set_task_mid(struct MPT3SAS_ADAPTER *ioc, struct mpt3_ioctl_command *karg, Mpi2SCSITaskManagementRequest_t *tm_request) { u8 found = 0; u16 smid; u16 handle; struct scsi_cmnd *scmd; struct MPT3SAS_DEVICE *priv_data; Mpi2SCSITaskManagementReply_t *tm_reply; u32 sz; u32 lun; char *desc = NULL; if (tm_request->TaskType == MPI2_SCSITASKMGMT_TASKTYPE_ABORT_TASK) desc = "abort_task"; else if (tm_request->TaskType == MPI2_SCSITASKMGMT_TASKTYPE_QUERY_TASK) desc = "query_task"; else return 0; lun = scsilun_to_int((struct scsi_lun *)tm_request->LUN); handle = le16_to_cpu(tm_request->DevHandle); for (smid = ioc->scsiio_depth; smid && !found; smid--) { struct scsiio_tracker *st; scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid); if (!scmd) continue; if (lun != scmd->device->lun) continue; priv_data = scmd->device->hostdata; if (priv_data->sas_target == NULL) continue; if (priv_data->sas_target->handle != handle) continue; st = scsi_cmd_priv(scmd); /* * If the given TaskMID from the user space is zero, then the * first outstanding smid will be picked up. Otherwise, * targeted smid will be the one. */ if (!tm_request->TaskMID || tm_request->TaskMID == st->smid) { tm_request->TaskMID = cpu_to_le16(st->smid); found = 1; } } if (!found) { dctlprintk(ioc, ioc_info(ioc, "%s: handle(0x%04x), lun(%d), no active mid!!\n", desc, le16_to_cpu(tm_request->DevHandle), lun)); tm_reply = ioc->ctl_cmds.reply; tm_reply->DevHandle = tm_request->DevHandle; tm_reply->Function = MPI2_FUNCTION_SCSI_TASK_MGMT; tm_reply->TaskType = tm_request->TaskType; tm_reply->MsgLength = sizeof(Mpi2SCSITaskManagementReply_t)/4; tm_reply->VP_ID = tm_request->VP_ID; tm_reply->VF_ID = tm_request->VF_ID; sz = min_t(u32, karg->max_reply_bytes, ioc->reply_sz); if (copy_to_user(karg->reply_frame_buf_ptr, ioc->ctl_cmds.reply, sz)) pr_err("failure at %s:%d/%s()!\n", __FILE__, __LINE__, __func__); return 1; } dctlprintk(ioc, ioc_info(ioc, "%s: handle(0x%04x), lun(%d), task_mid(%d)\n", desc, le16_to_cpu(tm_request->DevHandle), lun, le16_to_cpu(tm_request->TaskMID))); return 0; } /** * _ctl_do_mpt_command - main handler for MPT3COMMAND opcode * @ioc: per adapter object * @karg: (struct mpt3_ioctl_command) * @mf: pointer to mf in user space */ static long _ctl_do_mpt_command(struct MPT3SAS_ADAPTER *ioc, struct mpt3_ioctl_command karg, void __user *mf) { MPI2RequestHeader_t *mpi_request = NULL, *request; MPI2DefaultReply_t *mpi_reply; Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request = NULL; struct _pcie_device *pcie_device = NULL; u16 smid; u8 timeout; u8 issue_reset; u32 sz, sz_arg; void *psge; void *data_out = NULL; dma_addr_t data_out_dma = 0; size_t data_out_sz = 0; void *data_in = NULL; dma_addr_t data_in_dma = 0; size_t data_in_sz = 0; long ret; u16 device_handle = MPT3SAS_INVALID_DEVICE_HANDLE; issue_reset = 0; if (ioc->ctl_cmds.status != MPT3_CMD_NOT_USED) { ioc_err(ioc, "%s: ctl_cmd in use\n", __func__); ret = -EAGAIN; goto out; } ret = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT); if (ret) goto out; mpi_request = kzalloc(ioc->request_sz, GFP_KERNEL); if (!mpi_request) { ioc_err(ioc, "%s: failed obtaining a memory for mpi_request\n", __func__); ret = -ENOMEM; goto out; } /* Check for overflow and wraparound */ if (karg.data_sge_offset * 4 > ioc->request_sz || karg.data_sge_offset > (UINT_MAX / 4)) { ret = -EINVAL; goto out; } /* copy in request message frame from user */ if (copy_from_user(mpi_request, mf, karg.data_sge_offset*4)) { pr_err("failure at %s:%d/%s()!\n", __FILE__, __LINE__, __func__); ret = -EFAULT; goto out; } if (mpi_request->Function == MPI2_FUNCTION_SCSI_TASK_MGMT) { smid = mpt3sas_base_get_smid_hpr(ioc, ioc->ctl_cb_idx); if (!smid) { ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); ret = -EAGAIN; goto out; } } else { /* Use first reserved smid for passthrough ioctls */ smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1; } ret = 0; ioc->ctl_cmds.status = MPT3_CMD_PENDING; memset(ioc->ctl_cmds.reply, 0, ioc->reply_sz); request = mpt3sas_base_get_msg_frame(ioc, smid); memset(request, 0, ioc->request_sz); memcpy(request, mpi_request, karg.data_sge_offset*4); ioc->ctl_cmds.smid = smid; data_out_sz = karg.data_out_size; data_in_sz = karg.data_in_size; if (mpi_request->Function == MPI2_FUNCTION_SCSI_IO_REQUEST || mpi_request->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH || mpi_request->Function == MPI2_FUNCTION_SCSI_TASK_MGMT || mpi_request->Function == MPI2_FUNCTION_SATA_PASSTHROUGH || mpi_request->Function == MPI2_FUNCTION_NVME_ENCAPSULATED) { device_handle = le16_to_cpu(mpi_request->FunctionDependent1); if (!device_handle || (device_handle > ioc->facts.MaxDevHandle)) { ret = -EINVAL; mpt3sas_base_free_smid(ioc, smid); goto out; } } /* obtain dma-able memory for data transfer */ if (data_out_sz) /* WRITE */ { data_out = dma_alloc_coherent(&ioc->pdev->dev, data_out_sz, &data_out_dma, GFP_KERNEL); if (!data_out) { pr_err("failure at %s:%d/%s()!\n", __FILE__, __LINE__, __func__); ret = -ENOMEM; mpt3sas_base_free_smid(ioc, smid); goto out; } if (copy_from_user(data_out, karg.data_out_buf_ptr, data_out_sz)) { pr_err("failure at %s:%d/%s()!\n", __FILE__, __LINE__, __func__); ret = -EFAULT; mpt3sas_base_free_smid(ioc, smid); goto out; } } if (data_in_sz) /* READ */ { data_in = dma_alloc_coherent(&ioc->pdev->dev, data_in_sz, &data_in_dma, GFP_KERNEL); if (!data_in) { pr_err("failure at %s:%d/%s()!\n", __FILE__, __LINE__, __func__); ret = -ENOMEM; mpt3sas_base_free_smid(ioc, smid); goto out; } } psge = (void *)request + (karg.data_sge_offset*4); /* send command to firmware */ _ctl_display_some_debug(ioc, smid, "ctl_request", NULL); init_completion(&ioc->ctl_cmds.done); switch (mpi_request->Function) { case MPI2_FUNCTION_NVME_ENCAPSULATED: { nvme_encap_request = (Mpi26NVMeEncapsulatedRequest_t *)request; if (!ioc->pcie_sg_lookup) { dtmprintk(ioc, ioc_info(ioc, "HBA doesn't support NVMe. Rejecting NVMe Encapsulated request.\n" )); if (ioc->logging_level & MPT_DEBUG_TM) _debug_dump_mf(nvme_encap_request, ioc->request_sz/4); mpt3sas_base_free_smid(ioc, smid); ret = -EINVAL; goto out; } /* * Get the Physical Address of the sense buffer. * Use Error Response buffer address field to hold the sense * buffer address. * Clear the internal sense buffer, which will potentially hold * the Completion Queue Entry on return, or 0 if no Entry. * Build the PRPs and set direction bits. * Send the request. */ nvme_encap_request->ErrorResponseBaseAddress = cpu_to_le64(ioc->sense_dma & 0xFFFFFFFF00000000UL); nvme_encap_request->ErrorResponseBaseAddress |= cpu_to_le64(le32_to_cpu( mpt3sas_base_get_sense_buffer_dma(ioc, smid))); nvme_encap_request->ErrorResponseAllocationLength = cpu_to_le16(NVME_ERROR_RESPONSE_SIZE); memset(ioc->ctl_cmds.sense, 0, NVME_ERROR_RESPONSE_SIZE); ioc->build_nvme_prp(ioc, smid, nvme_encap_request, data_out_dma, data_out_sz, data_in_dma, data_in_sz); if (test_bit(device_handle, ioc->device_remove_in_progress)) { dtmprintk(ioc, ioc_info(ioc, "handle(0x%04x): ioctl failed due to device removal in progress\n", device_handle)); mpt3sas_base_free_smid(ioc, smid); ret = -EINVAL; goto out; } mpt3sas_base_put_smid_nvme_encap(ioc, smid); break; } case MPI2_FUNCTION_SCSI_IO_REQUEST: case MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH: { Mpi2SCSIIORequest_t *scsiio_request = (Mpi2SCSIIORequest_t *)request; scsiio_request->SenseBufferLength = SCSI_SENSE_BUFFERSIZE; scsiio_request->SenseBufferLowAddress = mpt3sas_base_get_sense_buffer_dma(ioc, smid); memset(ioc->ctl_cmds.sense, 0, SCSI_SENSE_BUFFERSIZE); if (test_bit(device_handle, ioc->device_remove_in_progress)) { dtmprintk(ioc, ioc_info(ioc, "handle(0x%04x) :ioctl failed due to device removal in progress\n", device_handle)); mpt3sas_base_free_smid(ioc, smid); ret = -EINVAL; goto out; } ioc->build_sg(ioc, psge, data_out_dma, data_out_sz, data_in_dma, data_in_sz); if (mpi_request->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) ioc->put_smid_scsi_io(ioc, smid, device_handle); else ioc->put_smid_default(ioc, smid); break; } case MPI2_FUNCTION_SCSI_TASK_MGMT: { Mpi2SCSITaskManagementRequest_t *tm_request = (Mpi2SCSITaskManagementRequest_t *)request; dtmprintk(ioc, ioc_info(ioc, "TASK_MGMT: handle(0x%04x), task_type(0x%02x)\n", le16_to_cpu(tm_request->DevHandle), tm_request->TaskType)); ioc->got_task_abort_from_ioctl = 1; if (tm_request->TaskType == MPI2_SCSITASKMGMT_TASKTYPE_ABORT_TASK || tm_request->TaskType == MPI2_SCSITASKMGMT_TASKTYPE_QUERY_TASK) { if (_ctl_set_task_mid(ioc, &karg, tm_request)) { mpt3sas_base_free_smid(ioc, smid); ioc->got_task_abort_from_ioctl = 0; goto out; } } ioc->got_task_abort_from_ioctl = 0; if (test_bit(device_handle, ioc->device_remove_in_progress)) { dtmprintk(ioc, ioc_info(ioc, "handle(0x%04x) :ioctl failed due to device removal in progress\n", device_handle)); mpt3sas_base_free_smid(ioc, smid); ret = -EINVAL; goto out; } mpt3sas_scsih_set_tm_flag(ioc, le16_to_cpu( tm_request->DevHandle)); ioc->build_sg_mpi(ioc, psge, data_out_dma, data_out_sz, data_in_dma, data_in_sz); ioc->put_smid_hi_priority(ioc, smid, 0); break; } case MPI2_FUNCTION_SMP_PASSTHROUGH: { Mpi2SmpPassthroughRequest_t *smp_request = (Mpi2SmpPassthroughRequest_t *)mpi_request; u8 *data; /* ioc determines which port to use */ smp_request->PhysicalPort = 0xFF; if (smp_request->PassthroughFlags & MPI2_SMP_PT_REQ_PT_FLAGS_IMMEDIATE) data = (u8 *)&smp_request->SGL; else { if (unlikely(data_out == NULL)) { pr_err("failure at %s:%d/%s()!\n", __FILE__, __LINE__, __func__); mpt3sas_base_free_smid(ioc, smid); ret = -EINVAL; goto out; } data = data_out; } if (data[1] == 0x91 && (data[10] == 1 || data[10] == 2)) { ioc->ioc_link_reset_in_progress = 1; ioc->ignore_loginfos = 1; } ioc->build_sg(ioc, psge, data_out_dma, data_out_sz, data_in_dma, data_in_sz); ioc->put_smid_default(ioc, smid); break; } case MPI2_FUNCTION_SATA_PASSTHROUGH: { if (test_bit(device_handle, ioc->device_remove_in_progress)) { dtmprintk(ioc, ioc_info(ioc, "handle(0x%04x) :ioctl failed due to device removal in progress\n", device_handle)); mpt3sas_base_free_smid(ioc, smid); ret = -EINVAL; goto out; } ioc->build_sg(ioc, psge, data_out_dma, data_out_sz, data_in_dma, data_in_sz); ioc->put_smid_default(ioc, smid); break; } case MPI2_FUNCTION_FW_DOWNLOAD: case MPI2_FUNCTION_FW_UPLOAD: { ioc->build_sg(ioc, psge, data_out_dma, data_out_sz, data_in_dma, data_in_sz); ioc->put_smid_default(ioc, smid); break; } case MPI2_FUNCTION_TOOLBOX: { Mpi2ToolboxCleanRequest_t *toolbox_request = (Mpi2ToolboxCleanRequest_t *)mpi_request; if ((toolbox_request->Tool == MPI2_TOOLBOX_DIAGNOSTIC_CLI_TOOL) || (toolbox_request->Tool == MPI26_TOOLBOX_BACKEND_PCIE_LANE_MARGIN)) ioc->build_sg(ioc, psge, data_out_dma, data_out_sz, data_in_dma, data_in_sz); else if (toolbox_request->Tool == MPI2_TOOLBOX_MEMORY_MOVE_TOOL) { Mpi2ToolboxMemMoveRequest_t *mem_move_request = (Mpi2ToolboxMemMoveRequest_t *)request; Mpi2SGESimple64_t tmp, *src = NULL, *dst = NULL; ioc->build_sg_mpi(ioc, psge, data_out_dma, data_out_sz, data_in_dma, data_in_sz); if (data_out_sz && !data_in_sz) { dst = (Mpi2SGESimple64_t *)&mem_move_request->SGL; src = (void *)dst + ioc->sge_size; memcpy(&tmp, src, ioc->sge_size); memcpy(src, dst, ioc->sge_size); memcpy(dst, &tmp, ioc->sge_size); } if (ioc->logging_level & MPT_DEBUG_TM) { ioc_info(ioc, "Mpi2ToolboxMemMoveRequest_t request msg\n"); _debug_dump_mf(mem_move_request, ioc->request_sz/4); } } else ioc->build_sg_mpi(ioc, psge, data_out_dma, data_out_sz, data_in_dma, data_in_sz); ioc->put_smid_default(ioc, smid); break; } case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL: { Mpi2SasIoUnitControlRequest_t *sasiounit_request = (Mpi2SasIoUnitControlRequest_t *)mpi_request; if (sasiounit_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET || sasiounit_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) { ioc->ioc_link_reset_in_progress = 1; ioc->ignore_loginfos = 1; } /* drop to default case for posting the request */ } /* fall through */ default: ioc->build_sg_mpi(ioc, psge, data_out_dma, data_out_sz, data_in_dma, data_in_sz); ioc->put_smid_default(ioc, smid); break; } if (karg.timeout < MPT3_IOCTL_DEFAULT_TIMEOUT) timeout = MPT3_IOCTL_DEFAULT_TIMEOUT; else timeout = karg.timeout; wait_for_completion_timeout(&ioc->ctl_cmds.done, timeout*HZ); if (mpi_request->Function == MPI2_FUNCTION_SCSI_TASK_MGMT) { Mpi2SCSITaskManagementRequest_t *tm_request = (Mpi2SCSITaskManagementRequest_t *)mpi_request; mpt3sas_scsih_clear_tm_flag(ioc, le16_to_cpu( tm_request->DevHandle)); mpt3sas_trigger_master(ioc, MASTER_TRIGGER_TASK_MANAGMENT); } else if ((mpi_request->Function == MPI2_FUNCTION_SMP_PASSTHROUGH || mpi_request->Function == MPI2_FUNCTION_SAS_IO_UNIT_CONTROL) && ioc->ioc_link_reset_in_progress) { ioc->ioc_link_reset_in_progress = 0; ioc->ignore_loginfos = 0; } if (!(ioc->ctl_cmds.status & MPT3_CMD_COMPLETE)) { mpt3sas_check_cmd_timeout(ioc, ioc->ctl_cmds.status, mpi_request, karg.data_sge_offset, issue_reset); goto issue_host_reset; } mpi_reply = ioc->ctl_cmds.reply; if (mpi_reply->Function == MPI2_FUNCTION_SCSI_TASK_MGMT && (ioc->logging_level & MPT_DEBUG_TM)) { Mpi2SCSITaskManagementReply_t *tm_reply = (Mpi2SCSITaskManagementReply_t *)mpi_reply; ioc_info(ioc, "TASK_MGMT: IOCStatus(0x%04x), IOCLogInfo(0x%08x), TerminationCount(0x%08x)\n", le16_to_cpu(tm_reply->IOCStatus), le32_to_cpu(tm_reply->IOCLogInfo), le32_to_cpu(tm_reply->TerminationCount)); } /* copy out xdata to user */ if (data_in_sz) { if (copy_to_user(karg.data_in_buf_ptr, data_in, data_in_sz)) { pr_err("failure at %s:%d/%s()!\n", __FILE__, __LINE__, __func__); ret = -ENODATA; goto out; } } /* copy out reply message frame to user */ if (karg.max_reply_bytes) { sz = min_t(u32, karg.max_reply_bytes, ioc->reply_sz); if (copy_to_user(karg.reply_frame_buf_ptr, ioc->ctl_cmds.reply, sz)) { pr_err("failure at %s:%d/%s()!\n", __FILE__, __LINE__, __func__); ret = -ENODATA; goto out; } } /* copy out sense/NVMe Error Response to user */ if (karg.max_sense_bytes && (mpi_request->Function == MPI2_FUNCTION_SCSI_IO_REQUEST || mpi_request->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH || mpi_request->Function == MPI2_FUNCTION_NVME_ENCAPSULATED)) { if (karg.sense_data_ptr == NULL) { ioc_info(ioc, "Response buffer provided by application is NULL; Response data will not be returned\n"); goto out; } sz_arg = (mpi_request->Function == MPI2_FUNCTION_NVME_ENCAPSULATED) ? NVME_ERROR_RESPONSE_SIZE : SCSI_SENSE_BUFFERSIZE; sz = min_t(u32, karg.max_sense_bytes, sz_arg); if (copy_to_user(karg.sense_data_ptr, ioc->ctl_cmds.sense, sz)) { pr_err("failure at %s:%d/%s()!\n", __FILE__, __LINE__, __func__); ret = -ENODATA; goto out; } } issue_host_reset: if (issue_reset) { ret = -ENODATA; if ((mpi_request->Function == MPI2_FUNCTION_SCSI_IO_REQUEST || mpi_request->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH || mpi_request->Function == MPI2_FUNCTION_SATA_PASSTHROUGH)) { ioc_info(ioc, "issue target reset: handle = (0x%04x)\n", le16_to_cpu(mpi_request->FunctionDependent1)); mpt3sas_halt_firmware(ioc); pcie_device = mpt3sas_get_pdev_by_handle(ioc, le16_to_cpu(mpi_request->FunctionDependent1)); if (pcie_device && (!ioc->tm_custom_handling) && (!(mpt3sas_scsih_is_pcie_scsi_device( pcie_device->device_info)))) mpt3sas_scsih_issue_locked_tm(ioc, le16_to_cpu(mpi_request->FunctionDependent1), 0, MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET, 0, 0, pcie_device->reset_timeout, MPI26_SCSITASKMGMT_MSGFLAGS_PROTOCOL_LVL_RST_PCIE); else mpt3sas_scsih_issue_locked_tm(ioc, le16_to_cpu(mpi_request->FunctionDependent1), 0, MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET, 0, 0, 30, MPI2_SCSITASKMGMT_MSGFLAGS_LINK_RESET); } else mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); } out: if (pcie_device) pcie_device_put(pcie_device); /* free memory associated with sg buffers */ if (data_in) dma_free_coherent(&ioc->pdev->dev, data_in_sz, data_in, data_in_dma); if (data_out) dma_free_coherent(&ioc->pdev->dev, data_out_sz, data_out, data_out_dma); kfree(mpi_request); ioc->ctl_cmds.status = MPT3_CMD_NOT_USED; return ret; } /** * _ctl_getiocinfo - main handler for MPT3IOCINFO opcode * @ioc: per adapter object * @arg: user space buffer containing ioctl content */ static long _ctl_getiocinfo(struct MPT3SAS_ADAPTER *ioc, void __user *arg) { struct mpt3_ioctl_iocinfo karg; dctlprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__)); memset(&karg, 0 , sizeof(karg)); if (ioc->pfacts) karg.port_number = ioc->pfacts[0].PortNumber; karg.hw_rev = ioc->pdev->revision; karg.pci_id = ioc->pdev->device; karg.subsystem_device = ioc->pdev->subsystem_device; karg.subsystem_vendor = ioc->pdev->subsystem_vendor; karg.pci_information.u.bits.bus = ioc->pdev->bus->number; karg.pci_information.u.bits.device = PCI_SLOT(ioc->pdev->devfn); karg.pci_information.u.bits.function = PCI_FUNC(ioc->pdev->devfn); karg.pci_information.segment_id = pci_domain_nr(ioc->pdev->bus); karg.firmware_version = ioc->facts.FWVersion.Word; strcpy(karg.driver_version, ioc->driver_name); strcat(karg.driver_version, "-"); switch (ioc->hba_mpi_version_belonged) { case MPI2_VERSION: if (ioc->is_warpdrive) karg.adapter_type = MPT2_IOCTL_INTERFACE_SAS2_SSS6200; else karg.adapter_type = MPT2_IOCTL_INTERFACE_SAS2; strcat(karg.driver_version, MPT2SAS_DRIVER_VERSION); break; case MPI25_VERSION: case MPI26_VERSION: if (ioc->is_gen35_ioc) karg.adapter_type = MPT3_IOCTL_INTERFACE_SAS35; else karg.adapter_type = MPT3_IOCTL_INTERFACE_SAS3; strcat(karg.driver_version, MPT3SAS_DRIVER_VERSION); break; } karg.bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion); if (copy_to_user(arg, &karg, sizeof(karg))) { pr_err("failure at %s:%d/%s()!\n", __FILE__, __LINE__, __func__); return -EFAULT; } return 0; } /** * _ctl_eventquery - main handler for MPT3EVENTQUERY opcode * @ioc: per adapter object * @arg: user space buffer containing ioctl content */ static long _ctl_eventquery(struct MPT3SAS_ADAPTER *ioc, void __user *arg) { struct mpt3_ioctl_eventquery karg; if (copy_from_user(&karg, arg, sizeof(karg))) { pr_err("failure at %s:%d/%s()!\n", __FILE__, __LINE__, __func__); return -EFAULT; } dctlprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__)); karg.event_entries = MPT3SAS_CTL_EVENT_LOG_SIZE; memcpy(karg.event_types, ioc->event_type, MPI2_EVENT_NOTIFY_EVENTMASK_WORDS * sizeof(u32)); if (copy_to_user(arg, &karg, sizeof(karg))) { pr_err("failure at %s:%d/%s()!\n", __FILE__, __LINE__, __func__); return -EFAULT; } return 0; } /** * _ctl_eventenable - main handler for MPT3EVENTENABLE opcode * @ioc: per adapter object * @arg: user space buffer containing ioctl content */ static long _ctl_eventenable(struct MPT3SAS_ADAPTER *ioc, void __user *arg) { struct mpt3_ioctl_eventenable karg; if (copy_from_user(&karg, arg, sizeof(karg))) { pr_err("failure at %s:%d/%s()!\n", __FILE__, __LINE__, __func__); return -EFAULT; } dctlprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__)); memcpy(ioc->event_type, karg.event_types, MPI2_EVENT_NOTIFY_EVENTMASK_WORDS * sizeof(u32)); mpt3sas_base_validate_event_type(ioc, ioc->event_type); if (ioc->event_log) return 0; /* initialize event_log */ ioc->event_context = 0; ioc->aen_event_read_flag = 0; ioc->event_log = kcalloc(MPT3SAS_CTL_EVENT_LOG_SIZE, sizeof(struct MPT3_IOCTL_EVENTS), GFP_KERNEL); if (!ioc->event_log) { pr_err("failure at %s:%d/%s()!\n", __FILE__, __LINE__, __func__); return -ENOMEM; } return 0; } /** * _ctl_eventreport - main handler for MPT3EVENTREPORT opcode * @ioc: per adapter object * @arg: user space buffer containing ioctl content */ static long _ctl_eventreport(struct MPT3SAS_ADAPTER *ioc, void __user *arg) { struct mpt3_ioctl_eventreport karg; u32 number_bytes, max_events, max; struct mpt3_ioctl_eventreport __user *uarg = arg; if (copy_from_user(&karg, arg, sizeof(karg))) { pr_err("failure at %s:%d/%s()!\n", __FILE__, __LINE__, __func__); return -EFAULT; } dctlprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__)); number_bytes = karg.hdr.max_data_size - sizeof(struct mpt3_ioctl_header); max_events = number_bytes/sizeof(struct MPT3_IOCTL_EVENTS); max = min_t(u32, MPT3SAS_CTL_EVENT_LOG_SIZE, max_events); /* If fewer than 1 event is requested, there must have * been some type of error. */ if (!max || !ioc->event_log) return -ENODATA; number_bytes = max * sizeof(struct MPT3_IOCTL_EVENTS); if (copy_to_user(uarg->event_data, ioc->event_log, number_bytes)) { pr_err("failure at %s:%d/%s()!\n", __FILE__, __LINE__, __func__); return -EFAULT; } /* reset flag so SIGIO can restart */ ioc->aen_event_read_flag = 0; return 0; } /** * _ctl_do_reset - main handler for MPT3HARDRESET opcode * @ioc: per adapter object * @arg: user space buffer containing ioctl content */ static long _ctl_do_reset(struct MPT3SAS_ADAPTER *ioc, void __user *arg) { struct mpt3_ioctl_diag_reset karg; int retval; if (copy_from_user(&karg, arg, sizeof(karg))) { pr_err("failure at %s:%d/%s()!\n", __FILE__, __LINE__, __func__); return -EFAULT; } if (ioc->shost_recovery || ioc->pci_error_recovery || ioc->is_driver_loading) return -EAGAIN; dctlprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__)); retval = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); ioc_info(ioc, "Ioctl: host reset: %s\n", ((!retval) ? "SUCCESS" : "FAILED")); return 0; } /** * _ctl_btdh_search_sas_device - searching for sas device * @ioc: per adapter object * @btdh: btdh ioctl payload */ static int _ctl_btdh_search_sas_device(struct MPT3SAS_ADAPTER *ioc, struct mpt3_ioctl_btdh_mapping *btdh) { struct _sas_device *sas_device; unsigned long flags; int rc = 0; if (list_empty(&ioc->sas_device_list)) return rc; spin_lock_irqsave(&ioc->sas_device_lock, flags); list_for_each_entry(sas_device, &ioc->sas_device_list, list) { if (btdh->bus == 0xFFFFFFFF && btdh->id == 0xFFFFFFFF && btdh->handle == sas_device->handle) { btdh->bus = sas_device->channel; btdh->id = sas_device->id; rc = 1; goto out; } else if (btdh->bus == sas_device->channel && btdh->id == sas_device->id && btdh->handle == 0xFFFF) { btdh->handle = sas_device->handle; rc = 1; goto out; } } out: spin_unlock_irqrestore(&ioc->sas_device_lock, flags); return rc; } /** * _ctl_btdh_search_pcie_device - searching for pcie device * @ioc: per adapter object * @btdh: btdh ioctl payload */ static int _ctl_btdh_search_pcie_device(struct MPT3SAS_ADAPTER *ioc, struct mpt3_ioctl_btdh_mapping *btdh) { struct _pcie_device *pcie_device; unsigned long flags; int rc = 0; if (list_empty(&ioc->pcie_device_list)) return rc; spin_lock_irqsave(&ioc->pcie_device_lock, flags); list_for_each_entry(pcie_device, &ioc->pcie_device_list, list) { if (btdh->bus == 0xFFFFFFFF && btdh->id == 0xFFFFFFFF && btdh->handle == pcie_device->handle) { btdh->bus = pcie_device->channel; btdh->id = pcie_device->id; rc = 1; goto out; } else if (btdh->bus == pcie_device->channel && btdh->id == pcie_device->id && btdh->handle == 0xFFFF) { btdh->handle = pcie_device->handle; rc = 1; goto out; } } out: spin_unlock_irqrestore(&ioc->pcie_device_lock, flags); return rc; } /** * _ctl_btdh_search_raid_device - searching for raid device * @ioc: per adapter object * @btdh: btdh ioctl payload */ static int _ctl_btdh_search_raid_device(struct MPT3SAS_ADAPTER *ioc, struct mpt3_ioctl_btdh_mapping *btdh) { struct _raid_device *raid_device; unsigned long flags; int rc = 0; if (list_empty(&ioc->raid_device_list)) return rc; spin_lock_irqsave(&ioc->raid_device_lock, flags); list_for_each_entry(raid_device, &ioc->raid_device_list, list) { if (btdh->bus == 0xFFFFFFFF && btdh->id == 0xFFFFFFFF && btdh->handle == raid_device->handle) { btdh->bus = raid_device->channel; btdh->id = raid_device->id; rc = 1; goto out; } else if (btdh->bus == raid_device->channel && btdh->id == raid_device->id && btdh->handle == 0xFFFF) { btdh->handle = raid_device->handle; rc = 1; goto out; } } out: spin_unlock_irqrestore(&ioc->raid_device_lock, flags); return rc; } /** * _ctl_btdh_mapping - main handler for MPT3BTDHMAPPING opcode * @ioc: per adapter object * @arg: user space buffer containing ioctl content */ static long _ctl_btdh_mapping(struct MPT3SAS_ADAPTER *ioc, void __user *arg) { struct mpt3_ioctl_btdh_mapping karg; int rc; if (copy_from_user(&karg, arg, sizeof(karg))) { pr_err("failure at %s:%d/%s()!\n", __FILE__, __LINE__, __func__); return -EFAULT; } dctlprintk(ioc, ioc_info(ioc, "%s\n", __func__)); rc = _ctl_btdh_search_sas_device(ioc, &karg); if (!rc) rc = _ctl_btdh_search_pcie_device(ioc, &karg); if (!rc) _ctl_btdh_search_raid_device(ioc, &karg); if (copy_to_user(arg, &karg, sizeof(karg))) { pr_err("failure at %s:%d/%s()!\n", __FILE__, __LINE__, __func__); return -EFAULT; } return 0; } /** * _ctl_diag_capability - return diag buffer capability * @ioc: per adapter object * @buffer_type: specifies either TRACE, SNAPSHOT, or EXTENDED * * returns 1 when diag buffer support is enabled in firmware */ static u8 _ctl_diag_capability(struct MPT3SAS_ADAPTER *ioc, u8 buffer_type) { u8 rc = 0; switch (buffer_type) { case MPI2_DIAG_BUF_TYPE_TRACE: if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) rc = 1; break; case MPI2_DIAG_BUF_TYPE_SNAPSHOT: if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) rc = 1; break; case MPI2_DIAG_BUF_TYPE_EXTENDED: if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) rc = 1; } return rc; } /** * _ctl_diag_get_bufftype - return diag buffer type * either TRACE, SNAPSHOT, or EXTENDED * @ioc: per adapter object * @unique_id: specifies the unique_id for the buffer * * returns MPT3_DIAG_UID_NOT_FOUND if the id not found */ static u8 _ctl_diag_get_bufftype(struct MPT3SAS_ADAPTER *ioc, u32 unique_id) { u8 index; for (index = 0; index < MPI2_DIAG_BUF_TYPE_COUNT; index++) { if (ioc->unique_id[index] == unique_id) return index; } return MPT3_DIAG_UID_NOT_FOUND; } /** * _ctl_diag_register_2 - wrapper for registering diag buffer support * @ioc: per adapter object * @diag_register: the diag_register struct passed in from user space * */ static long _ctl_diag_register_2(struct MPT3SAS_ADAPTER *ioc, struct mpt3_diag_register *diag_register) { int rc, i; void *request_data = NULL; dma_addr_t request_data_dma; u32 request_data_sz = 0; Mpi2DiagBufferPostRequest_t *mpi_request; Mpi2DiagBufferPostReply_t *mpi_reply; u8 buffer_type; u16 smid; u16 ioc_status; u32 ioc_state; u8 issue_reset = 0; dctlprintk(ioc, ioc_info(ioc, "%s\n", __func__)); ioc_state = mpt3sas_base_get_iocstate(ioc, 1); if (ioc_state != MPI2_IOC_STATE_OPERATIONAL) { ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__); rc = -EAGAIN; goto out; } if (ioc->ctl_cmds.status != MPT3_CMD_NOT_USED) { ioc_err(ioc, "%s: ctl_cmd in use\n", __func__); rc = -EAGAIN; goto out; } buffer_type = diag_register->buffer_type; if (!_ctl_diag_capability(ioc, buffer_type)) { ioc_err(ioc, "%s: doesn't have capability for buffer_type(0x%02x)\n", __func__, buffer_type); return -EPERM; } if (diag_register->unique_id == 0) { ioc_err(ioc, "%s: Invalid UID(0x%08x), buffer_type(0x%02x)\n", __func__, diag_register->unique_id, buffer_type); return -EINVAL; } if ((ioc->diag_buffer_status[buffer_type] & MPT3_DIAG_BUFFER_IS_APP_OWNED) && !(ioc->diag_buffer_status[buffer_type] & MPT3_DIAG_BUFFER_IS_RELEASED)) { ioc_err(ioc, "%s: buffer_type(0x%02x) is already registered by application with UID(0x%08x)\n", __func__, buffer_type, ioc->unique_id[buffer_type]); return -EINVAL; } if (ioc->diag_buffer_status[buffer_type] & MPT3_DIAG_BUFFER_IS_REGISTERED) { /* * If driver posts buffer initially, then an application wants * to Register that buffer (own it) without Releasing first, * the application Register command MUST have the same buffer * type and size in the Register command (obtained from the * Query command). Otherwise that Register command will be * failed. If the application has released the buffer but wants * to re-register it, it should be allowed as long as the * Unique-Id/Size match. */ if (ioc->unique_id[buffer_type] == MPT3DIAGBUFFUNIQUEID && ioc->diag_buffer_sz[buffer_type] == diag_register->requested_buffer_size) { if (!(ioc->diag_buffer_status[buffer_type] & MPT3_DIAG_BUFFER_IS_RELEASED)) { dctlprintk(ioc, ioc_info(ioc, "%s: diag_buffer (%d) ownership changed. old-ID(0x%08x), new-ID(0x%08x)\n", __func__, buffer_type, ioc->unique_id[buffer_type], diag_register->unique_id)); /* * Application wants to own the buffer with * the same size. */ ioc->unique_id[buffer_type] = diag_register->unique_id; rc = 0; /* success */ goto out; } } else if (ioc->unique_id[buffer_type] != MPT3DIAGBUFFUNIQUEID) { if (ioc->unique_id[buffer_type] != diag_register->unique_id || ioc->diag_buffer_sz[buffer_type] != diag_register->requested_buffer_size || !(ioc->diag_buffer_status[buffer_type] & MPT3_DIAG_BUFFER_IS_RELEASED)) { ioc_err(ioc, "%s: already has a registered buffer for buffer_type(0x%02x)\n", __func__, buffer_type); return -EINVAL; } } else { ioc_err(ioc, "%s: already has a registered buffer for buffer_type(0x%02x)\n", __func__, buffer_type); return -EINVAL; } } else if (ioc->diag_buffer_status[buffer_type] & MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED) { if (ioc->unique_id[buffer_type] != MPT3DIAGBUFFUNIQUEID || ioc->diag_buffer_sz[buffer_type] != diag_register->requested_buffer_size) { ioc_err(ioc, "%s: already a buffer is allocated for buffer_type(0x%02x) of size %d bytes, so please try registering again with same size\n", __func__, buffer_type, ioc->diag_buffer_sz[buffer_type]); return -EINVAL; } } if (diag_register->requested_buffer_size % 4) { ioc_err(ioc, "%s: the requested_buffer_size is not 4 byte aligned\n", __func__); return -EINVAL; } smid = mpt3sas_base_get_smid(ioc, ioc->ctl_cb_idx); if (!smid) { ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); rc = -EAGAIN; goto out; } rc = 0; ioc->ctl_cmds.status = MPT3_CMD_PENDING; memset(ioc->ctl_cmds.reply, 0, ioc->reply_sz); mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); ioc->ctl_cmds.smid = smid; request_data = ioc->diag_buffer[buffer_type]; request_data_sz = diag_register->requested_buffer_size; ioc->unique_id[buffer_type] = diag_register->unique_id; ioc->diag_buffer_status[buffer_type] &= MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED; memcpy(ioc->product_specific[buffer_type], diag_register->product_specific, MPT3_PRODUCT_SPECIFIC_DWORDS); ioc->diagnostic_flags[buffer_type] = diag_register->diagnostic_flags; if (request_data) { request_data_dma = ioc->diag_buffer_dma[buffer_type]; if (request_data_sz != ioc->diag_buffer_sz[buffer_type]) { dma_free_coherent(&ioc->pdev->dev, ioc->diag_buffer_sz[buffer_type], request_data, request_data_dma); request_data = NULL; } } if (request_data == NULL) { ioc->diag_buffer_sz[buffer_type] = 0; ioc->diag_buffer_dma[buffer_type] = 0; request_data = dma_alloc_coherent(&ioc->pdev->dev, request_data_sz, &request_data_dma, GFP_KERNEL); if (request_data == NULL) { ioc_err(ioc, "%s: failed allocating memory for diag buffers, requested size(%d)\n", __func__, request_data_sz); mpt3sas_base_free_smid(ioc, smid); rc = -ENOMEM; goto out; } ioc->diag_buffer[buffer_type] = request_data; ioc->diag_buffer_sz[buffer_type] = request_data_sz; ioc->diag_buffer_dma[buffer_type] = request_data_dma; } mpi_request->Function = MPI2_FUNCTION_DIAG_BUFFER_POST; mpi_request->BufferType = diag_register->buffer_type; mpi_request->Flags = cpu_to_le32(diag_register->diagnostic_flags); mpi_request->BufferAddress = cpu_to_le64(request_data_dma); mpi_request->BufferLength = cpu_to_le32(request_data_sz); mpi_request->VF_ID = 0; /* TODO */ mpi_request->VP_ID = 0; dctlprintk(ioc, ioc_info(ioc, "%s: diag_buffer(0x%p), dma(0x%llx), sz(%d)\n", __func__, request_data, (unsigned long long)request_data_dma, le32_to_cpu(mpi_request->BufferLength))); for (i = 0; i < MPT3_PRODUCT_SPECIFIC_DWORDS; i++) mpi_request->ProductSpecific[i] = cpu_to_le32(ioc->product_specific[buffer_type][i]); init_completion(&ioc->ctl_cmds.done); ioc->put_smid_default(ioc, smid); wait_for_completion_timeout(&ioc->ctl_cmds.done, MPT3_IOCTL_DEFAULT_TIMEOUT*HZ); if (!(ioc->ctl_cmds.status & MPT3_CMD_COMPLETE)) { mpt3sas_check_cmd_timeout(ioc, ioc->ctl_cmds.status, mpi_request, sizeof(Mpi2DiagBufferPostRequest_t)/4, issue_reset); goto issue_host_reset; } /* process the completed Reply Message Frame */ if ((ioc->ctl_cmds.status & MPT3_CMD_REPLY_VALID) == 0) { ioc_err(ioc, "%s: no reply message\n", __func__); rc = -EFAULT; goto out; } mpi_reply = ioc->ctl_cmds.reply; ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { ioc->diag_buffer_status[buffer_type] |= MPT3_DIAG_BUFFER_IS_REGISTERED; dctlprintk(ioc, ioc_info(ioc, "%s: success\n", __func__)); } else { ioc_info(ioc, "%s: ioc_status(0x%04x) log_info(0x%08x)\n", __func__, ioc_status, le32_to_cpu(mpi_reply->IOCLogInfo)); rc = -EFAULT; } issue_host_reset: if (issue_reset) mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); out: if (rc && request_data) { dma_free_coherent(&ioc->pdev->dev, request_data_sz, request_data, request_data_dma); ioc->diag_buffer_status[buffer_type] &= ~MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED; } ioc->ctl_cmds.status = MPT3_CMD_NOT_USED; return rc; } /** * mpt3sas_enable_diag_buffer - enabling diag_buffers support driver load time * @ioc: per adapter object * @bits_to_register: bitwise field where trace is bit 0, and snapshot is bit 1 * * This is called when command line option diag_buffer_enable is enabled * at driver load time. */ void mpt3sas_enable_diag_buffer(struct MPT3SAS_ADAPTER *ioc, u8 bits_to_register) { struct mpt3_diag_register diag_register; u32 ret_val; u32 trace_buff_size = ioc->manu_pg11.HostTraceBufferMaxSizeKB<<10; u32 min_trace_buff_size = 0; u32 decr_trace_buff_size = 0; memset(&diag_register, 0, sizeof(struct mpt3_diag_register)); if (bits_to_register & 1) { ioc_info(ioc, "registering trace buffer support\n"); ioc->diag_trigger_master.MasterData = (MASTER_TRIGGER_FW_FAULT + MASTER_TRIGGER_ADAPTER_RESET); diag_register.buffer_type = MPI2_DIAG_BUF_TYPE_TRACE; diag_register.unique_id = (ioc->hba_mpi_version_belonged == MPI2_VERSION) ? (MPT2DIAGBUFFUNIQUEID):(MPT3DIAGBUFFUNIQUEID); if (trace_buff_size != 0) { diag_register.requested_buffer_size = trace_buff_size; min_trace_buff_size = ioc->manu_pg11.HostTraceBufferMinSizeKB<<10; decr_trace_buff_size = ioc->manu_pg11.HostTraceBufferDecrementSizeKB<<10; if (min_trace_buff_size > trace_buff_size) { /* The buff size is not set correctly */ ioc_err(ioc, "Min Trace Buff size (%d KB) greater than Max Trace Buff size (%d KB)\n", min_trace_buff_size>>10, trace_buff_size>>10); ioc_err(ioc, "Using zero Min Trace Buff Size\n"); min_trace_buff_size = 0; } if (decr_trace_buff_size == 0) { /* * retry the min size if decrement * is not available. */ decr_trace_buff_size = trace_buff_size - min_trace_buff_size; } } else { /* register for 2MB buffers */ diag_register.requested_buffer_size = 2 * (1024 * 1024); } do { ret_val = _ctl_diag_register_2(ioc, &diag_register); if (ret_val == -ENOMEM && min_trace_buff_size && (trace_buff_size - decr_trace_buff_size) >= min_trace_buff_size) { /* adjust the buffer size */ trace_buff_size -= decr_trace_buff_size; diag_register.requested_buffer_size = trace_buff_size; } else break; } while (true); if (ret_val == -ENOMEM) ioc_err(ioc, "Cannot allocate trace buffer memory. Last memory tried = %d KB\n", diag_register.requested_buffer_size>>10); else if (ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & MPT3_DIAG_BUFFER_IS_REGISTERED) { ioc_err(ioc, "Trace buffer memory %d KB allocated\n", diag_register.requested_buffer_size>>10); if (ioc->hba_mpi_version_belonged != MPI2_VERSION) ioc->diag_buffer_status[ MPI2_DIAG_BUF_TYPE_TRACE] |= MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED; } } if (bits_to_register & 2) { ioc_info(ioc, "registering snapshot buffer support\n"); diag_register.buffer_type = MPI2_DIAG_BUF_TYPE_SNAPSHOT; /* register for 2MB buffers */ diag_register.requested_buffer_size = 2 * (1024 * 1024); diag_register.unique_id = 0x7075901; _ctl_diag_register_2(ioc, &diag_register); } if (bits_to_register & 4) { ioc_info(ioc, "registering extended buffer support\n"); diag_register.buffer_type = MPI2_DIAG_BUF_TYPE_EXTENDED; /* register for 2MB buffers */ diag_register.requested_buffer_size = 2 * (1024 * 1024); diag_register.unique_id = 0x7075901; _ctl_diag_register_2(ioc, &diag_register); } } /** * _ctl_diag_register - application register with driver * @ioc: per adapter object * @arg: user space buffer containing ioctl content * * This will allow the driver to setup any required buffers that will be * needed by firmware to communicate with the driver. */ static long _ctl_diag_register(struct MPT3SAS_ADAPTER *ioc, void __user *arg) { struct mpt3_diag_register karg; long rc; if (copy_from_user(&karg, arg, sizeof(karg))) { pr_err("failure at %s:%d/%s()!\n", __FILE__, __LINE__, __func__); return -EFAULT; } rc = _ctl_diag_register_2(ioc, &karg); if (!rc && (ioc->diag_buffer_status[karg.buffer_type] & MPT3_DIAG_BUFFER_IS_REGISTERED)) ioc->diag_buffer_status[karg.buffer_type] |= MPT3_DIAG_BUFFER_IS_APP_OWNED; return rc; } /** * _ctl_diag_unregister - application unregister with driver * @ioc: per adapter object * @arg: user space buffer containing ioctl content * * This will allow the driver to cleanup any memory allocated for diag * messages and to free up any resources. */ static long _ctl_diag_unregister(struct MPT3SAS_ADAPTER *ioc, void __user *arg) { struct mpt3_diag_unregister karg; void *request_data; dma_addr_t request_data_dma; u32 request_data_sz; u8 buffer_type; if (copy_from_user(&karg, arg, sizeof(karg))) { pr_err("failure at %s:%d/%s()!\n", __FILE__, __LINE__, __func__); return -EFAULT; } dctlprintk(ioc, ioc_info(ioc, "%s\n", __func__)); buffer_type = _ctl_diag_get_bufftype(ioc, karg.unique_id); if (buffer_type == MPT3_DIAG_UID_NOT_FOUND) { ioc_err(ioc, "%s: buffer with unique_id(0x%08x) not found\n", __func__, karg.unique_id); return -EINVAL; } if (!_ctl_diag_capability(ioc, buffer_type)) { ioc_err(ioc, "%s: doesn't have capability for buffer_type(0x%02x)\n", __func__, buffer_type); return -EPERM; } if ((ioc->diag_buffer_status[buffer_type] & MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) { ioc_err(ioc, "%s: buffer_type(0x%02x) is not registered\n", __func__, buffer_type); return -EINVAL; } if ((ioc->diag_buffer_status[buffer_type] & MPT3_DIAG_BUFFER_IS_RELEASED) == 0) { ioc_err(ioc, "%s: buffer_type(0x%02x) has not been released\n", __func__, buffer_type); return -EINVAL; } if (karg.unique_id != ioc->unique_id[buffer_type]) { ioc_err(ioc, "%s: unique_id(0x%08x) is not registered\n", __func__, karg.unique_id); return -EINVAL; } request_data = ioc->diag_buffer[buffer_type]; if (!request_data) { ioc_err(ioc, "%s: doesn't have memory allocated for buffer_type(0x%02x)\n", __func__, buffer_type); return -ENOMEM; } if (ioc->diag_buffer_status[buffer_type] & MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED) { ioc->unique_id[buffer_type] = MPT3DIAGBUFFUNIQUEID; ioc->diag_buffer_status[buffer_type] &= ~MPT3_DIAG_BUFFER_IS_APP_OWNED; ioc->diag_buffer_status[buffer_type] &= ~MPT3_DIAG_BUFFER_IS_REGISTERED; } else { request_data_sz = ioc->diag_buffer_sz[buffer_type]; request_data_dma = ioc->diag_buffer_dma[buffer_type]; dma_free_coherent(&ioc->pdev->dev, request_data_sz, request_data, request_data_dma); ioc->diag_buffer[buffer_type] = NULL; ioc->diag_buffer_status[buffer_type] = 0; } return 0; } /** * _ctl_diag_query - query relevant info associated with diag buffers * @ioc: per adapter object * @arg: user space buffer containing ioctl content * * The application will send only buffer_type and unique_id. Driver will * inspect unique_id first, if valid, fill in all the info. If unique_id is * 0x00, the driver will return info specified by Buffer Type. */ static long _ctl_diag_query(struct MPT3SAS_ADAPTER *ioc, void __user *arg) { struct mpt3_diag_query karg; void *request_data; int i; u8 buffer_type; if (copy_from_user(&karg, arg, sizeof(karg))) { pr_err("failure at %s:%d/%s()!\n", __FILE__, __LINE__, __func__); return -EFAULT; } dctlprintk(ioc, ioc_info(ioc, "%s\n", __func__)); karg.application_flags = 0; buffer_type = karg.buffer_type; if (!_ctl_diag_capability(ioc, buffer_type)) { ioc_err(ioc, "%s: doesn't have capability for buffer_type(0x%02x)\n", __func__, buffer_type); return -EPERM; } if (!(ioc->diag_buffer_status[buffer_type] & MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED)) { if ((ioc->diag_buffer_status[buffer_type] & MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) { ioc_err(ioc, "%s: buffer_type(0x%02x) is not registered\n", __func__, buffer_type); return -EINVAL; } } if (karg.unique_id) { if (karg.unique_id != ioc->unique_id[buffer_type]) { ioc_err(ioc, "%s: unique_id(0x%08x) is not registered\n", __func__, karg.unique_id); return -EINVAL; } } request_data = ioc->diag_buffer[buffer_type]; if (!request_data) { ioc_err(ioc, "%s: doesn't have buffer for buffer_type(0x%02x)\n", __func__, buffer_type); return -ENOMEM; } if ((ioc->diag_buffer_status[buffer_type] & MPT3_DIAG_BUFFER_IS_REGISTERED)) karg.application_flags |= MPT3_APP_FLAGS_BUFFER_VALID; if (!(ioc->diag_buffer_status[buffer_type] & MPT3_DIAG_BUFFER_IS_RELEASED)) karg.application_flags |= MPT3_APP_FLAGS_FW_BUFFER_ACCESS; if (!(ioc->diag_buffer_status[buffer_type] & MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED)) karg.application_flags |= MPT3_APP_FLAGS_DYNAMIC_BUFFER_ALLOC; if ((ioc->diag_buffer_status[buffer_type] & MPT3_DIAG_BUFFER_IS_APP_OWNED)) karg.application_flags |= MPT3_APP_FLAGS_APP_OWNED; for (i = 0; i < MPT3_PRODUCT_SPECIFIC_DWORDS; i++) karg.product_specific[i] = ioc->product_specific[buffer_type][i]; karg.total_buffer_size = ioc->diag_buffer_sz[buffer_type]; karg.driver_added_buffer_size = 0; karg.unique_id = ioc->unique_id[buffer_type]; karg.diagnostic_flags = ioc->diagnostic_flags[buffer_type]; if (copy_to_user(arg, &karg, sizeof(struct mpt3_diag_query))) { ioc_err(ioc, "%s: unable to write mpt3_diag_query data @ %p\n", __func__, arg); return -EFAULT; } return 0; } /** * mpt3sas_send_diag_release - Diag Release Message * @ioc: per adapter object * @buffer_type: specifies either TRACE, SNAPSHOT, or EXTENDED * @issue_reset: specifies whether host reset is required. * */ int mpt3sas_send_diag_release(struct MPT3SAS_ADAPTER *ioc, u8 buffer_type, u8 *issue_reset) { Mpi2DiagReleaseRequest_t *mpi_request; Mpi2DiagReleaseReply_t *mpi_reply; u16 smid; u16 ioc_status; u32 ioc_state; int rc; u8 reset_needed = 0; dctlprintk(ioc, ioc_info(ioc, "%s\n", __func__)); rc = 0; *issue_reset = 0; ioc_state = mpt3sas_base_get_iocstate(ioc, 1); if (ioc_state != MPI2_IOC_STATE_OPERATIONAL) { if (ioc->diag_buffer_status[buffer_type] & MPT3_DIAG_BUFFER_IS_REGISTERED) ioc->diag_buffer_status[buffer_type] |= MPT3_DIAG_BUFFER_IS_RELEASED; dctlprintk(ioc, ioc_info(ioc, "%s: skipping due to FAULT state\n", __func__)); rc = -EAGAIN; goto out; } if (ioc->ctl_cmds.status != MPT3_CMD_NOT_USED) { ioc_err(ioc, "%s: ctl_cmd in use\n", __func__); rc = -EAGAIN; goto out; } smid = mpt3sas_base_get_smid(ioc, ioc->ctl_cb_idx); if (!smid) { ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); rc = -EAGAIN; goto out; } ioc->ctl_cmds.status = MPT3_CMD_PENDING; memset(ioc->ctl_cmds.reply, 0, ioc->reply_sz); mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); ioc->ctl_cmds.smid = smid; mpi_request->Function = MPI2_FUNCTION_DIAG_RELEASE; mpi_request->BufferType = buffer_type; mpi_request->VF_ID = 0; /* TODO */ mpi_request->VP_ID = 0; init_completion(&ioc->ctl_cmds.done); ioc->put_smid_default(ioc, smid); wait_for_completion_timeout(&ioc->ctl_cmds.done, MPT3_IOCTL_DEFAULT_TIMEOUT*HZ); if (!(ioc->ctl_cmds.status & MPT3_CMD_COMPLETE)) { mpt3sas_check_cmd_timeout(ioc, ioc->ctl_cmds.status, mpi_request, sizeof(Mpi2DiagReleaseRequest_t)/4, reset_needed); *issue_reset = reset_needed; rc = -EFAULT; goto out; } /* process the completed Reply Message Frame */ if ((ioc->ctl_cmds.status & MPT3_CMD_REPLY_VALID) == 0) { ioc_err(ioc, "%s: no reply message\n", __func__); rc = -EFAULT; goto out; } mpi_reply = ioc->ctl_cmds.reply; ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { ioc->diag_buffer_status[buffer_type] |= MPT3_DIAG_BUFFER_IS_RELEASED; dctlprintk(ioc, ioc_info(ioc, "%s: success\n", __func__)); } else { ioc_info(ioc, "%s: ioc_status(0x%04x) log_info(0x%08x)\n", __func__, ioc_status, le32_to_cpu(mpi_reply->IOCLogInfo)); rc = -EFAULT; } out: ioc->ctl_cmds.status = MPT3_CMD_NOT_USED; return rc; } /** * _ctl_diag_release - request to send Diag Release Message to firmware * @ioc: ? * @arg: user space buffer containing ioctl content * * This allows ownership of the specified buffer to returned to the driver, * allowing an application to read the buffer without fear that firmware is * overwriting information in the buffer. */ static long _ctl_diag_release(struct MPT3SAS_ADAPTER *ioc, void __user *arg) { struct mpt3_diag_release karg; void *request_data; int rc; u8 buffer_type; u8 issue_reset = 0; if (copy_from_user(&karg, arg, sizeof(karg))) { pr_err("failure at %s:%d/%s()!\n", __FILE__, __LINE__, __func__); return -EFAULT; } dctlprintk(ioc, ioc_info(ioc, "%s\n", __func__)); buffer_type = _ctl_diag_get_bufftype(ioc, karg.unique_id); if (buffer_type == MPT3_DIAG_UID_NOT_FOUND) { ioc_err(ioc, "%s: buffer with unique_id(0x%08x) not found\n", __func__, karg.unique_id); return -EINVAL; } if (!_ctl_diag_capability(ioc, buffer_type)) { ioc_err(ioc, "%s: doesn't have capability for buffer_type(0x%02x)\n", __func__, buffer_type); return -EPERM; } if ((ioc->diag_buffer_status[buffer_type] & MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) { ioc_err(ioc, "%s: buffer_type(0x%02x) is not registered\n", __func__, buffer_type); return -EINVAL; } if (karg.unique_id != ioc->unique_id[buffer_type]) { ioc_err(ioc, "%s: unique_id(0x%08x) is not registered\n", __func__, karg.unique_id); return -EINVAL; } if (ioc->diag_buffer_status[buffer_type] & MPT3_DIAG_BUFFER_IS_RELEASED) { ioc_err(ioc, "%s: buffer_type(0x%02x) is already released\n", __func__, buffer_type); return -EINVAL; } request_data = ioc->diag_buffer[buffer_type]; if (!request_data) { ioc_err(ioc, "%s: doesn't have memory allocated for buffer_type(0x%02x)\n", __func__, buffer_type); return -ENOMEM; } /* buffers were released by due to host reset */ if ((ioc->diag_buffer_status[buffer_type] & MPT3_DIAG_BUFFER_IS_DIAG_RESET)) { ioc->diag_buffer_status[buffer_type] |= MPT3_DIAG_BUFFER_IS_RELEASED; ioc->diag_buffer_status[buffer_type] &= ~MPT3_DIAG_BUFFER_IS_DIAG_RESET; ioc_err(ioc, "%s: buffer_type(0x%02x) was released due to host reset\n", __func__, buffer_type); return 0; } rc = mpt3sas_send_diag_release(ioc, buffer_type, &issue_reset); if (issue_reset) mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); return rc; } /** * _ctl_diag_read_buffer - request for copy of the diag buffer * @ioc: per adapter object * @arg: user space buffer containing ioctl content */ static long _ctl_diag_read_buffer(struct MPT3SAS_ADAPTER *ioc, void __user *arg) { struct mpt3_diag_read_buffer karg; struct mpt3_diag_read_buffer __user *uarg = arg; void *request_data, *diag_data; Mpi2DiagBufferPostRequest_t *mpi_request; Mpi2DiagBufferPostReply_t *mpi_reply; int rc, i; u8 buffer_type; unsigned long request_size, copy_size; u16 smid; u16 ioc_status; u8 issue_reset = 0; if (copy_from_user(&karg, arg, sizeof(karg))) { pr_err("failure at %s:%d/%s()!\n", __FILE__, __LINE__, __func__); return -EFAULT; } dctlprintk(ioc, ioc_info(ioc, "%s\n", __func__)); buffer_type = _ctl_diag_get_bufftype(ioc, karg.unique_id); if (buffer_type == MPT3_DIAG_UID_NOT_FOUND) { ioc_err(ioc, "%s: buffer with unique_id(0x%08x) not found\n", __func__, karg.unique_id); return -EINVAL; } if (!_ctl_diag_capability(ioc, buffer_type)) { ioc_err(ioc, "%s: doesn't have capability for buffer_type(0x%02x)\n", __func__, buffer_type); return -EPERM; } if (karg.unique_id != ioc->unique_id[buffer_type]) { ioc_err(ioc, "%s: unique_id(0x%08x) is not registered\n", __func__, karg.unique_id); return -EINVAL; } request_data = ioc->diag_buffer[buffer_type]; if (!request_data) { ioc_err(ioc, "%s: doesn't have buffer for buffer_type(0x%02x)\n", __func__, buffer_type); return -ENOMEM; } request_size = ioc->diag_buffer_sz[buffer_type]; if ((karg.starting_offset % 4) || (karg.bytes_to_read % 4)) { ioc_err(ioc, "%s: either the starting_offset or bytes_to_read are not 4 byte aligned\n", __func__); return -EINVAL; } if (karg.starting_offset > request_size) return -EINVAL; diag_data = (void *)(request_data + karg.starting_offset); dctlprintk(ioc, ioc_info(ioc, "%s: diag_buffer(%p), offset(%d), sz(%d)\n", __func__, diag_data, karg.starting_offset, karg.bytes_to_read)); /* Truncate data on requests that are too large */ if ((diag_data + karg.bytes_to_read < diag_data) || (diag_data + karg.bytes_to_read > request_data + request_size)) copy_size = request_size - karg.starting_offset; else copy_size = karg.bytes_to_read; if (copy_to_user((void __user *)uarg->diagnostic_data, diag_data, copy_size)) { ioc_err(ioc, "%s: Unable to write mpt_diag_read_buffer_t data @ %p\n", __func__, diag_data); return -EFAULT; } if ((karg.flags & MPT3_FLAGS_REREGISTER) == 0) return 0; dctlprintk(ioc, ioc_info(ioc, "%s: Reregister buffer_type(0x%02x)\n", __func__, buffer_type)); if ((ioc->diag_buffer_status[buffer_type] & MPT3_DIAG_BUFFER_IS_RELEASED) == 0) { dctlprintk(ioc, ioc_info(ioc, "%s: buffer_type(0x%02x) is still registered\n", __func__, buffer_type)); return 0; } /* Get a free request frame and save the message context. */ if (ioc->ctl_cmds.status != MPT3_CMD_NOT_USED) { ioc_err(ioc, "%s: ctl_cmd in use\n", __func__); rc = -EAGAIN; goto out; } smid = mpt3sas_base_get_smid(ioc, ioc->ctl_cb_idx); if (!smid) { ioc_err(ioc, "%s: failed obtaining a smid\n", __func__); rc = -EAGAIN; goto out; } rc = 0; ioc->ctl_cmds.status = MPT3_CMD_PENDING; memset(ioc->ctl_cmds.reply, 0, ioc->reply_sz); mpi_request = mpt3sas_base_get_msg_frame(ioc, smid); ioc->ctl_cmds.smid = smid; mpi_request->Function = MPI2_FUNCTION_DIAG_BUFFER_POST; mpi_request->BufferType = buffer_type; mpi_request->BufferLength = cpu_to_le32(ioc->diag_buffer_sz[buffer_type]); mpi_request->BufferAddress = cpu_to_le64(ioc->diag_buffer_dma[buffer_type]); for (i = 0; i < MPT3_PRODUCT_SPECIFIC_DWORDS; i++) mpi_request->ProductSpecific[i] = cpu_to_le32(ioc->product_specific[buffer_type][i]); mpi_request->VF_ID = 0; /* TODO */ mpi_request->VP_ID = 0; init_completion(&ioc->ctl_cmds.done); ioc->put_smid_default(ioc, smid); wait_for_completion_timeout(&ioc->ctl_cmds.done, MPT3_IOCTL_DEFAULT_TIMEOUT*HZ); if (!(ioc->ctl_cmds.status & MPT3_CMD_COMPLETE)) { mpt3sas_check_cmd_timeout(ioc, ioc->ctl_cmds.status, mpi_request, sizeof(Mpi2DiagBufferPostRequest_t)/4, issue_reset); goto issue_host_reset; } /* process the completed Reply Message Frame */ if ((ioc->ctl_cmds.status & MPT3_CMD_REPLY_VALID) == 0) { ioc_err(ioc, "%s: no reply message\n", __func__); rc = -EFAULT; goto out; } mpi_reply = ioc->ctl_cmds.reply; ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; if (ioc_status == MPI2_IOCSTATUS_SUCCESS) { ioc->diag_buffer_status[buffer_type] |= MPT3_DIAG_BUFFER_IS_REGISTERED; ioc->diag_buffer_status[buffer_type] &= ~MPT3_DIAG_BUFFER_IS_RELEASED; dctlprintk(ioc, ioc_info(ioc, "%s: success\n", __func__)); } else { ioc_info(ioc, "%s: ioc_status(0x%04x) log_info(0x%08x)\n", __func__, ioc_status, le32_to_cpu(mpi_reply->IOCLogInfo)); rc = -EFAULT; } issue_host_reset: if (issue_reset) mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER); out: ioc->ctl_cmds.status = MPT3_CMD_NOT_USED; return rc; } #ifdef CONFIG_COMPAT /** * _ctl_compat_mpt_command - convert 32bit pointers to 64bit. * @ioc: per adapter object * @cmd: ioctl opcode * @arg: (struct mpt3_ioctl_command32) * * MPT3COMMAND32 - Handle 32bit applications running on 64bit os. */ static long _ctl_compat_mpt_command(struct MPT3SAS_ADAPTER *ioc, unsigned cmd, void __user *arg) { struct mpt3_ioctl_command32 karg32; struct mpt3_ioctl_command32 __user *uarg; struct mpt3_ioctl_command karg; if (_IOC_SIZE(cmd) != sizeof(struct mpt3_ioctl_command32)) return -EINVAL; uarg = (struct mpt3_ioctl_command32 __user *) arg; if (copy_from_user(&karg32, (char __user *)arg, sizeof(karg32))) { pr_err("failure at %s:%d/%s()!\n", __FILE__, __LINE__, __func__); return -EFAULT; } memset(&karg, 0, sizeof(struct mpt3_ioctl_command)); karg.hdr.ioc_number = karg32.hdr.ioc_number; karg.hdr.port_number = karg32.hdr.port_number; karg.hdr.max_data_size = karg32.hdr.max_data_size; karg.timeout = karg32.timeout; karg.max_reply_bytes = karg32.max_reply_bytes; karg.data_in_size = karg32.data_in_size; karg.data_out_size = karg32.data_out_size; karg.max_sense_bytes = karg32.max_sense_bytes; karg.data_sge_offset = karg32.data_sge_offset; karg.reply_frame_buf_ptr = compat_ptr(karg32.reply_frame_buf_ptr); karg.data_in_buf_ptr = compat_ptr(karg32.data_in_buf_ptr); karg.data_out_buf_ptr = compat_ptr(karg32.data_out_buf_ptr); karg.sense_data_ptr = compat_ptr(karg32.sense_data_ptr); return _ctl_do_mpt_command(ioc, karg, &uarg->mf); } #endif /** * _ctl_ioctl_main - main ioctl entry point * @file: (struct file) * @cmd: ioctl opcode * @arg: user space data buffer * @compat: handles 32 bit applications in 64bit os * @mpi_version: will be MPI2_VERSION for mpt2ctl ioctl device & * MPI25_VERSION | MPI26_VERSION for mpt3ctl ioctl device. */ static long _ctl_ioctl_main(struct file *file, unsigned int cmd, void __user *arg, u8 compat, u16 mpi_version) { struct MPT3SAS_ADAPTER *ioc; struct mpt3_ioctl_header ioctl_header; enum block_state state; long ret = -EINVAL; /* get IOCTL header */ if (copy_from_user(&ioctl_header, (char __user *)arg, sizeof(struct mpt3_ioctl_header))) { pr_err("failure at %s:%d/%s()!\n", __FILE__, __LINE__, __func__); return -EFAULT; } if (_ctl_verify_adapter(ioctl_header.ioc_number, &ioc, mpi_version) == -1 || !ioc) return -ENODEV; /* pci_access_mutex lock acquired by ioctl path */ mutex_lock(&ioc->pci_access_mutex); if (ioc->shost_recovery || ioc->pci_error_recovery || ioc->is_driver_loading || ioc->remove_host) { ret = -EAGAIN; goto out_unlock_pciaccess; } state = (file->f_flags & O_NONBLOCK) ? NON_BLOCKING : BLOCKING; if (state == NON_BLOCKING) { if (!mutex_trylock(&ioc->ctl_cmds.mutex)) { ret = -EAGAIN; goto out_unlock_pciaccess; } } else if (mutex_lock_interruptible(&ioc->ctl_cmds.mutex)) { ret = -ERESTARTSYS; goto out_unlock_pciaccess; } switch (cmd) { case MPT3IOCINFO: if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_iocinfo)) ret = _ctl_getiocinfo(ioc, arg); break; #ifdef CONFIG_COMPAT case MPT3COMMAND32: #endif case MPT3COMMAND: { struct mpt3_ioctl_command __user *uarg; struct mpt3_ioctl_command karg; #ifdef CONFIG_COMPAT if (compat) { ret = _ctl_compat_mpt_command(ioc, cmd, arg); break; } #endif if (copy_from_user(&karg, arg, sizeof(karg))) { pr_err("failure at %s:%d/%s()!\n", __FILE__, __LINE__, __func__); ret = -EFAULT; break; } if (karg.hdr.ioc_number != ioctl_header.ioc_number) { ret = -EINVAL; break; } if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_command)) { uarg = arg; ret = _ctl_do_mpt_command(ioc, karg, &uarg->mf); } break; } case MPT3EVENTQUERY: if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_eventquery)) ret = _ctl_eventquery(ioc, arg); break; case MPT3EVENTENABLE: if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_eventenable)) ret = _ctl_eventenable(ioc, arg); break; case MPT3EVENTREPORT: ret = _ctl_eventreport(ioc, arg); break; case MPT3HARDRESET: if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_diag_reset)) ret = _ctl_do_reset(ioc, arg); break; case MPT3BTDHMAPPING: if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_btdh_mapping)) ret = _ctl_btdh_mapping(ioc, arg); break; case MPT3DIAGREGISTER: if (_IOC_SIZE(cmd) == sizeof(struct mpt3_diag_register)) ret = _ctl_diag_register(ioc, arg); break; case MPT3DIAGUNREGISTER: if (_IOC_SIZE(cmd) == sizeof(struct mpt3_diag_unregister)) ret = _ctl_diag_unregister(ioc, arg); break; case MPT3DIAGQUERY: if (_IOC_SIZE(cmd) == sizeof(struct mpt3_diag_query)) ret = _ctl_diag_query(ioc, arg); break; case MPT3DIAGRELEASE: if (_IOC_SIZE(cmd) == sizeof(struct mpt3_diag_release)) ret = _ctl_diag_release(ioc, arg); break; case MPT3DIAGREADBUFFER: if (_IOC_SIZE(cmd) == sizeof(struct mpt3_diag_read_buffer)) ret = _ctl_diag_read_buffer(ioc, arg); break; default: dctlprintk(ioc, ioc_info(ioc, "unsupported ioctl opcode(0x%08x)\n", cmd)); break; } mutex_unlock(&ioc->ctl_cmds.mutex); out_unlock_pciaccess: mutex_unlock(&ioc->pci_access_mutex); return ret; } /** * _ctl_ioctl - mpt3ctl main ioctl entry point (unlocked) * @file: (struct file) * @cmd: ioctl opcode * @arg: ? */ static long _ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { long ret; /* pass MPI25_VERSION | MPI26_VERSION value, * to indicate that this ioctl cmd * came from mpt3ctl ioctl device. */ ret = _ctl_ioctl_main(file, cmd, (void __user *)arg, 0, MPI25_VERSION | MPI26_VERSION); return ret; } /** * _ctl_mpt2_ioctl - mpt2ctl main ioctl entry point (unlocked) * @file: (struct file) * @cmd: ioctl opcode * @arg: ? */ static long _ctl_mpt2_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { long ret; /* pass MPI2_VERSION value, to indicate that this ioctl cmd * came from mpt2ctl ioctl device. */ ret = _ctl_ioctl_main(file, cmd, (void __user *)arg, 0, MPI2_VERSION); return ret; } #ifdef CONFIG_COMPAT /** *_ ctl_ioctl_compat - main ioctl entry point (compat) * @file: ? * @cmd: ? * @arg: ? * * This routine handles 32 bit applications in 64bit os. */ static long _ctl_ioctl_compat(struct file *file, unsigned cmd, unsigned long arg) { long ret; ret = _ctl_ioctl_main(file, cmd, (void __user *)arg, 1, MPI25_VERSION | MPI26_VERSION); return ret; } /** *_ ctl_mpt2_ioctl_compat - main ioctl entry point (compat) * @file: ? * @cmd: ? * @arg: ? * * This routine handles 32 bit applications in 64bit os. */ static long _ctl_mpt2_ioctl_compat(struct file *file, unsigned cmd, unsigned long arg) { long ret; ret = _ctl_ioctl_main(file, cmd, (void __user *)arg, 1, MPI2_VERSION); return ret; } #endif /* scsi host attributes */ /** * version_fw_show - firmware version * @cdev: pointer to embedded class device * @attr: ? * @buf: the buffer returned * * A sysfs 'read-only' shost attribute. */ static ssize_t version_fw_show(struct device *cdev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(cdev); struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); return snprintf(buf, PAGE_SIZE, "%02d.%02d.%02d.%02d\n", (ioc->facts.FWVersion.Word & 0xFF000000) >> 24, (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16, (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8, ioc->facts.FWVersion.Word & 0x000000FF); } static DEVICE_ATTR_RO(version_fw); /** * version_bios_show - bios version * @cdev: pointer to embedded class device * @attr: ? * @buf: the buffer returned * * A sysfs 'read-only' shost attribute. */ static ssize_t version_bios_show(struct device *cdev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(cdev); struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); u32 version = le32_to_cpu(ioc->bios_pg3.BiosVersion); return snprintf(buf, PAGE_SIZE, "%02d.%02d.%02d.%02d\n", (version & 0xFF000000) >> 24, (version & 0x00FF0000) >> 16, (version & 0x0000FF00) >> 8, version & 0x000000FF); } static DEVICE_ATTR_RO(version_bios); /** * version_mpi_show - MPI (message passing interface) version * @cdev: pointer to embedded class device * @attr: ? * @buf: the buffer returned * * A sysfs 'read-only' shost attribute. */ static ssize_t version_mpi_show(struct device *cdev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(cdev); struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); return snprintf(buf, PAGE_SIZE, "%03x.%02x\n", ioc->facts.MsgVersion, ioc->facts.HeaderVersion >> 8); } static DEVICE_ATTR_RO(version_mpi); /** * version_product_show - product name * @cdev: pointer to embedded class device * @attr: ? * @buf: the buffer returned * * A sysfs 'read-only' shost attribute. */ static ssize_t version_product_show(struct device *cdev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(cdev); struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); return snprintf(buf, 16, "%s\n", ioc->manu_pg0.ChipName); } static DEVICE_ATTR_RO(version_product); /** * version_nvdata_persistent_show - ndvata persistent version * @cdev: pointer to embedded class device * @attr: ? * @buf: the buffer returned * * A sysfs 'read-only' shost attribute. */ static ssize_t version_nvdata_persistent_show(struct device *cdev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(cdev); struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); return snprintf(buf, PAGE_SIZE, "%08xh\n", le32_to_cpu(ioc->iounit_pg0.NvdataVersionPersistent.Word)); } static DEVICE_ATTR_RO(version_nvdata_persistent); /** * version_nvdata_default_show - nvdata default version * @cdev: pointer to embedded class device * @attr: ? * @buf: the buffer returned * * A sysfs 'read-only' shost attribute. */ static ssize_t version_nvdata_default_show(struct device *cdev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(cdev); struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); return snprintf(buf, PAGE_SIZE, "%08xh\n", le32_to_cpu(ioc->iounit_pg0.NvdataVersionDefault.Word)); } static DEVICE_ATTR_RO(version_nvdata_default); /** * board_name_show - board name * @cdev: pointer to embedded class device * @attr: ? * @buf: the buffer returned * * A sysfs 'read-only' shost attribute. */ static ssize_t board_name_show(struct device *cdev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(cdev); struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); return snprintf(buf, 16, "%s\n", ioc->manu_pg0.BoardName); } static DEVICE_ATTR_RO(board_name); /** * board_assembly_show - board assembly name * @cdev: pointer to embedded class device * @attr: ? * @buf: the buffer returned * * A sysfs 'read-only' shost attribute. */ static ssize_t board_assembly_show(struct device *cdev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(cdev); struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); return snprintf(buf, 16, "%s\n", ioc->manu_pg0.BoardAssembly); } static DEVICE_ATTR_RO(board_assembly); /** * board_tracer_show - board tracer number * @cdev: pointer to embedded class device * @attr: ? * @buf: the buffer returned * * A sysfs 'read-only' shost attribute. */ static ssize_t board_tracer_show(struct device *cdev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(cdev); struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); return snprintf(buf, 16, "%s\n", ioc->manu_pg0.BoardTracerNumber); } static DEVICE_ATTR_RO(board_tracer); /** * io_delay_show - io missing delay * @cdev: pointer to embedded class device * @attr: ? * @buf: the buffer returned * * This is for firmware implemention for deboucing device * removal events. * * A sysfs 'read-only' shost attribute. */ static ssize_t io_delay_show(struct device *cdev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(cdev); struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); return snprintf(buf, PAGE_SIZE, "%02d\n", ioc->io_missing_delay); } static DEVICE_ATTR_RO(io_delay); /** * device_delay_show - device missing delay * @cdev: pointer to embedded class device * @attr: ? * @buf: the buffer returned * * This is for firmware implemention for deboucing device * removal events. * * A sysfs 'read-only' shost attribute. */ static ssize_t device_delay_show(struct device *cdev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(cdev); struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); return snprintf(buf, PAGE_SIZE, "%02d\n", ioc->device_missing_delay); } static DEVICE_ATTR_RO(device_delay); /** * fw_queue_depth_show - global credits * @cdev: pointer to embedded class device * @attr: ? * @buf: the buffer returned * * This is firmware queue depth limit * * A sysfs 'read-only' shost attribute. */ static ssize_t fw_queue_depth_show(struct device *cdev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(cdev); struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); return snprintf(buf, PAGE_SIZE, "%02d\n", ioc->facts.RequestCredit); } static DEVICE_ATTR_RO(fw_queue_depth); /** * sas_address_show - sas address * @cdev: pointer to embedded class device * @attr: ? * @buf: the buffer returned * * This is the controller sas address * * A sysfs 'read-only' shost attribute. */ static ssize_t host_sas_address_show(struct device *cdev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(cdev); struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); return snprintf(buf, PAGE_SIZE, "0x%016llx\n", (unsigned long long)ioc->sas_hba.sas_address); } static DEVICE_ATTR_RO(host_sas_address); /** * logging_level_show - logging level * @cdev: pointer to embedded class device * @attr: ? * @buf: the buffer returned * * A sysfs 'read/write' shost attribute. */ static ssize_t logging_level_show(struct device *cdev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(cdev); struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); return snprintf(buf, PAGE_SIZE, "%08xh\n", ioc->logging_level); } static ssize_t logging_level_store(struct device *cdev, struct device_attribute *attr, const char *buf, size_t count) { struct Scsi_Host *shost = class_to_shost(cdev); struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); int val = 0; if (sscanf(buf, "%x", &val) != 1) return -EINVAL; ioc->logging_level = val; ioc_info(ioc, "logging_level=%08xh\n", ioc->logging_level); return strlen(buf); } static DEVICE_ATTR_RW(logging_level); /** * fwfault_debug_show - show/store fwfault_debug * @cdev: pointer to embedded class device * @attr: ? * @buf: the buffer returned * * mpt3sas_fwfault_debug is command line option * A sysfs 'read/write' shost attribute. */ static ssize_t fwfault_debug_show(struct device *cdev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(cdev); struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); return snprintf(buf, PAGE_SIZE, "%d\n", ioc->fwfault_debug); } static ssize_t fwfault_debug_store(struct device *cdev, struct device_attribute *attr, const char *buf, size_t count) { struct Scsi_Host *shost = class_to_shost(cdev); struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); int val = 0; if (sscanf(buf, "%d", &val) != 1) return -EINVAL; ioc->fwfault_debug = val; ioc_info(ioc, "fwfault_debug=%d\n", ioc->fwfault_debug); return strlen(buf); } static DEVICE_ATTR_RW(fwfault_debug); /** * ioc_reset_count_show - ioc reset count * @cdev: pointer to embedded class device * @attr: ? * @buf: the buffer returned * * This is firmware queue depth limit * * A sysfs 'read-only' shost attribute. */ static ssize_t ioc_reset_count_show(struct device *cdev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(cdev); struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); return snprintf(buf, PAGE_SIZE, "%d\n", ioc->ioc_reset_count); } static DEVICE_ATTR_RO(ioc_reset_count); /** * reply_queue_count_show - number of reply queues * @cdev: pointer to embedded class device * @attr: ? * @buf: the buffer returned * * This is number of reply queues * * A sysfs 'read-only' shost attribute. */ static ssize_t reply_queue_count_show(struct device *cdev, struct device_attribute *attr, char *buf) { u8 reply_queue_count; struct Scsi_Host *shost = class_to_shost(cdev); struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); if ((ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable) reply_queue_count = ioc->reply_queue_count; else reply_queue_count = 1; return snprintf(buf, PAGE_SIZE, "%d\n", reply_queue_count); } static DEVICE_ATTR_RO(reply_queue_count); /** * BRM_status_show - Backup Rail Monitor Status * @cdev: pointer to embedded class device * @attr: ? * @buf: the buffer returned * * This is number of reply queues * * A sysfs 'read-only' shost attribute. */ static ssize_t BRM_status_show(struct device *cdev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(cdev); struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); Mpi2IOUnitPage3_t *io_unit_pg3 = NULL; Mpi2ConfigReply_t mpi_reply; u16 backup_rail_monitor_status = 0; u16 ioc_status; int sz; ssize_t rc = 0; if (!ioc->is_warpdrive) { ioc_err(ioc, "%s: BRM attribute is only for warpdrive\n", __func__); goto out; } /* pci_access_mutex lock acquired by sysfs show path */ mutex_lock(&ioc->pci_access_mutex); if (ioc->pci_error_recovery || ioc->remove_host) { mutex_unlock(&ioc->pci_access_mutex); return 0; } /* allocate upto GPIOVal 36 entries */ sz = offsetof(Mpi2IOUnitPage3_t, GPIOVal) + (sizeof(u16) * 36); io_unit_pg3 = kzalloc(sz, GFP_KERNEL); if (!io_unit_pg3) { ioc_err(ioc, "%s: failed allocating memory for iounit_pg3: (%d) bytes\n", __func__, sz); goto out; } if (mpt3sas_config_get_iounit_pg3(ioc, &mpi_reply, io_unit_pg3, sz) != 0) { ioc_err(ioc, "%s: failed reading iounit_pg3\n", __func__); goto out; } ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK; if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { ioc_err(ioc, "%s: iounit_pg3 failed with ioc_status(0x%04x)\n", __func__, ioc_status); goto out; } if (io_unit_pg3->GPIOCount < 25) { ioc_err(ioc, "%s: iounit_pg3->GPIOCount less than 25 entries, detected (%d) entries\n", __func__, io_unit_pg3->GPIOCount); goto out; } /* BRM status is in bit zero of GPIOVal[24] */ backup_rail_monitor_status = le16_to_cpu(io_unit_pg3->GPIOVal[24]); rc = snprintf(buf, PAGE_SIZE, "%d\n", (backup_rail_monitor_status & 1)); out: kfree(io_unit_pg3); mutex_unlock(&ioc->pci_access_mutex); return rc; } static DEVICE_ATTR_RO(BRM_status); struct DIAG_BUFFER_START { __le32 Size; __le32 DiagVersion; u8 BufferType; u8 Reserved[3]; __le32 Reserved1; __le32 Reserved2; __le32 Reserved3; }; /** * host_trace_buffer_size_show - host buffer size (trace only) * @cdev: pointer to embedded class device * @attr: ? * @buf: the buffer returned * * A sysfs 'read-only' shost attribute. */ static ssize_t host_trace_buffer_size_show(struct device *cdev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(cdev); struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); u32 size = 0; struct DIAG_BUFFER_START *request_data; if (!ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]) { ioc_err(ioc, "%s: host_trace_buffer is not registered\n", __func__); return 0; } if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) { ioc_err(ioc, "%s: host_trace_buffer is not registered\n", __func__); return 0; } request_data = (struct DIAG_BUFFER_START *) ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]; if ((le32_to_cpu(request_data->DiagVersion) == 0x00000000 || le32_to_cpu(request_data->DiagVersion) == 0x01000000 || le32_to_cpu(request_data->DiagVersion) == 0x01010000) && le32_to_cpu(request_data->Reserved3) == 0x4742444c) size = le32_to_cpu(request_data->Size); ioc->ring_buffer_sz = size; return snprintf(buf, PAGE_SIZE, "%d\n", size); } static DEVICE_ATTR_RO(host_trace_buffer_size); /** * host_trace_buffer_show - firmware ring buffer (trace only) * @cdev: pointer to embedded class device * @attr: ? * @buf: the buffer returned * * A sysfs 'read/write' shost attribute. * * You will only be able to read 4k bytes of ring buffer at a time. * In order to read beyond 4k bytes, you will have to write out the * offset to the same attribute, it will move the pointer. */ static ssize_t host_trace_buffer_show(struct device *cdev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(cdev); struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); void *request_data; u32 size; if (!ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]) { ioc_err(ioc, "%s: host_trace_buffer is not registered\n", __func__); return 0; } if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) { ioc_err(ioc, "%s: host_trace_buffer is not registered\n", __func__); return 0; } if (ioc->ring_buffer_offset > ioc->ring_buffer_sz) return 0; size = ioc->ring_buffer_sz - ioc->ring_buffer_offset; size = (size >= PAGE_SIZE) ? (PAGE_SIZE - 1) : size; request_data = ioc->diag_buffer[0] + ioc->ring_buffer_offset; memcpy(buf, request_data, size); return size; } static ssize_t host_trace_buffer_store(struct device *cdev, struct device_attribute *attr, const char *buf, size_t count) { struct Scsi_Host *shost = class_to_shost(cdev); struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); int val = 0; if (sscanf(buf, "%d", &val) != 1) return -EINVAL; ioc->ring_buffer_offset = val; return strlen(buf); } static DEVICE_ATTR_RW(host_trace_buffer); /*****************************************/ /** * host_trace_buffer_enable_show - firmware ring buffer (trace only) * @cdev: pointer to embedded class device * @attr: ? * @buf: the buffer returned * * A sysfs 'read/write' shost attribute. * * This is a mechnism to post/release host_trace_buffers */ static ssize_t host_trace_buffer_enable_show(struct device *cdev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(cdev); struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); if ((!ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]) || ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & MPT3_DIAG_BUFFER_IS_REGISTERED) == 0)) return snprintf(buf, PAGE_SIZE, "off\n"); else if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & MPT3_DIAG_BUFFER_IS_RELEASED)) return snprintf(buf, PAGE_SIZE, "release\n"); else return snprintf(buf, PAGE_SIZE, "post\n"); } static ssize_t host_trace_buffer_enable_store(struct device *cdev, struct device_attribute *attr, const char *buf, size_t count) { struct Scsi_Host *shost = class_to_shost(cdev); struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); char str[10] = ""; struct mpt3_diag_register diag_register; u8 issue_reset = 0; /* don't allow post/release occurr while recovery is active */ if (ioc->shost_recovery || ioc->remove_host || ioc->pci_error_recovery || ioc->is_driver_loading) return -EBUSY; if (sscanf(buf, "%9s", str) != 1) return -EINVAL; if (!strcmp(str, "post")) { /* exit out if host buffers are already posted */ if ((ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]) && (ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & MPT3_DIAG_BUFFER_IS_REGISTERED) && ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & MPT3_DIAG_BUFFER_IS_RELEASED) == 0)) goto out; memset(&diag_register, 0, sizeof(struct mpt3_diag_register)); ioc_info(ioc, "posting host trace buffers\n"); diag_register.buffer_type = MPI2_DIAG_BUF_TYPE_TRACE; if (ioc->manu_pg11.HostTraceBufferMaxSizeKB != 0 && ioc->diag_buffer_sz[MPI2_DIAG_BUF_TYPE_TRACE] != 0) { /* post the same buffer allocated previously */ diag_register.requested_buffer_size = ioc->diag_buffer_sz[MPI2_DIAG_BUF_TYPE_TRACE]; } else { /* * Free the diag buffer memory which was previously * allocated by an application. */ if ((ioc->diag_buffer_sz[MPI2_DIAG_BUF_TYPE_TRACE] != 0) && (ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & MPT3_DIAG_BUFFER_IS_APP_OWNED)) { pci_free_consistent(ioc->pdev, ioc->diag_buffer_sz[ MPI2_DIAG_BUF_TYPE_TRACE], ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE], ioc->diag_buffer_dma[ MPI2_DIAG_BUF_TYPE_TRACE]); ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE] = NULL; } diag_register.requested_buffer_size = (1024 * 1024); } diag_register.unique_id = (ioc->hba_mpi_version_belonged == MPI2_VERSION) ? (MPT2DIAGBUFFUNIQUEID):(MPT3DIAGBUFFUNIQUEID); ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] = 0; _ctl_diag_register_2(ioc, &diag_register); if (ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & MPT3_DIAG_BUFFER_IS_REGISTERED) { ioc_info(ioc, "Trace buffer %d KB allocated through sysfs\n", diag_register.requested_buffer_size>>10); if (ioc->hba_mpi_version_belonged != MPI2_VERSION) ioc->diag_buffer_status[ MPI2_DIAG_BUF_TYPE_TRACE] |= MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED; } } else if (!strcmp(str, "release")) { /* exit out if host buffers are already released */ if (!ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]) goto out; if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) goto out; if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] & MPT3_DIAG_BUFFER_IS_RELEASED)) goto out; ioc_info(ioc, "releasing host trace buffer\n"); mpt3sas_send_diag_release(ioc, MPI2_DIAG_BUF_TYPE_TRACE, &issue_reset); } out: return strlen(buf); } static DEVICE_ATTR_RW(host_trace_buffer_enable); /*********** diagnostic trigger suppport *********************************/ /** * diag_trigger_master_show - show the diag_trigger_master attribute * @cdev: pointer to embedded class device * @attr: ? * @buf: the buffer returned * * A sysfs 'read/write' shost attribute. */ static ssize_t diag_trigger_master_show(struct device *cdev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(cdev); struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); unsigned long flags; ssize_t rc; spin_lock_irqsave(&ioc->diag_trigger_lock, flags); rc = sizeof(struct SL_WH_MASTER_TRIGGER_T); memcpy(buf, &ioc->diag_trigger_master, rc); spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags); return rc; } /** * diag_trigger_master_store - store the diag_trigger_master attribute * @cdev: pointer to embedded class device * @attr: ? * @buf: the buffer returned * @count: ? * * A sysfs 'read/write' shost attribute. */ static ssize_t diag_trigger_master_store(struct device *cdev, struct device_attribute *attr, const char *buf, size_t count) { struct Scsi_Host *shost = class_to_shost(cdev); struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); unsigned long flags; ssize_t rc; spin_lock_irqsave(&ioc->diag_trigger_lock, flags); rc = min(sizeof(struct SL_WH_MASTER_TRIGGER_T), count); memset(&ioc->diag_trigger_master, 0, sizeof(struct SL_WH_MASTER_TRIGGER_T)); memcpy(&ioc->diag_trigger_master, buf, rc); ioc->diag_trigger_master.MasterData |= (MASTER_TRIGGER_FW_FAULT + MASTER_TRIGGER_ADAPTER_RESET); spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags); return rc; } static DEVICE_ATTR_RW(diag_trigger_master); /** * diag_trigger_event_show - show the diag_trigger_event attribute * @cdev: pointer to embedded class device * @attr: ? * @buf: the buffer returned * * A sysfs 'read/write' shost attribute. */ static ssize_t diag_trigger_event_show(struct device *cdev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(cdev); struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); unsigned long flags; ssize_t rc; spin_lock_irqsave(&ioc->diag_trigger_lock, flags); rc = sizeof(struct SL_WH_EVENT_TRIGGERS_T); memcpy(buf, &ioc->diag_trigger_event, rc); spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags); return rc; } /** * diag_trigger_event_store - store the diag_trigger_event attribute * @cdev: pointer to embedded class device * @attr: ? * @buf: the buffer returned * @count: ? * * A sysfs 'read/write' shost attribute. */ static ssize_t diag_trigger_event_store(struct device *cdev, struct device_attribute *attr, const char *buf, size_t count) { struct Scsi_Host *shost = class_to_shost(cdev); struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); unsigned long flags; ssize_t sz; spin_lock_irqsave(&ioc->diag_trigger_lock, flags); sz = min(sizeof(struct SL_WH_EVENT_TRIGGERS_T), count); memset(&ioc->diag_trigger_event, 0, sizeof(struct SL_WH_EVENT_TRIGGERS_T)); memcpy(&ioc->diag_trigger_event, buf, sz); if (ioc->diag_trigger_event.ValidEntries > NUM_VALID_ENTRIES) ioc->diag_trigger_event.ValidEntries = NUM_VALID_ENTRIES; spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags); return sz; } static DEVICE_ATTR_RW(diag_trigger_event); /** * diag_trigger_scsi_show - show the diag_trigger_scsi attribute * @cdev: pointer to embedded class device * @attr: ? * @buf: the buffer returned * * A sysfs 'read/write' shost attribute. */ static ssize_t diag_trigger_scsi_show(struct device *cdev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(cdev); struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); unsigned long flags; ssize_t rc; spin_lock_irqsave(&ioc->diag_trigger_lock, flags); rc = sizeof(struct SL_WH_SCSI_TRIGGERS_T); memcpy(buf, &ioc->diag_trigger_scsi, rc); spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags); return rc; } /** * diag_trigger_scsi_store - store the diag_trigger_scsi attribute * @cdev: pointer to embedded class device * @attr: ? * @buf: the buffer returned * @count: ? * * A sysfs 'read/write' shost attribute. */ static ssize_t diag_trigger_scsi_store(struct device *cdev, struct device_attribute *attr, const char *buf, size_t count) { struct Scsi_Host *shost = class_to_shost(cdev); struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); unsigned long flags; ssize_t sz; spin_lock_irqsave(&ioc->diag_trigger_lock, flags); sz = min(sizeof(ioc->diag_trigger_scsi), count); memset(&ioc->diag_trigger_scsi, 0, sizeof(ioc->diag_trigger_scsi)); memcpy(&ioc->diag_trigger_scsi, buf, sz); if (ioc->diag_trigger_scsi.ValidEntries > NUM_VALID_ENTRIES) ioc->diag_trigger_scsi.ValidEntries = NUM_VALID_ENTRIES; spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags); return sz; } static DEVICE_ATTR_RW(diag_trigger_scsi); /** * diag_trigger_scsi_show - show the diag_trigger_mpi attribute * @cdev: pointer to embedded class device * @attr: ? * @buf: the buffer returned * * A sysfs 'read/write' shost attribute. */ static ssize_t diag_trigger_mpi_show(struct device *cdev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(cdev); struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); unsigned long flags; ssize_t rc; spin_lock_irqsave(&ioc->diag_trigger_lock, flags); rc = sizeof(struct SL_WH_MPI_TRIGGERS_T); memcpy(buf, &ioc->diag_trigger_mpi, rc); spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags); return rc; } /** * diag_trigger_mpi_store - store the diag_trigger_mpi attribute * @cdev: pointer to embedded class device * @attr: ? * @buf: the buffer returned * @count: ? * * A sysfs 'read/write' shost attribute. */ static ssize_t diag_trigger_mpi_store(struct device *cdev, struct device_attribute *attr, const char *buf, size_t count) { struct Scsi_Host *shost = class_to_shost(cdev); struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); unsigned long flags; ssize_t sz; spin_lock_irqsave(&ioc->diag_trigger_lock, flags); sz = min(sizeof(struct SL_WH_MPI_TRIGGERS_T), count); memset(&ioc->diag_trigger_mpi, 0, sizeof(ioc->diag_trigger_mpi)); memcpy(&ioc->diag_trigger_mpi, buf, sz); if (ioc->diag_trigger_mpi.ValidEntries > NUM_VALID_ENTRIES) ioc->diag_trigger_mpi.ValidEntries = NUM_VALID_ENTRIES; spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags); return sz; } static DEVICE_ATTR_RW(diag_trigger_mpi); /*********** diagnostic trigger suppport *** END ****************************/ /*****************************************/ /** * drv_support_bitmap_show - driver supported feature bitmap * @cdev: pointer to embedded class device * @attr: unused * @buf: the buffer returned * * A sysfs 'read-only' shost attribute. */ static ssize_t drv_support_bitmap_show(struct device *cdev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(cdev); struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); return snprintf(buf, PAGE_SIZE, "0x%08x\n", ioc->drv_support_bitmap); } static DEVICE_ATTR_RO(drv_support_bitmap); /** * enable_sdev_max_qd_show - display whether sdev max qd is enabled/disabled * @cdev: pointer to embedded class device * @attr: unused * @buf: the buffer returned * * A sysfs read/write shost attribute. This attribute is used to set the * targets queue depth to HBA IO queue depth if this attribute is enabled. */ static ssize_t enable_sdev_max_qd_show(struct device *cdev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(cdev); struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); return snprintf(buf, PAGE_SIZE, "%d\n", ioc->enable_sdev_max_qd); } /** * enable_sdev_max_qd_store - Enable/disable sdev max qd * @cdev: pointer to embedded class device * @attr: unused * @buf: the buffer returned * @count: unused * * A sysfs read/write shost attribute. This attribute is used to set the * targets queue depth to HBA IO queue depth if this attribute is enabled. * If this attribute is disabled then targets will have corresponding default * queue depth. */ static ssize_t enable_sdev_max_qd_store(struct device *cdev, struct device_attribute *attr, const char *buf, size_t count) { struct Scsi_Host *shost = class_to_shost(cdev); struct MPT3SAS_ADAPTER *ioc = shost_priv(shost); struct MPT3SAS_DEVICE *sas_device_priv_data; struct MPT3SAS_TARGET *sas_target_priv_data; int val = 0; struct scsi_device *sdev; struct _raid_device *raid_device; int qdepth; if (kstrtoint(buf, 0, &val) != 0) return -EINVAL; switch (val) { case 0: ioc->enable_sdev_max_qd = 0; shost_for_each_device(sdev, ioc->shost) { sas_device_priv_data = sdev->hostdata; if (!sas_device_priv_data) continue; sas_target_priv_data = sas_device_priv_data->sas_target; if (!sas_target_priv_data) continue; if (sas_target_priv_data->flags & MPT_TARGET_FLAGS_VOLUME) { raid_device = mpt3sas_raid_device_find_by_handle(ioc, sas_target_priv_data->handle); switch (raid_device->volume_type) { case MPI2_RAID_VOL_TYPE_RAID0: if (raid_device->device_info & MPI2_SAS_DEVICE_INFO_SSP_TARGET) qdepth = MPT3SAS_SAS_QUEUE_DEPTH; else qdepth = MPT3SAS_SATA_QUEUE_DEPTH; break; case MPI2_RAID_VOL_TYPE_RAID1E: case MPI2_RAID_VOL_TYPE_RAID1: case MPI2_RAID_VOL_TYPE_RAID10: case MPI2_RAID_VOL_TYPE_UNKNOWN: default: qdepth = MPT3SAS_RAID_QUEUE_DEPTH; } } else if (sas_target_priv_data->flags & MPT_TARGET_FLAGS_PCIE_DEVICE) qdepth = MPT3SAS_NVME_QUEUE_DEPTH; else qdepth = MPT3SAS_SAS_QUEUE_DEPTH; mpt3sas_scsih_change_queue_depth(sdev, qdepth); } break; case 1: ioc->enable_sdev_max_qd = 1; shost_for_each_device(sdev, ioc->shost) mpt3sas_scsih_change_queue_depth(sdev, shost->can_queue); break; default: return -EINVAL; } return strlen(buf); } static DEVICE_ATTR_RW(enable_sdev_max_qd); struct device_attribute *mpt3sas_host_attrs[] = { &dev_attr_version_fw, &dev_attr_version_bios, &dev_attr_version_mpi, &dev_attr_version_product, &dev_attr_version_nvdata_persistent, &dev_attr_version_nvdata_default, &dev_attr_board_name, &dev_attr_board_assembly, &dev_attr_board_tracer, &dev_attr_io_delay, &dev_attr_device_delay, &dev_attr_logging_level, &dev_attr_fwfault_debug, &dev_attr_fw_queue_depth, &dev_attr_host_sas_address, &dev_attr_ioc_reset_count, &dev_attr_host_trace_buffer_size, &dev_attr_host_trace_buffer, &dev_attr_host_trace_buffer_enable, &dev_attr_reply_queue_count, &dev_attr_diag_trigger_master, &dev_attr_diag_trigger_event, &dev_attr_diag_trigger_scsi, &dev_attr_diag_trigger_mpi, &dev_attr_drv_support_bitmap, &dev_attr_BRM_status, &dev_attr_enable_sdev_max_qd, NULL, }; /* device attributes */ /** * sas_address_show - sas address * @dev: pointer to embedded class device * @attr: ? * @buf: the buffer returned * * This is the sas address for the target * * A sysfs 'read-only' shost attribute. */ static ssize_t sas_address_show(struct device *dev, struct device_attribute *attr, char *buf) { struct scsi_device *sdev = to_scsi_device(dev); struct MPT3SAS_DEVICE *sas_device_priv_data = sdev->hostdata; return snprintf(buf, PAGE_SIZE, "0x%016llx\n", (unsigned long long)sas_device_priv_data->sas_target->sas_address); } static DEVICE_ATTR_RO(sas_address); /** * sas_device_handle_show - device handle * @dev: pointer to embedded class device * @attr: ? * @buf: the buffer returned * * This is the firmware assigned device handle * * A sysfs 'read-only' shost attribute. */ static ssize_t sas_device_handle_show(struct device *dev, struct device_attribute *attr, char *buf) { struct scsi_device *sdev = to_scsi_device(dev); struct MPT3SAS_DEVICE *sas_device_priv_data = sdev->hostdata; return snprintf(buf, PAGE_SIZE, "0x%04x\n", sas_device_priv_data->sas_target->handle); } static DEVICE_ATTR_RO(sas_device_handle); /** * sas_ncq_io_prio_show - send prioritized io commands to device * @dev: pointer to embedded device * @attr: ? * @buf: the buffer returned * * A sysfs 'read/write' sdev attribute, only works with SATA */ static ssize_t sas_ncq_prio_enable_show(struct device *dev, struct device_attribute *attr, char *buf) { struct scsi_device *sdev = to_scsi_device(dev); struct MPT3SAS_DEVICE *sas_device_priv_data = sdev->hostdata; return snprintf(buf, PAGE_SIZE, "%d\n", sas_device_priv_data->ncq_prio_enable); } static ssize_t sas_ncq_prio_enable_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct scsi_device *sdev = to_scsi_device(dev); struct MPT3SAS_DEVICE *sas_device_priv_data = sdev->hostdata; bool ncq_prio_enable = 0; if (kstrtobool(buf, &ncq_prio_enable)) return -EINVAL; if (!scsih_ncq_prio_supp(sdev)) return -EINVAL; sas_device_priv_data->ncq_prio_enable = ncq_prio_enable; return strlen(buf); } static DEVICE_ATTR_RW(sas_ncq_prio_enable); struct device_attribute *mpt3sas_dev_attrs[] = { &dev_attr_sas_address, &dev_attr_sas_device_handle, &dev_attr_sas_ncq_prio_enable, NULL, }; /* file operations table for mpt3ctl device */ static const struct file_operations ctl_fops = { .owner = THIS_MODULE, .unlocked_ioctl = _ctl_ioctl, .poll = _ctl_poll, .fasync = _ctl_fasync, #ifdef CONFIG_COMPAT .compat_ioctl = _ctl_ioctl_compat, #endif }; /* file operations table for mpt2ctl device */ static const struct file_operations ctl_gen2_fops = { .owner = THIS_MODULE, .unlocked_ioctl = _ctl_mpt2_ioctl, .poll = _ctl_poll, .fasync = _ctl_fasync, #ifdef CONFIG_COMPAT .compat_ioctl = _ctl_mpt2_ioctl_compat, #endif }; static struct miscdevice ctl_dev = { .minor = MPT3SAS_MINOR, .name = MPT3SAS_DEV_NAME, .fops = &ctl_fops, }; static struct miscdevice gen2_ctl_dev = { .minor = MPT2SAS_MINOR, .name = MPT2SAS_DEV_NAME, .fops = &ctl_gen2_fops, }; /** * mpt3sas_ctl_init - main entry point for ctl. * @hbas_to_enumerate: ? */ void mpt3sas_ctl_init(ushort hbas_to_enumerate) { async_queue = NULL; /* Don't register mpt3ctl ioctl device if * hbas_to_enumarate is one. */ if (hbas_to_enumerate != 1) if (misc_register(&ctl_dev) < 0) pr_err("%s can't register misc device [minor=%d]\n", MPT3SAS_DRIVER_NAME, MPT3SAS_MINOR); /* Don't register mpt3ctl ioctl device if * hbas_to_enumarate is two. */ if (hbas_to_enumerate != 2) if (misc_register(&gen2_ctl_dev) < 0) pr_err("%s can't register misc device [minor=%d]\n", MPT2SAS_DRIVER_NAME, MPT2SAS_MINOR); init_waitqueue_head(&ctl_poll_wait); } /** * mpt3sas_ctl_exit - exit point for ctl * @hbas_to_enumerate: ? */ void mpt3sas_ctl_exit(ushort hbas_to_enumerate) { struct MPT3SAS_ADAPTER *ioc; int i; list_for_each_entry(ioc, &mpt3sas_ioc_list, list) { /* free memory associated to diag buffers */ for (i = 0; i < MPI2_DIAG_BUF_TYPE_COUNT; i++) { if (!ioc->diag_buffer[i]) continue; dma_free_coherent(&ioc->pdev->dev, ioc->diag_buffer_sz[i], ioc->diag_buffer[i], ioc->diag_buffer_dma[i]); ioc->diag_buffer[i] = NULL; ioc->diag_buffer_status[i] = 0; } kfree(ioc->event_log); } if (hbas_to_enumerate != 1) misc_deregister(&ctl_dev); if (hbas_to_enumerate != 2) misc_deregister(&gen2_ctl_dev); }