/* * QLogic Fibre Channel HBA Driver * Copyright (c) 2003-2005 QLogic Corporation * * See LICENSE.qla2xxx for copyright and licensing details. */ #include "qla_def.h" #include <linux/delay.h> static int qla_uprintf(char **, char *, ...); /** * qla2300_fw_dump() - Dumps binary data from the 2300 firmware. * @ha: HA context * @hardware_locked: Called with the hardware_lock */ void qla2300_fw_dump(scsi_qla_host_t *ha, int hardware_locked) { int rval; uint32_t cnt, timer; uint32_t risc_address; uint16_t mb0, mb2; uint32_t stat; struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; uint16_t __iomem *dmp_reg; unsigned long flags; struct qla2300_fw_dump *fw; uint32_t dump_size, data_ram_cnt; risc_address = data_ram_cnt = 0; mb0 = mb2 = 0; flags = 0; if (!hardware_locked) spin_lock_irqsave(&ha->hardware_lock, flags); if (ha->fw_dump != NULL) { qla_printk(KERN_WARNING, ha, "Firmware has been previously dumped (%p) -- ignoring " "request...\n", ha->fw_dump); goto qla2300_fw_dump_failed; } /* Allocate (large) dump buffer. */ dump_size = sizeof(struct qla2300_fw_dump); dump_size += (ha->fw_memory_size - 0x11000) * sizeof(uint16_t); ha->fw_dump_order = get_order(dump_size); ha->fw_dump = (struct qla2300_fw_dump *) __get_free_pages(GFP_ATOMIC, ha->fw_dump_order); if (ha->fw_dump == NULL) { qla_printk(KERN_WARNING, ha, "Unable to allocated memory for firmware dump (%d/%d).\n", ha->fw_dump_order, dump_size); goto qla2300_fw_dump_failed; } fw = ha->fw_dump; rval = QLA_SUCCESS; fw->hccr = RD_REG_WORD(®->hccr); /* Pause RISC. */ WRT_REG_WORD(®->hccr, HCCR_PAUSE_RISC); if (IS_QLA2300(ha)) { for (cnt = 30000; (RD_REG_WORD(®->hccr) & HCCR_RISC_PAUSE) == 0 && rval == QLA_SUCCESS; cnt--) { if (cnt) udelay(100); else rval = QLA_FUNCTION_TIMEOUT; } } else { RD_REG_WORD(®->hccr); /* PCI Posting. */ udelay(10); } if (rval == QLA_SUCCESS) { dmp_reg = (uint16_t __iomem *)(reg + 0); for (cnt = 0; cnt < sizeof(fw->pbiu_reg) / 2; cnt++) fw->pbiu_reg[cnt] = RD_REG_WORD(dmp_reg++); dmp_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0x10); for (cnt = 0; cnt < sizeof(fw->risc_host_reg) / 2; cnt++) fw->risc_host_reg[cnt] = RD_REG_WORD(dmp_reg++); dmp_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0x40); for (cnt = 0; cnt < sizeof(fw->mailbox_reg) / 2; cnt++) fw->mailbox_reg[cnt] = RD_REG_WORD(dmp_reg++); WRT_REG_WORD(®->ctrl_status, 0x40); dmp_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0x80); for (cnt = 0; cnt < sizeof(fw->resp_dma_reg) / 2; cnt++) fw->resp_dma_reg[cnt] = RD_REG_WORD(dmp_reg++); WRT_REG_WORD(®->ctrl_status, 0x50); dmp_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0x80); for (cnt = 0; cnt < sizeof(fw->dma_reg) / 2; cnt++) fw->dma_reg[cnt] = RD_REG_WORD(dmp_reg++); WRT_REG_WORD(®->ctrl_status, 0x00); dmp_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0xA0); for (cnt = 0; cnt < sizeof(fw->risc_hdw_reg) / 2; cnt++) fw->risc_hdw_reg[cnt] = RD_REG_WORD(dmp_reg++); WRT_REG_WORD(®->pcr, 0x2000); dmp_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0x80); for (cnt = 0; cnt < sizeof(fw->risc_gp0_reg) / 2; cnt++) fw->risc_gp0_reg[cnt] = RD_REG_WORD(dmp_reg++); WRT_REG_WORD(®->pcr, 0x2200); dmp_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0x80); for (cnt = 0; cnt < sizeof(fw->risc_gp1_reg) / 2; cnt++) fw->risc_gp1_reg[cnt] = RD_REG_WORD(dmp_reg++); WRT_REG_WORD(®->pcr, 0x2400); dmp_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0x80); for (cnt = 0; cnt < sizeof(fw->risc_gp2_reg) / 2; cnt++) fw->risc_gp2_reg[cnt] = RD_REG_WORD(dmp_reg++); WRT_REG_WORD(®->pcr, 0x2600); dmp_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0x80); for (cnt = 0; cnt < sizeof(fw->risc_gp3_reg) / 2; cnt++) fw->risc_gp3_reg[cnt] = RD_REG_WORD(dmp_reg++); WRT_REG_WORD(®->pcr, 0x2800); dmp_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0x80); for (cnt = 0; cnt < sizeof(fw->risc_gp4_reg) / 2; cnt++) fw->risc_gp4_reg[cnt] = RD_REG_WORD(dmp_reg++); WRT_REG_WORD(®->pcr, 0x2A00); dmp_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0x80); for (cnt = 0; cnt < sizeof(fw->risc_gp5_reg) / 2; cnt++) fw->risc_gp5_reg[cnt] = RD_REG_WORD(dmp_reg++); WRT_REG_WORD(®->pcr, 0x2C00); dmp_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0x80); for (cnt = 0; cnt < sizeof(fw->risc_gp6_reg) / 2; cnt++) fw->risc_gp6_reg[cnt] = RD_REG_WORD(dmp_reg++); WRT_REG_WORD(®->pcr, 0x2E00); dmp_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0x80); for (cnt = 0; cnt < sizeof(fw->risc_gp7_reg) / 2; cnt++) fw->risc_gp7_reg[cnt] = RD_REG_WORD(dmp_reg++); WRT_REG_WORD(®->ctrl_status, 0x10); dmp_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0x80); for (cnt = 0; cnt < sizeof(fw->frame_buf_hdw_reg) / 2; cnt++) fw->frame_buf_hdw_reg[cnt] = RD_REG_WORD(dmp_reg++); WRT_REG_WORD(®->ctrl_status, 0x20); dmp_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0x80); for (cnt = 0; cnt < sizeof(fw->fpm_b0_reg) / 2; cnt++) fw->fpm_b0_reg[cnt] = RD_REG_WORD(dmp_reg++); WRT_REG_WORD(®->ctrl_status, 0x30); dmp_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0x80); for (cnt = 0; cnt < sizeof(fw->fpm_b1_reg) / 2; cnt++) fw->fpm_b1_reg[cnt] = RD_REG_WORD(dmp_reg++); /* Reset RISC. */ WRT_REG_WORD(®->ctrl_status, CSR_ISP_SOFT_RESET); for (cnt = 0; cnt < 30000; cnt++) { if ((RD_REG_WORD(®->ctrl_status) & CSR_ISP_SOFT_RESET) == 0) break; udelay(10); } } if (!IS_QLA2300(ha)) { for (cnt = 30000; RD_MAILBOX_REG(ha, reg, 0) != 0 && rval == QLA_SUCCESS; cnt--) { if (cnt) udelay(100); else rval = QLA_FUNCTION_TIMEOUT; } } if (rval == QLA_SUCCESS) { /* Get RISC SRAM. */ risc_address = 0x800; WRT_MAILBOX_REG(ha, reg, 0, MBC_READ_RAM_WORD); clear_bit(MBX_INTERRUPT, &ha->mbx_cmd_flags); } for (cnt = 0; cnt < sizeof(fw->risc_ram) / 2 && rval == QLA_SUCCESS; cnt++, risc_address++) { WRT_MAILBOX_REG(ha, reg, 1, (uint16_t)risc_address); WRT_REG_WORD(®->hccr, HCCR_SET_HOST_INT); for (timer = 6000000; timer; timer--) { /* Check for pending interrupts. */ stat = RD_REG_DWORD(®->u.isp2300.host_status); if (stat & HSR_RISC_INT) { stat &= 0xff; if (stat == 0x1 || stat == 0x2) { set_bit(MBX_INTERRUPT, &ha->mbx_cmd_flags); mb0 = RD_MAILBOX_REG(ha, reg, 0); mb2 = RD_MAILBOX_REG(ha, reg, 2); /* Release mailbox registers. */ WRT_REG_WORD(®->semaphore, 0); WRT_REG_WORD(®->hccr, HCCR_CLR_RISC_INT); RD_REG_WORD(®->hccr); break; } else if (stat == 0x10 || stat == 0x11) { set_bit(MBX_INTERRUPT, &ha->mbx_cmd_flags); mb0 = RD_MAILBOX_REG(ha, reg, 0); mb2 = RD_MAILBOX_REG(ha, reg, 2); WRT_REG_WORD(®->hccr, HCCR_CLR_RISC_INT); RD_REG_WORD(®->hccr); break; } /* clear this intr; it wasn't a mailbox intr */ WRT_REG_WORD(®->hccr, HCCR_CLR_RISC_INT); RD_REG_WORD(®->hccr); } udelay(5); } if (test_and_clear_bit(MBX_INTERRUPT, &ha->mbx_cmd_flags)) { rval = mb0 & MBS_MASK; fw->risc_ram[cnt] = mb2; } else { rval = QLA_FUNCTION_FAILED; } } if (rval == QLA_SUCCESS) { /* Get stack SRAM. */ risc_address = 0x10000; WRT_MAILBOX_REG(ha, reg, 0, MBC_READ_RAM_EXTENDED); clear_bit(MBX_INTERRUPT, &ha->mbx_cmd_flags); } for (cnt = 0; cnt < sizeof(fw->stack_ram) / 2 && rval == QLA_SUCCESS; cnt++, risc_address++) { WRT_MAILBOX_REG(ha, reg, 1, LSW(risc_address)); WRT_MAILBOX_REG(ha, reg, 8, MSW(risc_address)); WRT_REG_WORD(®->hccr, HCCR_SET_HOST_INT); for (timer = 6000000; timer; timer--) { /* Check for pending interrupts. */ stat = RD_REG_DWORD(®->u.isp2300.host_status); if (stat & HSR_RISC_INT) { stat &= 0xff; if (stat == 0x1 || stat == 0x2) { set_bit(MBX_INTERRUPT, &ha->mbx_cmd_flags); mb0 = RD_MAILBOX_REG(ha, reg, 0); mb2 = RD_MAILBOX_REG(ha, reg, 2); /* Release mailbox registers. */ WRT_REG_WORD(®->semaphore, 0); WRT_REG_WORD(®->hccr, HCCR_CLR_RISC_INT); RD_REG_WORD(®->hccr); break; } else if (stat == 0x10 || stat == 0x11) { set_bit(MBX_INTERRUPT, &ha->mbx_cmd_flags); mb0 = RD_MAILBOX_REG(ha, reg, 0); mb2 = RD_MAILBOX_REG(ha, reg, 2); WRT_REG_WORD(®->hccr, HCCR_CLR_RISC_INT); RD_REG_WORD(®->hccr); break; } /* clear this intr; it wasn't a mailbox intr */ WRT_REG_WORD(®->hccr, HCCR_CLR_RISC_INT); RD_REG_WORD(®->hccr); } udelay(5); } if (test_and_clear_bit(MBX_INTERRUPT, &ha->mbx_cmd_flags)) { rval = mb0 & MBS_MASK; fw->stack_ram[cnt] = mb2; } else { rval = QLA_FUNCTION_FAILED; } } if (rval == QLA_SUCCESS) { /* Get data SRAM. */ risc_address = 0x11000; data_ram_cnt = ha->fw_memory_size - risc_address + 1; WRT_MAILBOX_REG(ha, reg, 0, MBC_READ_RAM_EXTENDED); clear_bit(MBX_INTERRUPT, &ha->mbx_cmd_flags); } for (cnt = 0; cnt < data_ram_cnt && rval == QLA_SUCCESS; cnt++, risc_address++) { WRT_MAILBOX_REG(ha, reg, 1, LSW(risc_address)); WRT_MAILBOX_REG(ha, reg, 8, MSW(risc_address)); WRT_REG_WORD(®->hccr, HCCR_SET_HOST_INT); for (timer = 6000000; timer; timer--) { /* Check for pending interrupts. */ stat = RD_REG_DWORD(®->u.isp2300.host_status); if (stat & HSR_RISC_INT) { stat &= 0xff; if (stat == 0x1 || stat == 0x2) { set_bit(MBX_INTERRUPT, &ha->mbx_cmd_flags); mb0 = RD_MAILBOX_REG(ha, reg, 0); mb2 = RD_MAILBOX_REG(ha, reg, 2); /* Release mailbox registers. */ WRT_REG_WORD(®->semaphore, 0); WRT_REG_WORD(®->hccr, HCCR_CLR_RISC_INT); RD_REG_WORD(®->hccr); break; } else if (stat == 0x10 || stat == 0x11) { set_bit(MBX_INTERRUPT, &ha->mbx_cmd_flags); mb0 = RD_MAILBOX_REG(ha, reg, 0); mb2 = RD_MAILBOX_REG(ha, reg, 2); WRT_REG_WORD(®->hccr, HCCR_CLR_RISC_INT); RD_REG_WORD(®->hccr); break; } /* clear this intr; it wasn't a mailbox intr */ WRT_REG_WORD(®->hccr, HCCR_CLR_RISC_INT); RD_REG_WORD(®->hccr); } udelay(5); } if (test_and_clear_bit(MBX_INTERRUPT, &ha->mbx_cmd_flags)) { rval = mb0 & MBS_MASK; fw->data_ram[cnt] = mb2; } else { rval = QLA_FUNCTION_FAILED; } } if (rval != QLA_SUCCESS) { qla_printk(KERN_WARNING, ha, "Failed to dump firmware (%x)!!!\n", rval); free_pages((unsigned long)ha->fw_dump, ha->fw_dump_order); ha->fw_dump = NULL; } else { qla_printk(KERN_INFO, ha, "Firmware dump saved to temp buffer (%ld/%p).\n", ha->host_no, ha->fw_dump); } qla2300_fw_dump_failed: if (!hardware_locked) spin_unlock_irqrestore(&ha->hardware_lock, flags); } /** * qla2300_ascii_fw_dump() - Converts a binary firmware dump to ASCII. * @ha: HA context */ void qla2300_ascii_fw_dump(scsi_qla_host_t *ha) { uint32_t cnt; char *uiter; char fw_info[30]; struct qla2300_fw_dump *fw; uint32_t data_ram_cnt; uiter = ha->fw_dump_buffer; fw = ha->fw_dump; qla_uprintf(&uiter, "%s Firmware Version %s\n", ha->model_number, ha->isp_ops.fw_version_str(ha, fw_info)); qla_uprintf(&uiter, "\n[==>BEG]\n"); qla_uprintf(&uiter, "HCCR Register:\n%04x\n\n", fw->hccr); qla_uprintf(&uiter, "PBIU Registers:"); for (cnt = 0; cnt < sizeof (fw->pbiu_reg) / 2; cnt++) { if (cnt % 8 == 0) { qla_uprintf(&uiter, "\n"); } qla_uprintf(&uiter, "%04x ", fw->pbiu_reg[cnt]); } qla_uprintf(&uiter, "\n\nReqQ-RspQ-Risc2Host Status registers:"); for (cnt = 0; cnt < sizeof (fw->risc_host_reg) / 2; cnt++) { if (cnt % 8 == 0) { qla_uprintf(&uiter, "\n"); } qla_uprintf(&uiter, "%04x ", fw->risc_host_reg[cnt]); } qla_uprintf(&uiter, "\n\nMailbox Registers:"); for (cnt = 0; cnt < sizeof (fw->mailbox_reg) / 2; cnt++) { if (cnt % 8 == 0) { qla_uprintf(&uiter, "\n"); } qla_uprintf(&uiter, "%04x ", fw->mailbox_reg[cnt]); } qla_uprintf(&uiter, "\n\nAuto Request Response DMA Registers:"); for (cnt = 0; cnt < sizeof (fw->resp_dma_reg) / 2; cnt++) { if (cnt % 8 == 0) { qla_uprintf(&uiter, "\n"); } qla_uprintf(&uiter, "%04x ", fw->resp_dma_reg[cnt]); } qla_uprintf(&uiter, "\n\nDMA Registers:"); for (cnt = 0; cnt < sizeof (fw->dma_reg) / 2; cnt++) { if (cnt % 8 == 0) { qla_uprintf(&uiter, "\n"); } qla_uprintf(&uiter, "%04x ", fw->dma_reg[cnt]); } qla_uprintf(&uiter, "\n\nRISC Hardware Registers:"); for (cnt = 0; cnt < sizeof (fw->risc_hdw_reg) / 2; cnt++) { if (cnt % 8 == 0) { qla_uprintf(&uiter, "\n"); } qla_uprintf(&uiter, "%04x ", fw->risc_hdw_reg[cnt]); } qla_uprintf(&uiter, "\n\nRISC GP0 Registers:"); for (cnt = 0; cnt < sizeof (fw->risc_gp0_reg) / 2; cnt++) { if (cnt % 8 == 0) { qla_uprintf(&uiter, "\n"); } qla_uprintf(&uiter, "%04x ", fw->risc_gp0_reg[cnt]); } qla_uprintf(&uiter, "\n\nRISC GP1 Registers:"); for (cnt = 0; cnt < sizeof (fw->risc_gp1_reg) / 2; cnt++) { if (cnt % 8 == 0) { qla_uprintf(&uiter, "\n"); } qla_uprintf(&uiter, "%04x ", fw->risc_gp1_reg[cnt]); } qla_uprintf(&uiter, "\n\nRISC GP2 Registers:"); for (cnt = 0; cnt < sizeof (fw->risc_gp2_reg) / 2; cnt++) { if (cnt % 8 == 0) { qla_uprintf(&uiter, "\n"); } qla_uprintf(&uiter, "%04x ", fw->risc_gp2_reg[cnt]); } qla_uprintf(&uiter, "\n\nRISC GP3 Registers:"); for (cnt = 0; cnt < sizeof (fw->risc_gp3_reg) / 2; cnt++) { if (cnt % 8 == 0) { qla_uprintf(&uiter, "\n"); } qla_uprintf(&uiter, "%04x ", fw->risc_gp3_reg[cnt]); } qla_uprintf(&uiter, "\n\nRISC GP4 Registers:"); for (cnt = 0; cnt < sizeof (fw->risc_gp4_reg) / 2; cnt++) { if (cnt % 8 == 0) { qla_uprintf(&uiter, "\n"); } qla_uprintf(&uiter, "%04x ", fw->risc_gp4_reg[cnt]); } qla_uprintf(&uiter, "\n\nRISC GP5 Registers:"); for (cnt = 0; cnt < sizeof (fw->risc_gp5_reg) / 2; cnt++) { if (cnt % 8 == 0) { qla_uprintf(&uiter, "\n"); } qla_uprintf(&uiter, "%04x ", fw->risc_gp5_reg[cnt]); } qla_uprintf(&uiter, "\n\nRISC GP6 Registers:"); for (cnt = 0; cnt < sizeof (fw->risc_gp6_reg) / 2; cnt++) { if (cnt % 8 == 0) { qla_uprintf(&uiter, "\n"); } qla_uprintf(&uiter, "%04x ", fw->risc_gp6_reg[cnt]); } qla_uprintf(&uiter, "\n\nRISC GP7 Registers:"); for (cnt = 0; cnt < sizeof (fw->risc_gp7_reg) / 2; cnt++) { if (cnt % 8 == 0) { qla_uprintf(&uiter, "\n"); } qla_uprintf(&uiter, "%04x ", fw->risc_gp7_reg[cnt]); } qla_uprintf(&uiter, "\n\nFrame Buffer Hardware Registers:"); for (cnt = 0; cnt < sizeof (fw->frame_buf_hdw_reg) / 2; cnt++) { if (cnt % 8 == 0) { qla_uprintf(&uiter, "\n"); } qla_uprintf(&uiter, "%04x ", fw->frame_buf_hdw_reg[cnt]); } qla_uprintf(&uiter, "\n\nFPM B0 Registers:"); for (cnt = 0; cnt < sizeof (fw->fpm_b0_reg) / 2; cnt++) { if (cnt % 8 == 0) { qla_uprintf(&uiter, "\n"); } qla_uprintf(&uiter, "%04x ", fw->fpm_b0_reg[cnt]); } qla_uprintf(&uiter, "\n\nFPM B1 Registers:"); for (cnt = 0; cnt < sizeof (fw->fpm_b1_reg) / 2; cnt++) { if (cnt % 8 == 0) { qla_uprintf(&uiter, "\n"); } qla_uprintf(&uiter, "%04x ", fw->fpm_b1_reg[cnt]); } qla_uprintf(&uiter, "\n\nCode RAM Dump:"); for (cnt = 0; cnt < sizeof (fw->risc_ram) / 2; cnt++) { if (cnt % 8 == 0) { qla_uprintf(&uiter, "\n%04x: ", cnt + 0x0800); } qla_uprintf(&uiter, "%04x ", fw->risc_ram[cnt]); } qla_uprintf(&uiter, "\n\nStack RAM Dump:"); for (cnt = 0; cnt < sizeof (fw->stack_ram) / 2; cnt++) { if (cnt % 8 == 0) { qla_uprintf(&uiter, "\n%05x: ", cnt + 0x10000); } qla_uprintf(&uiter, "%04x ", fw->stack_ram[cnt]); } qla_uprintf(&uiter, "\n\nData RAM Dump:"); data_ram_cnt = ha->fw_memory_size - 0x11000 + 1; for (cnt = 0; cnt < data_ram_cnt; cnt++) { if (cnt % 8 == 0) { qla_uprintf(&uiter, "\n%05x: ", cnt + 0x11000); } qla_uprintf(&uiter, "%04x ", fw->data_ram[cnt]); } qla_uprintf(&uiter, "\n\n[<==END] ISP Debug Dump."); } /** * qla2100_fw_dump() - Dumps binary data from the 2100/2200 firmware. * @ha: HA context * @hardware_locked: Called with the hardware_lock */ void qla2100_fw_dump(scsi_qla_host_t *ha, int hardware_locked) { int rval; uint32_t cnt, timer; uint16_t risc_address; uint16_t mb0, mb2; struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; uint16_t __iomem *dmp_reg; unsigned long flags; struct qla2100_fw_dump *fw; risc_address = 0; mb0 = mb2 = 0; flags = 0; if (!hardware_locked) spin_lock_irqsave(&ha->hardware_lock, flags); if (ha->fw_dump != NULL) { qla_printk(KERN_WARNING, ha, "Firmware has been previously dumped (%p) -- ignoring " "request...\n", ha->fw_dump); goto qla2100_fw_dump_failed; } /* Allocate (large) dump buffer. */ ha->fw_dump_order = get_order(sizeof(struct qla2100_fw_dump)); ha->fw_dump = (struct qla2100_fw_dump *) __get_free_pages(GFP_ATOMIC, ha->fw_dump_order); if (ha->fw_dump == NULL) { qla_printk(KERN_WARNING, ha, "Unable to allocated memory for firmware dump (%d/%Zd).\n", ha->fw_dump_order, sizeof(struct qla2100_fw_dump)); goto qla2100_fw_dump_failed; } fw = ha->fw_dump; rval = QLA_SUCCESS; fw->hccr = RD_REG_WORD(®->hccr); /* Pause RISC. */ WRT_REG_WORD(®->hccr, HCCR_PAUSE_RISC); for (cnt = 30000; (RD_REG_WORD(®->hccr) & HCCR_RISC_PAUSE) == 0 && rval == QLA_SUCCESS; cnt--) { if (cnt) udelay(100); else rval = QLA_FUNCTION_TIMEOUT; } if (rval == QLA_SUCCESS) { dmp_reg = (uint16_t __iomem *)(reg + 0); for (cnt = 0; cnt < sizeof(fw->pbiu_reg) / 2; cnt++) fw->pbiu_reg[cnt] = RD_REG_WORD(dmp_reg++); dmp_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0x10); for (cnt = 0; cnt < ha->mbx_count; cnt++) { if (cnt == 8) { dmp_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0xe0); } fw->mailbox_reg[cnt] = RD_REG_WORD(dmp_reg++); } dmp_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0x20); for (cnt = 0; cnt < sizeof(fw->dma_reg) / 2; cnt++) fw->dma_reg[cnt] = RD_REG_WORD(dmp_reg++); WRT_REG_WORD(®->ctrl_status, 0x00); dmp_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0xA0); for (cnt = 0; cnt < sizeof(fw->risc_hdw_reg) / 2; cnt++) fw->risc_hdw_reg[cnt] = RD_REG_WORD(dmp_reg++); WRT_REG_WORD(®->pcr, 0x2000); dmp_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0x80); for (cnt = 0; cnt < sizeof(fw->risc_gp0_reg) / 2; cnt++) fw->risc_gp0_reg[cnt] = RD_REG_WORD(dmp_reg++); WRT_REG_WORD(®->pcr, 0x2100); dmp_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0x80); for (cnt = 0; cnt < sizeof(fw->risc_gp1_reg) / 2; cnt++) fw->risc_gp1_reg[cnt] = RD_REG_WORD(dmp_reg++); WRT_REG_WORD(®->pcr, 0x2200); dmp_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0x80); for (cnt = 0; cnt < sizeof(fw->risc_gp2_reg) / 2; cnt++) fw->risc_gp2_reg[cnt] = RD_REG_WORD(dmp_reg++); WRT_REG_WORD(®->pcr, 0x2300); dmp_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0x80); for (cnt = 0; cnt < sizeof(fw->risc_gp3_reg) / 2; cnt++) fw->risc_gp3_reg[cnt] = RD_REG_WORD(dmp_reg++); WRT_REG_WORD(®->pcr, 0x2400); dmp_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0x80); for (cnt = 0; cnt < sizeof(fw->risc_gp4_reg) / 2; cnt++) fw->risc_gp4_reg[cnt] = RD_REG_WORD(dmp_reg++); WRT_REG_WORD(®->pcr, 0x2500); dmp_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0x80); for (cnt = 0; cnt < sizeof(fw->risc_gp5_reg) / 2; cnt++) fw->risc_gp5_reg[cnt] = RD_REG_WORD(dmp_reg++); WRT_REG_WORD(®->pcr, 0x2600); dmp_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0x80); for (cnt = 0; cnt < sizeof(fw->risc_gp6_reg) / 2; cnt++) fw->risc_gp6_reg[cnt] = RD_REG_WORD(dmp_reg++); WRT_REG_WORD(®->pcr, 0x2700); dmp_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0x80); for (cnt = 0; cnt < sizeof(fw->risc_gp7_reg) / 2; cnt++) fw->risc_gp7_reg[cnt] = RD_REG_WORD(dmp_reg++); WRT_REG_WORD(®->ctrl_status, 0x10); dmp_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0x80); for (cnt = 0; cnt < sizeof(fw->frame_buf_hdw_reg) / 2; cnt++) fw->frame_buf_hdw_reg[cnt] = RD_REG_WORD(dmp_reg++); WRT_REG_WORD(®->ctrl_status, 0x20); dmp_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0x80); for (cnt = 0; cnt < sizeof(fw->fpm_b0_reg) / 2; cnt++) fw->fpm_b0_reg[cnt] = RD_REG_WORD(dmp_reg++); WRT_REG_WORD(®->ctrl_status, 0x30); dmp_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0x80); for (cnt = 0; cnt < sizeof(fw->fpm_b1_reg) / 2; cnt++) fw->fpm_b1_reg[cnt] = RD_REG_WORD(dmp_reg++); /* Reset the ISP. */ WRT_REG_WORD(®->ctrl_status, CSR_ISP_SOFT_RESET); } for (cnt = 30000; RD_MAILBOX_REG(ha, reg, 0) != 0 && rval == QLA_SUCCESS; cnt--) { if (cnt) udelay(100); else rval = QLA_FUNCTION_TIMEOUT; } /* Pause RISC. */ if (rval == QLA_SUCCESS && (IS_QLA2200(ha) || (IS_QLA2100(ha) && (RD_REG_WORD(®->mctr) & (BIT_1 | BIT_0)) != 0))) { WRT_REG_WORD(®->hccr, HCCR_PAUSE_RISC); for (cnt = 30000; (RD_REG_WORD(®->hccr) & HCCR_RISC_PAUSE) == 0 && rval == QLA_SUCCESS; cnt--) { if (cnt) udelay(100); else rval = QLA_FUNCTION_TIMEOUT; } if (rval == QLA_SUCCESS) { /* Set memory configuration and timing. */ if (IS_QLA2100(ha)) WRT_REG_WORD(®->mctr, 0xf1); else WRT_REG_WORD(®->mctr, 0xf2); RD_REG_WORD(®->mctr); /* PCI Posting. */ /* Release RISC. */ WRT_REG_WORD(®->hccr, HCCR_RELEASE_RISC); } } if (rval == QLA_SUCCESS) { /* Get RISC SRAM. */ risc_address = 0x1000; WRT_MAILBOX_REG(ha, reg, 0, MBC_READ_RAM_WORD); clear_bit(MBX_INTERRUPT, &ha->mbx_cmd_flags); } for (cnt = 0; cnt < sizeof(fw->risc_ram) / 2 && rval == QLA_SUCCESS; cnt++, risc_address++) { WRT_MAILBOX_REG(ha, reg, 1, risc_address); WRT_REG_WORD(®->hccr, HCCR_SET_HOST_INT); for (timer = 6000000; timer != 0; timer--) { /* Check for pending interrupts. */ if (RD_REG_WORD(®->istatus) & ISR_RISC_INT) { if (RD_REG_WORD(®->semaphore) & BIT_0) { set_bit(MBX_INTERRUPT, &ha->mbx_cmd_flags); mb0 = RD_MAILBOX_REG(ha, reg, 0); mb2 = RD_MAILBOX_REG(ha, reg, 2); WRT_REG_WORD(®->semaphore, 0); WRT_REG_WORD(®->hccr, HCCR_CLR_RISC_INT); RD_REG_WORD(®->hccr); break; } WRT_REG_WORD(®->hccr, HCCR_CLR_RISC_INT); RD_REG_WORD(®->hccr); } udelay(5); } if (test_and_clear_bit(MBX_INTERRUPT, &ha->mbx_cmd_flags)) { rval = mb0 & MBS_MASK; fw->risc_ram[cnt] = mb2; } else { rval = QLA_FUNCTION_FAILED; } } if (rval != QLA_SUCCESS) { qla_printk(KERN_WARNING, ha, "Failed to dump firmware (%x)!!!\n", rval); free_pages((unsigned long)ha->fw_dump, ha->fw_dump_order); ha->fw_dump = NULL; } else { qla_printk(KERN_INFO, ha, "Firmware dump saved to temp buffer (%ld/%p).\n", ha->host_no, ha->fw_dump); } qla2100_fw_dump_failed: if (!hardware_locked) spin_unlock_irqrestore(&ha->hardware_lock, flags); } /** * qla2100_ascii_fw_dump() - Converts a binary firmware dump to ASCII. * @ha: HA context */ void qla2100_ascii_fw_dump(scsi_qla_host_t *ha) { uint32_t cnt; char *uiter; char fw_info[30]; struct qla2100_fw_dump *fw; uiter = ha->fw_dump_buffer; fw = ha->fw_dump; qla_uprintf(&uiter, "%s Firmware Version %s\n", ha->model_number, ha->isp_ops.fw_version_str(ha, fw_info)); qla_uprintf(&uiter, "\n[==>BEG]\n"); qla_uprintf(&uiter, "HCCR Register:\n%04x\n\n", fw->hccr); qla_uprintf(&uiter, "PBIU Registers:"); for (cnt = 0; cnt < sizeof (fw->pbiu_reg) / 2; cnt++) { if (cnt % 8 == 0) { qla_uprintf(&uiter, "\n"); } qla_uprintf(&uiter, "%04x ", fw->pbiu_reg[cnt]); } qla_uprintf(&uiter, "\n\nMailbox Registers:"); for (cnt = 0; cnt < sizeof (fw->mailbox_reg) / 2; cnt++) { if (cnt % 8 == 0) { qla_uprintf(&uiter, "\n"); } qla_uprintf(&uiter, "%04x ", fw->mailbox_reg[cnt]); } qla_uprintf(&uiter, "\n\nDMA Registers:"); for (cnt = 0; cnt < sizeof (fw->dma_reg) / 2; cnt++) { if (cnt % 8 == 0) { qla_uprintf(&uiter, "\n"); } qla_uprintf(&uiter, "%04x ", fw->dma_reg[cnt]); } qla_uprintf(&uiter, "\n\nRISC Hardware Registers:"); for (cnt = 0; cnt < sizeof (fw->risc_hdw_reg) / 2; cnt++) { if (cnt % 8 == 0) { qla_uprintf(&uiter, "\n"); } qla_uprintf(&uiter, "%04x ", fw->risc_hdw_reg[cnt]); } qla_uprintf(&uiter, "\n\nRISC GP0 Registers:"); for (cnt = 0; cnt < sizeof (fw->risc_gp0_reg) / 2; cnt++) { if (cnt % 8 == 0) { qla_uprintf(&uiter, "\n"); } qla_uprintf(&uiter, "%04x ", fw->risc_gp0_reg[cnt]); } qla_uprintf(&uiter, "\n\nRISC GP1 Registers:"); for (cnt = 0; cnt < sizeof (fw->risc_gp1_reg) / 2; cnt++) { if (cnt % 8 == 0) { qla_uprintf(&uiter, "\n"); } qla_uprintf(&uiter, "%04x ", fw->risc_gp1_reg[cnt]); } qla_uprintf(&uiter, "\n\nRISC GP2 Registers:"); for (cnt = 0; cnt < sizeof (fw->risc_gp2_reg) / 2; cnt++) { if (cnt % 8 == 0) { qla_uprintf(&uiter, "\n"); } qla_uprintf(&uiter, "%04x ", fw->risc_gp2_reg[cnt]); } qla_uprintf(&uiter, "\n\nRISC GP3 Registers:"); for (cnt = 0; cnt < sizeof (fw->risc_gp3_reg) / 2; cnt++) { if (cnt % 8 == 0) { qla_uprintf(&uiter, "\n"); } qla_uprintf(&uiter, "%04x ", fw->risc_gp3_reg[cnt]); } qla_uprintf(&uiter, "\n\nRISC GP4 Registers:"); for (cnt = 0; cnt < sizeof (fw->risc_gp4_reg) / 2; cnt++) { if (cnt % 8 == 0) { qla_uprintf(&uiter, "\n"); } qla_uprintf(&uiter, "%04x ", fw->risc_gp4_reg[cnt]); } qla_uprintf(&uiter, "\n\nRISC GP5 Registers:"); for (cnt = 0; cnt < sizeof (fw->risc_gp5_reg) / 2; cnt++) { if (cnt % 8 == 0) { qla_uprintf(&uiter, "\n"); } qla_uprintf(&uiter, "%04x ", fw->risc_gp5_reg[cnt]); } qla_uprintf(&uiter, "\n\nRISC GP6 Registers:"); for (cnt = 0; cnt < sizeof (fw->risc_gp6_reg) / 2; cnt++) { if (cnt % 8 == 0) { qla_uprintf(&uiter, "\n"); } qla_uprintf(&uiter, "%04x ", fw->risc_gp6_reg[cnt]); } qla_uprintf(&uiter, "\n\nRISC GP7 Registers:"); for (cnt = 0; cnt < sizeof (fw->risc_gp7_reg) / 2; cnt++) { if (cnt % 8 == 0) { qla_uprintf(&uiter, "\n"); } qla_uprintf(&uiter, "%04x ", fw->risc_gp7_reg[cnt]); } qla_uprintf(&uiter, "\n\nFrame Buffer Hardware Registers:"); for (cnt = 0; cnt < sizeof (fw->frame_buf_hdw_reg) / 2; cnt++) { if (cnt % 8 == 0) { qla_uprintf(&uiter, "\n"); } qla_uprintf(&uiter, "%04x ", fw->frame_buf_hdw_reg[cnt]); } qla_uprintf(&uiter, "\n\nFPM B0 Registers:"); for (cnt = 0; cnt < sizeof (fw->fpm_b0_reg) / 2; cnt++) { if (cnt % 8 == 0) { qla_uprintf(&uiter, "\n"); } qla_uprintf(&uiter, "%04x ", fw->fpm_b0_reg[cnt]); } qla_uprintf(&uiter, "\n\nFPM B1 Registers:"); for (cnt = 0; cnt < sizeof (fw->fpm_b1_reg) / 2; cnt++) { if (cnt % 8 == 0) { qla_uprintf(&uiter, "\n"); } qla_uprintf(&uiter, "%04x ", fw->fpm_b1_reg[cnt]); } qla_uprintf(&uiter, "\n\nRISC SRAM:"); for (cnt = 0; cnt < sizeof (fw->risc_ram) / 2; cnt++) { if (cnt % 8 == 0) { qla_uprintf(&uiter, "\n%04x: ", cnt + 0x1000); } qla_uprintf(&uiter, "%04x ", fw->risc_ram[cnt]); } qla_uprintf(&uiter, "\n\n[<==END] ISP Debug Dump."); return; } static int qla_uprintf(char **uiter, char *fmt, ...) { int iter, len; char buf[128]; va_list args; va_start(args, fmt); len = vsprintf(buf, fmt, args); va_end(args); for (iter = 0; iter < len; iter++, *uiter += 1) *uiter[0] = buf[iter]; return (len); } void qla24xx_fw_dump(scsi_qla_host_t *ha, int hardware_locked) { int rval; uint32_t cnt, timer; uint32_t risc_address; uint16_t mb[4], wd; uint32_t stat; struct device_reg_24xx __iomem *reg = &ha->iobase->isp24; uint32_t __iomem *dmp_reg; uint32_t *iter_reg; uint16_t __iomem *mbx_reg; unsigned long flags; struct qla24xx_fw_dump *fw; uint32_t ext_mem_cnt; risc_address = ext_mem_cnt = 0; memset(mb, 0, sizeof(mb)); flags = 0; if (!hardware_locked) spin_lock_irqsave(&ha->hardware_lock, flags); if (!ha->fw_dump24) { qla_printk(KERN_WARNING, ha, "No buffer available for dump!!!\n"); goto qla24xx_fw_dump_failed; } if (ha->fw_dumped) { qla_printk(KERN_WARNING, ha, "Firmware has been previously dumped (%p) -- ignoring " "request...\n", ha->fw_dump24); goto qla24xx_fw_dump_failed; } fw = (struct qla24xx_fw_dump *) ha->fw_dump24; rval = QLA_SUCCESS; fw->host_status = RD_REG_DWORD(®->host_status); /* Pause RISC. */ if ((RD_REG_DWORD(®->hccr) & HCCRX_RISC_PAUSE) == 0) { WRT_REG_DWORD(®->hccr, HCCRX_SET_RISC_RESET | HCCRX_CLR_HOST_INT); RD_REG_DWORD(®->hccr); /* PCI Posting. */ WRT_REG_DWORD(®->hccr, HCCRX_SET_RISC_PAUSE); for (cnt = 30000; (RD_REG_DWORD(®->hccr) & HCCRX_RISC_PAUSE) == 0 && rval == QLA_SUCCESS; cnt--) { if (cnt) udelay(100); else rval = QLA_FUNCTION_TIMEOUT; } } if (rval == QLA_SUCCESS) { /* Host interface registers. */ dmp_reg = (uint32_t __iomem *)(reg + 0); for (cnt = 0; cnt < sizeof(fw->host_reg) / 4; cnt++) fw->host_reg[cnt] = RD_REG_DWORD(dmp_reg++); /* Disable interrupts. */ WRT_REG_DWORD(®->ictrl, 0); RD_REG_DWORD(®->ictrl); /* Shadow registers. */ WRT_REG_DWORD(®->iobase_addr, 0x0F70); RD_REG_DWORD(®->iobase_addr); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xF0); WRT_REG_DWORD(dmp_reg, 0xB0000000); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xFC); fw->shadow_reg[0] = RD_REG_DWORD(dmp_reg); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xF0); WRT_REG_DWORD(dmp_reg, 0xB0100000); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xFC); fw->shadow_reg[1] = RD_REG_DWORD(dmp_reg); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xF0); WRT_REG_DWORD(dmp_reg, 0xB0200000); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xFC); fw->shadow_reg[2] = RD_REG_DWORD(dmp_reg); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xF0); WRT_REG_DWORD(dmp_reg, 0xB0300000); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xFC); fw->shadow_reg[3] = RD_REG_DWORD(dmp_reg); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xF0); WRT_REG_DWORD(dmp_reg, 0xB0400000); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xFC); fw->shadow_reg[4] = RD_REG_DWORD(dmp_reg); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xF0); WRT_REG_DWORD(dmp_reg, 0xB0500000); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xFC); fw->shadow_reg[5] = RD_REG_DWORD(dmp_reg); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xF0); WRT_REG_DWORD(dmp_reg, 0xB0600000); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xFC); fw->shadow_reg[6] = RD_REG_DWORD(dmp_reg); /* Mailbox registers. */ mbx_reg = (uint16_t __iomem *)((uint8_t __iomem *)reg + 0x80); for (cnt = 0; cnt < sizeof(fw->mailbox_reg) / 2; cnt++) fw->mailbox_reg[cnt] = RD_REG_WORD(mbx_reg++); /* Transfer sequence registers. */ iter_reg = fw->xseq_gp_reg; WRT_REG_DWORD(®->iobase_addr, 0xBF00); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); WRT_REG_DWORD(®->iobase_addr, 0xBF10); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); WRT_REG_DWORD(®->iobase_addr, 0xBF20); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); WRT_REG_DWORD(®->iobase_addr, 0xBF30); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); WRT_REG_DWORD(®->iobase_addr, 0xBF40); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); WRT_REG_DWORD(®->iobase_addr, 0xBF50); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); WRT_REG_DWORD(®->iobase_addr, 0xBF60); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); WRT_REG_DWORD(®->iobase_addr, 0xBF70); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); WRT_REG_DWORD(®->iobase_addr, 0xBFE0); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < sizeof(fw->xseq_0_reg) / 4; cnt++) fw->xseq_0_reg[cnt] = RD_REG_DWORD(dmp_reg++); WRT_REG_DWORD(®->iobase_addr, 0xBFF0); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < sizeof(fw->xseq_1_reg) / 4; cnt++) fw->xseq_1_reg[cnt] = RD_REG_DWORD(dmp_reg++); /* Receive sequence registers. */ iter_reg = fw->rseq_gp_reg; WRT_REG_DWORD(®->iobase_addr, 0xFF00); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); WRT_REG_DWORD(®->iobase_addr, 0xFF10); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); WRT_REG_DWORD(®->iobase_addr, 0xFF20); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); WRT_REG_DWORD(®->iobase_addr, 0xFF30); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); WRT_REG_DWORD(®->iobase_addr, 0xFF40); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); WRT_REG_DWORD(®->iobase_addr, 0xFF50); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); WRT_REG_DWORD(®->iobase_addr, 0xFF60); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); WRT_REG_DWORD(®->iobase_addr, 0xFF70); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); WRT_REG_DWORD(®->iobase_addr, 0xFFD0); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < sizeof(fw->rseq_0_reg) / 4; cnt++) fw->rseq_0_reg[cnt] = RD_REG_DWORD(dmp_reg++); WRT_REG_DWORD(®->iobase_addr, 0xFFE0); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < sizeof(fw->rseq_1_reg) / 4; cnt++) fw->rseq_1_reg[cnt] = RD_REG_DWORD(dmp_reg++); WRT_REG_DWORD(®->iobase_addr, 0xFFF0); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < sizeof(fw->rseq_2_reg) / 4; cnt++) fw->rseq_2_reg[cnt] = RD_REG_DWORD(dmp_reg++); /* Command DMA registers. */ WRT_REG_DWORD(®->iobase_addr, 0x7100); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < sizeof(fw->cmd_dma_reg) / 4; cnt++) fw->cmd_dma_reg[cnt] = RD_REG_DWORD(dmp_reg++); /* Queues. */ iter_reg = fw->req0_dma_reg; WRT_REG_DWORD(®->iobase_addr, 0x7200); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 8; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xE4); for (cnt = 0; cnt < 7; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); iter_reg = fw->resp0_dma_reg; WRT_REG_DWORD(®->iobase_addr, 0x7300); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 8; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xE4); for (cnt = 0; cnt < 7; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); iter_reg = fw->req1_dma_reg; WRT_REG_DWORD(®->iobase_addr, 0x7400); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 8; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xE4); for (cnt = 0; cnt < 7; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); /* Transmit DMA registers. */ iter_reg = fw->xmt0_dma_reg; WRT_REG_DWORD(®->iobase_addr, 0x7600); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); WRT_REG_DWORD(®->iobase_addr, 0x7610); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); iter_reg = fw->xmt1_dma_reg; WRT_REG_DWORD(®->iobase_addr, 0x7620); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); WRT_REG_DWORD(®->iobase_addr, 0x7630); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); iter_reg = fw->xmt2_dma_reg; WRT_REG_DWORD(®->iobase_addr, 0x7640); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); WRT_REG_DWORD(®->iobase_addr, 0x7650); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); iter_reg = fw->xmt3_dma_reg; WRT_REG_DWORD(®->iobase_addr, 0x7660); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); WRT_REG_DWORD(®->iobase_addr, 0x7670); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); iter_reg = fw->xmt4_dma_reg; WRT_REG_DWORD(®->iobase_addr, 0x7680); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); WRT_REG_DWORD(®->iobase_addr, 0x7690); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); WRT_REG_DWORD(®->iobase_addr, 0x76A0); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < sizeof(fw->xmt_data_dma_reg) / 4; cnt++) fw->xmt_data_dma_reg[cnt] = RD_REG_DWORD(dmp_reg++); /* Receive DMA registers. */ iter_reg = fw->rcvt0_data_dma_reg; WRT_REG_DWORD(®->iobase_addr, 0x7700); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); WRT_REG_DWORD(®->iobase_addr, 0x7710); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); iter_reg = fw->rcvt1_data_dma_reg; WRT_REG_DWORD(®->iobase_addr, 0x7720); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); WRT_REG_DWORD(®->iobase_addr, 0x7730); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); /* RISC registers. */ iter_reg = fw->risc_gp_reg; WRT_REG_DWORD(®->iobase_addr, 0x0F00); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); WRT_REG_DWORD(®->iobase_addr, 0x0F10); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); WRT_REG_DWORD(®->iobase_addr, 0x0F20); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); WRT_REG_DWORD(®->iobase_addr, 0x0F30); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); WRT_REG_DWORD(®->iobase_addr, 0x0F40); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); WRT_REG_DWORD(®->iobase_addr, 0x0F50); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); WRT_REG_DWORD(®->iobase_addr, 0x0F60); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); WRT_REG_DWORD(®->iobase_addr, 0x0F70); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); /* Local memory controller registers. */ iter_reg = fw->lmc_reg; WRT_REG_DWORD(®->iobase_addr, 0x3000); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); WRT_REG_DWORD(®->iobase_addr, 0x3010); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); WRT_REG_DWORD(®->iobase_addr, 0x3020); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); WRT_REG_DWORD(®->iobase_addr, 0x3030); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); WRT_REG_DWORD(®->iobase_addr, 0x3040); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); WRT_REG_DWORD(®->iobase_addr, 0x3050); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); WRT_REG_DWORD(®->iobase_addr, 0x3060); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); /* Fibre Protocol Module registers. */ iter_reg = fw->fpm_hdw_reg; WRT_REG_DWORD(®->iobase_addr, 0x4000); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); WRT_REG_DWORD(®->iobase_addr, 0x4010); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); WRT_REG_DWORD(®->iobase_addr, 0x4020); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); WRT_REG_DWORD(®->iobase_addr, 0x4030); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); WRT_REG_DWORD(®->iobase_addr, 0x4040); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); WRT_REG_DWORD(®->iobase_addr, 0x4050); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); WRT_REG_DWORD(®->iobase_addr, 0x4060); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); WRT_REG_DWORD(®->iobase_addr, 0x4070); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); WRT_REG_DWORD(®->iobase_addr, 0x4080); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); WRT_REG_DWORD(®->iobase_addr, 0x4090); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); WRT_REG_DWORD(®->iobase_addr, 0x40A0); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); WRT_REG_DWORD(®->iobase_addr, 0x40B0); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); /* Frame Buffer registers. */ iter_reg = fw->fb_hdw_reg; WRT_REG_DWORD(®->iobase_addr, 0x6000); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); WRT_REG_DWORD(®->iobase_addr, 0x6010); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); WRT_REG_DWORD(®->iobase_addr, 0x6020); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); WRT_REG_DWORD(®->iobase_addr, 0x6030); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); WRT_REG_DWORD(®->iobase_addr, 0x6040); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); WRT_REG_DWORD(®->iobase_addr, 0x6100); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); WRT_REG_DWORD(®->iobase_addr, 0x6130); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); WRT_REG_DWORD(®->iobase_addr, 0x6150); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); WRT_REG_DWORD(®->iobase_addr, 0x6170); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); WRT_REG_DWORD(®->iobase_addr, 0x6190); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); WRT_REG_DWORD(®->iobase_addr, 0x61B0); dmp_reg = (uint32_t __iomem *)((uint8_t __iomem *)reg + 0xC0); for (cnt = 0; cnt < 16; cnt++) *iter_reg++ = RD_REG_DWORD(dmp_reg++); /* Reset RISC. */ WRT_REG_DWORD(®->ctrl_status, CSRX_DMA_SHUTDOWN|MWB_4096_BYTES); for (cnt = 0; cnt < 30000; cnt++) { if ((RD_REG_DWORD(®->ctrl_status) & CSRX_DMA_ACTIVE) == 0) break; udelay(10); } WRT_REG_DWORD(®->ctrl_status, CSRX_ISP_SOFT_RESET|CSRX_DMA_SHUTDOWN|MWB_4096_BYTES); pci_read_config_word(ha->pdev, PCI_COMMAND, &wd); udelay(100); /* Wait for firmware to complete NVRAM accesses. */ mb[0] = (uint32_t) RD_REG_WORD(®->mailbox0); for (cnt = 10000 ; cnt && mb[0]; cnt--) { udelay(5); mb[0] = (uint32_t) RD_REG_WORD(®->mailbox0); barrier(); } /* Wait for soft-reset to complete. */ for (cnt = 0; cnt < 30000; cnt++) { if ((RD_REG_DWORD(®->ctrl_status) & CSRX_ISP_SOFT_RESET) == 0) break; udelay(10); } WRT_REG_DWORD(®->hccr, HCCRX_CLR_RISC_RESET); RD_REG_DWORD(®->hccr); /* PCI Posting. */ } for (cnt = 30000; RD_REG_WORD(®->mailbox0) != 0 && rval == QLA_SUCCESS; cnt--) { if (cnt) udelay(100); else rval = QLA_FUNCTION_TIMEOUT; } /* Memory. */ if (rval == QLA_SUCCESS) { /* Code RAM. */ risc_address = 0x20000; WRT_REG_WORD(®->mailbox0, MBC_READ_RAM_EXTENDED); clear_bit(MBX_INTERRUPT, &ha->mbx_cmd_flags); } for (cnt = 0; cnt < sizeof(fw->code_ram) / 4 && rval == QLA_SUCCESS; cnt++, risc_address++) { WRT_REG_WORD(®->mailbox1, LSW(risc_address)); WRT_REG_WORD(®->mailbox8, MSW(risc_address)); RD_REG_WORD(®->mailbox8); WRT_REG_DWORD(®->hccr, HCCRX_SET_HOST_INT); for (timer = 6000000; timer; timer--) { /* Check for pending interrupts. */ stat = RD_REG_DWORD(®->host_status); if (stat & HSRX_RISC_INT) { stat &= 0xff; if (stat == 0x1 || stat == 0x2 || stat == 0x10 || stat == 0x11) { set_bit(MBX_INTERRUPT, &ha->mbx_cmd_flags); mb[0] = RD_REG_WORD(®->mailbox0); mb[2] = RD_REG_WORD(®->mailbox2); mb[3] = RD_REG_WORD(®->mailbox3); WRT_REG_DWORD(®->hccr, HCCRX_CLR_RISC_INT); RD_REG_DWORD(®->hccr); break; } /* Clear this intr; it wasn't a mailbox intr */ WRT_REG_DWORD(®->hccr, HCCRX_CLR_RISC_INT); RD_REG_DWORD(®->hccr); } udelay(5); } if (test_and_clear_bit(MBX_INTERRUPT, &ha->mbx_cmd_flags)) { rval = mb[0] & MBS_MASK; fw->code_ram[cnt] = (mb[3] << 16) | mb[2]; } else { rval = QLA_FUNCTION_FAILED; } } if (rval == QLA_SUCCESS) { /* External Memory. */ risc_address = 0x100000; ext_mem_cnt = ha->fw_memory_size - 0x100000 + 1; WRT_REG_WORD(®->mailbox0, MBC_READ_RAM_EXTENDED); clear_bit(MBX_INTERRUPT, &ha->mbx_cmd_flags); } for (cnt = 0; cnt < ext_mem_cnt && rval == QLA_SUCCESS; cnt++, risc_address++) { WRT_REG_WORD(®->mailbox1, LSW(risc_address)); WRT_REG_WORD(®->mailbox8, MSW(risc_address)); RD_REG_WORD(®->mailbox8); WRT_REG_DWORD(®->hccr, HCCRX_SET_HOST_INT); for (timer = 6000000; timer; timer--) { /* Check for pending interrupts. */ stat = RD_REG_DWORD(®->host_status); if (stat & HSRX_RISC_INT) { stat &= 0xff; if (stat == 0x1 || stat == 0x2 || stat == 0x10 || stat == 0x11) { set_bit(MBX_INTERRUPT, &ha->mbx_cmd_flags); mb[0] = RD_REG_WORD(®->mailbox0); mb[2] = RD_REG_WORD(®->mailbox2); mb[3] = RD_REG_WORD(®->mailbox3); WRT_REG_DWORD(®->hccr, HCCRX_CLR_RISC_INT); RD_REG_DWORD(®->hccr); break; } /* Clear this intr; it wasn't a mailbox intr */ WRT_REG_DWORD(®->hccr, HCCRX_CLR_RISC_INT); RD_REG_DWORD(®->hccr); } udelay(5); } if (test_and_clear_bit(MBX_INTERRUPT, &ha->mbx_cmd_flags)) { rval = mb[0] & MBS_MASK; fw->ext_mem[cnt] = (mb[3] << 16) | mb[2]; } else { rval = QLA_FUNCTION_FAILED; } } if (rval != QLA_SUCCESS) { qla_printk(KERN_WARNING, ha, "Failed to dump firmware (%x)!!!\n", rval); ha->fw_dumped = 0; } else { qla_printk(KERN_INFO, ha, "Firmware dump saved to temp buffer (%ld/%p).\n", ha->host_no, ha->fw_dump24); ha->fw_dumped = 1; } qla24xx_fw_dump_failed: if (!hardware_locked) spin_unlock_irqrestore(&ha->hardware_lock, flags); } void qla24xx_ascii_fw_dump(scsi_qla_host_t *ha) { uint32_t cnt; char *uiter; struct qla24xx_fw_dump *fw; uint32_t ext_mem_cnt; uiter = ha->fw_dump_buffer; fw = ha->fw_dump24; qla_uprintf(&uiter, "ISP FW Version %d.%02d.%02d Attributes %04x\n", ha->fw_major_version, ha->fw_minor_version, ha->fw_subminor_version, ha->fw_attributes); qla_uprintf(&uiter, "\nR2H Status Register\n%04x\n", fw->host_status); qla_uprintf(&uiter, "\nHost Interface Registers"); for (cnt = 0; cnt < sizeof(fw->host_reg) / 4; cnt++) { if (cnt % 8 == 0) qla_uprintf(&uiter, "\n"); qla_uprintf(&uiter, "%08x ", fw->host_reg[cnt]); } qla_uprintf(&uiter, "\n\nShadow Registers"); for (cnt = 0; cnt < sizeof(fw->shadow_reg) / 4; cnt++) { if (cnt % 8 == 0) qla_uprintf(&uiter, "\n"); qla_uprintf(&uiter, "%08x ", fw->shadow_reg[cnt]); } qla_uprintf(&uiter, "\n\nMailbox Registers"); for (cnt = 0; cnt < sizeof(fw->mailbox_reg) / 2; cnt++) { if (cnt % 8 == 0) qla_uprintf(&uiter, "\n"); qla_uprintf(&uiter, "%08x ", fw->mailbox_reg[cnt]); } qla_uprintf(&uiter, "\n\nXSEQ GP Registers"); for (cnt = 0; cnt < sizeof(fw->xseq_gp_reg) / 4; cnt++) { if (cnt % 8 == 0) qla_uprintf(&uiter, "\n"); qla_uprintf(&uiter, "%08x ", fw->xseq_gp_reg[cnt]); } qla_uprintf(&uiter, "\n\nXSEQ-0 Registers"); for (cnt = 0; cnt < sizeof(fw->xseq_0_reg) / 4; cnt++) { if (cnt % 8 == 0) qla_uprintf(&uiter, "\n"); qla_uprintf(&uiter, "%08x ", fw->xseq_0_reg[cnt]); } qla_uprintf(&uiter, "\n\nXSEQ-1 Registers"); for (cnt = 0; cnt < sizeof(fw->xseq_1_reg) / 4; cnt++) { if (cnt % 8 == 0) qla_uprintf(&uiter, "\n"); qla_uprintf(&uiter, "%08x ", fw->xseq_1_reg[cnt]); } qla_uprintf(&uiter, "\n\nRSEQ GP Registers"); for (cnt = 0; cnt < sizeof(fw->rseq_gp_reg) / 4; cnt++) { if (cnt % 8 == 0) qla_uprintf(&uiter, "\n"); qla_uprintf(&uiter, "%08x ", fw->rseq_gp_reg[cnt]); } qla_uprintf(&uiter, "\n\nRSEQ-0 Registers"); for (cnt = 0; cnt < sizeof(fw->rseq_0_reg) / 4; cnt++) { if (cnt % 8 == 0) qla_uprintf(&uiter, "\n"); qla_uprintf(&uiter, "%08x ", fw->rseq_0_reg[cnt]); } qla_uprintf(&uiter, "\n\nRSEQ-1 Registers"); for (cnt = 0; cnt < sizeof(fw->rseq_1_reg) / 4; cnt++) { if (cnt % 8 == 0) qla_uprintf(&uiter, "\n"); qla_uprintf(&uiter, "%08x ", fw->rseq_1_reg[cnt]); } qla_uprintf(&uiter, "\n\nRSEQ-2 Registers"); for (cnt = 0; cnt < sizeof(fw->rseq_2_reg) / 4; cnt++) { if (cnt % 8 == 0) qla_uprintf(&uiter, "\n"); qla_uprintf(&uiter, "%08x ", fw->rseq_2_reg[cnt]); } qla_uprintf(&uiter, "\n\nCommand DMA Registers"); for (cnt = 0; cnt < sizeof(fw->cmd_dma_reg) / 4; cnt++) { if (cnt % 8 == 0) qla_uprintf(&uiter, "\n"); qla_uprintf(&uiter, "%08x ", fw->cmd_dma_reg[cnt]); } qla_uprintf(&uiter, "\n\nRequest0 Queue DMA Channel Registers"); for (cnt = 0; cnt < sizeof(fw->req0_dma_reg) / 4; cnt++) { if (cnt % 8 == 0) qla_uprintf(&uiter, "\n"); qla_uprintf(&uiter, "%08x ", fw->req0_dma_reg[cnt]); } qla_uprintf(&uiter, "\n\nResponse0 Queue DMA Channel Registers"); for (cnt = 0; cnt < sizeof(fw->resp0_dma_reg) / 4; cnt++) { if (cnt % 8 == 0) qla_uprintf(&uiter, "\n"); qla_uprintf(&uiter, "%08x ", fw->resp0_dma_reg[cnt]); } qla_uprintf(&uiter, "\n\nRequest1 Queue DMA Channel Registers"); for (cnt = 0; cnt < sizeof(fw->req1_dma_reg) / 4; cnt++) { if (cnt % 8 == 0) qla_uprintf(&uiter, "\n"); qla_uprintf(&uiter, "%08x ", fw->req1_dma_reg[cnt]); } qla_uprintf(&uiter, "\n\nXMT0 Data DMA Registers"); for (cnt = 0; cnt < sizeof(fw->xmt0_dma_reg) / 4; cnt++) { if (cnt % 8 == 0) qla_uprintf(&uiter, "\n"); qla_uprintf(&uiter, "%08x ", fw->xmt0_dma_reg[cnt]); } qla_uprintf(&uiter, "\n\nXMT1 Data DMA Registers"); for (cnt = 0; cnt < sizeof(fw->xmt1_dma_reg) / 4; cnt++) { if (cnt % 8 == 0) qla_uprintf(&uiter, "\n"); qla_uprintf(&uiter, "%08x ", fw->xmt1_dma_reg[cnt]); } qla_uprintf(&uiter, "\n\nXMT2 Data DMA Registers"); for (cnt = 0; cnt < sizeof(fw->xmt2_dma_reg) / 4; cnt++) { if (cnt % 8 == 0) qla_uprintf(&uiter, "\n"); qla_uprintf(&uiter, "%08x ", fw->xmt2_dma_reg[cnt]); } qla_uprintf(&uiter, "\n\nXMT3 Data DMA Registers"); for (cnt = 0; cnt < sizeof(fw->xmt3_dma_reg) / 4; cnt++) { if (cnt % 8 == 0) qla_uprintf(&uiter, "\n"); qla_uprintf(&uiter, "%08x ", fw->xmt3_dma_reg[cnt]); } qla_uprintf(&uiter, "\n\nXMT4 Data DMA Registers"); for (cnt = 0; cnt < sizeof(fw->xmt4_dma_reg) / 4; cnt++) { if (cnt % 8 == 0) qla_uprintf(&uiter, "\n"); qla_uprintf(&uiter, "%08x ", fw->xmt4_dma_reg[cnt]); } qla_uprintf(&uiter, "\n\nXMT Data DMA Common Registers"); for (cnt = 0; cnt < sizeof(fw->xmt_data_dma_reg) / 4; cnt++) { if (cnt % 8 == 0) qla_uprintf(&uiter, "\n"); qla_uprintf(&uiter, "%08x ", fw->xmt_data_dma_reg[cnt]); } qla_uprintf(&uiter, "\n\nRCV Thread 0 Data DMA Registers"); for (cnt = 0; cnt < sizeof(fw->rcvt0_data_dma_reg) / 4; cnt++) { if (cnt % 8 == 0) qla_uprintf(&uiter, "\n"); qla_uprintf(&uiter, "%08x ", fw->rcvt0_data_dma_reg[cnt]); } qla_uprintf(&uiter, "\n\nRCV Thread 1 Data DMA Registers"); for (cnt = 0; cnt < sizeof(fw->rcvt1_data_dma_reg) / 4; cnt++) { if (cnt % 8 == 0) qla_uprintf(&uiter, "\n"); qla_uprintf(&uiter, "%08x ", fw->rcvt1_data_dma_reg[cnt]); } qla_uprintf(&uiter, "\n\nRISC GP Registers"); for (cnt = 0; cnt < sizeof(fw->risc_gp_reg) / 4; cnt++) { if (cnt % 8 == 0) qla_uprintf(&uiter, "\n"); qla_uprintf(&uiter, "%08x ", fw->risc_gp_reg[cnt]); } qla_uprintf(&uiter, "\n\nLMC Registers"); for (cnt = 0; cnt < sizeof(fw->lmc_reg) / 4; cnt++) { if (cnt % 8 == 0) qla_uprintf(&uiter, "\n"); qla_uprintf(&uiter, "%08x ", fw->lmc_reg[cnt]); } qla_uprintf(&uiter, "\n\nFPM Hardware Registers"); for (cnt = 0; cnt < sizeof(fw->fpm_hdw_reg) / 4; cnt++) { if (cnt % 8 == 0) qla_uprintf(&uiter, "\n"); qla_uprintf(&uiter, "%08x ", fw->fpm_hdw_reg[cnt]); } qla_uprintf(&uiter, "\n\nFB Hardware Registers"); for (cnt = 0; cnt < sizeof(fw->fb_hdw_reg) / 4; cnt++) { if (cnt % 8 == 0) qla_uprintf(&uiter, "\n"); qla_uprintf(&uiter, "%08x ", fw->fb_hdw_reg[cnt]); } qla_uprintf(&uiter, "\n\nCode RAM"); for (cnt = 0; cnt < sizeof (fw->code_ram) / 4; cnt++) { if (cnt % 8 == 0) { qla_uprintf(&uiter, "\n%08x: ", cnt + 0x20000); } qla_uprintf(&uiter, "%08x ", fw->code_ram[cnt]); } qla_uprintf(&uiter, "\n\nExternal Memory"); ext_mem_cnt = ha->fw_memory_size - 0x100000 + 1; for (cnt = 0; cnt < ext_mem_cnt; cnt++) { if (cnt % 8 == 0) { qla_uprintf(&uiter, "\n%08x: ", cnt + 0x100000); } qla_uprintf(&uiter, "%08x ", fw->ext_mem[cnt]); } qla_uprintf(&uiter, "\n[<==END] ISP Debug Dump"); } /****************************************************************************/ /* Driver Debug Functions. */ /****************************************************************************/ void qla2x00_dump_regs(scsi_qla_host_t *ha) { struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; printk("Mailbox registers:\n"); printk("scsi(%ld): mbox 0 0x%04x \n", ha->host_no, RD_MAILBOX_REG(ha, reg, 0)); printk("scsi(%ld): mbox 1 0x%04x \n", ha->host_no, RD_MAILBOX_REG(ha, reg, 1)); printk("scsi(%ld): mbox 2 0x%04x \n", ha->host_no, RD_MAILBOX_REG(ha, reg, 2)); printk("scsi(%ld): mbox 3 0x%04x \n", ha->host_no, RD_MAILBOX_REG(ha, reg, 3)); printk("scsi(%ld): mbox 4 0x%04x \n", ha->host_no, RD_MAILBOX_REG(ha, reg, 4)); printk("scsi(%ld): mbox 5 0x%04x \n", ha->host_no, RD_MAILBOX_REG(ha, reg, 5)); } void qla2x00_dump_buffer(uint8_t * b, uint32_t size) { uint32_t cnt; uint8_t c; printk(" 0 1 2 3 4 5 6 7 8 9 " "Ah Bh Ch Dh Eh Fh\n"); printk("----------------------------------------" "----------------------\n"); for (cnt = 0; cnt < size;) { c = *b++; printk("%02x",(uint32_t) c); cnt++; if (!(cnt % 16)) printk("\n"); else printk(" "); } if (cnt % 16) printk("\n"); } /************************************************************************** * qla2x00_print_scsi_cmd * Dumps out info about the scsi cmd and srb. * Input * cmd : struct scsi_cmnd **************************************************************************/ void qla2x00_print_scsi_cmd(struct scsi_cmnd * cmd) { int i; struct scsi_qla_host *ha; srb_t *sp; ha = (struct scsi_qla_host *)cmd->device->host->hostdata; sp = (srb_t *) cmd->SCp.ptr; printk("SCSI Command @=0x%p, Handle=0x%p\n", cmd, cmd->host_scribble); printk(" chan=0x%02x, target=0x%02x, lun=0x%02x, cmd_len=0x%02x\n", cmd->device->channel, cmd->device->id, cmd->device->lun, cmd->cmd_len); printk(" CDB: "); for (i = 0; i < cmd->cmd_len; i++) { printk("0x%02x ", cmd->cmnd[i]); } printk("\n seg_cnt=%d, allowed=%d, retries=%d\n", cmd->use_sg, cmd->allowed, cmd->retries); printk(" request buffer=0x%p, request buffer len=0x%x\n", cmd->request_buffer, cmd->request_bufflen); printk(" tag=%d, transfersize=0x%x\n", cmd->tag, cmd->transfersize); printk(" serial_number=%lx, SP=%p\n", cmd->serial_number, sp); printk(" data direction=%d\n", cmd->sc_data_direction); if (!sp) return; printk(" sp flags=0x%x\n", sp->flags); printk(" state=%d\n", sp->state); } void qla2x00_dump_pkt(void *pkt) { uint32_t i; uint8_t *data = (uint8_t *) pkt; for (i = 0; i < 64; i++) { if (!(i % 4)) printk("\n%02x: ", i); printk("%02x ", data[i]); } printk("\n"); } #if defined(QL_DEBUG_ROUTINES) /* * qla2x00_formatted_dump_buffer * Prints string plus buffer. * * Input: * string = Null terminated string (no newline at end). * buffer = buffer address. * wd_size = word size 8, 16, 32 or 64 bits * count = number of words. */ void qla2x00_formatted_dump_buffer(char *string, uint8_t * buffer, uint8_t wd_size, uint32_t count) { uint32_t cnt; uint16_t *buf16; uint32_t *buf32; if (strcmp(string, "") != 0) printk("%s\n",string); switch (wd_size) { case 8: printk(" 0 1 2 3 4 5 6 7 " "8 9 Ah Bh Ch Dh Eh Fh\n"); printk("-----------------------------------------" "-------------------------------------\n"); for (cnt = 1; cnt <= count; cnt++, buffer++) { printk("%02x",*buffer); if (cnt % 16 == 0) printk("\n"); else printk(" "); } if (cnt % 16 != 0) printk("\n"); break; case 16: printk(" 0 2 4 6 8 Ah " " Ch Eh\n"); printk("-----------------------------------------" "-------------\n"); buf16 = (uint16_t *) buffer; for (cnt = 1; cnt <= count; cnt++, buf16++) { printk("%4x",*buf16); if (cnt % 8 == 0) printk("\n"); else if (*buf16 < 10) printk(" "); else printk(" "); } if (cnt % 8 != 0) printk("\n"); break; case 32: printk(" 0 4 8 Ch\n"); printk("------------------------------------------\n"); buf32 = (uint32_t *) buffer; for (cnt = 1; cnt <= count; cnt++, buf32++) { printk("%8x", *buf32); if (cnt % 4 == 0) printk("\n"); else if (*buf32 < 10) printk(" "); else printk(" "); } if (cnt % 4 != 0) printk("\n"); break; default: break; } } #endif