// SPDX-License-Identifier: GPL-2.0-only /* * Special handling for DW DMA core * * Copyright (c) 2009, 2014 Intel Corporation. */ #include #include #include #include #include #include #include #include #include #include #include "spi-dw.h" #define RX_BUSY 0 #define RX_BURST_LEVEL 16 #define TX_BUSY 1 #define TX_BURST_LEVEL 16 static bool dw_spi_dma_chan_filter(struct dma_chan *chan, void *param) { struct dw_dma_slave *s = param; if (s->dma_dev != chan->device->dev) return false; chan->private = s; return true; } static void dw_spi_dma_maxburst_init(struct dw_spi *dws) { struct dma_slave_caps caps; u32 max_burst, def_burst; int ret; def_burst = dws->fifo_len / 2; ret = dma_get_slave_caps(dws->rxchan, &caps); if (!ret && caps.max_burst) max_burst = caps.max_burst; else max_burst = RX_BURST_LEVEL; dws->rxburst = min(max_burst, def_burst); dw_writel(dws, DW_SPI_DMARDLR, dws->rxburst - 1); ret = dma_get_slave_caps(dws->txchan, &caps); if (!ret && caps.max_burst) max_burst = caps.max_burst; else max_burst = TX_BURST_LEVEL; /* * Having a Rx DMA channel serviced with higher priority than a Tx DMA * channel might not be enough to provide a well balanced DMA-based * SPI transfer interface. There might still be moments when the Tx DMA * channel is occasionally handled faster than the Rx DMA channel. * That in its turn will eventually cause the SPI Rx FIFO overflow if * SPI bus speed is high enough to fill the SPI Rx FIFO in before it's * cleared by the Rx DMA channel. In order to fix the problem the Tx * DMA activity is intentionally slowed down by limiting the SPI Tx * FIFO depth with a value twice bigger than the Tx burst length. */ dws->txburst = min(max_burst, def_burst); dw_writel(dws, DW_SPI_DMATDLR, dws->txburst); } static void dw_spi_dma_sg_burst_init(struct dw_spi *dws) { struct dma_slave_caps tx = {0}, rx = {0}; dma_get_slave_caps(dws->txchan, &tx); dma_get_slave_caps(dws->rxchan, &rx); if (tx.max_sg_burst > 0 && rx.max_sg_burst > 0) dws->dma_sg_burst = min(tx.max_sg_burst, rx.max_sg_burst); else if (tx.max_sg_burst > 0) dws->dma_sg_burst = tx.max_sg_burst; else if (rx.max_sg_burst > 0) dws->dma_sg_burst = rx.max_sg_burst; else dws->dma_sg_burst = 0; } static int dw_spi_dma_init_mfld(struct device *dev, struct dw_spi *dws) { struct dw_dma_slave dma_tx = { .dst_id = 1 }, *tx = &dma_tx; struct dw_dma_slave dma_rx = { .src_id = 0 }, *rx = &dma_rx; struct pci_dev *dma_dev; dma_cap_mask_t mask; /* * Get pci device for DMA controller, currently it could only * be the DMA controller of Medfield */ dma_dev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x0827, NULL); if (!dma_dev) return -ENODEV; dma_cap_zero(mask); dma_cap_set(DMA_SLAVE, mask); /* 1. Init rx channel */ rx->dma_dev = &dma_dev->dev; dws->rxchan = dma_request_channel(mask, dw_spi_dma_chan_filter, rx); if (!dws->rxchan) goto err_exit; /* 2. Init tx channel */ tx->dma_dev = &dma_dev->dev; dws->txchan = dma_request_channel(mask, dw_spi_dma_chan_filter, tx); if (!dws->txchan) goto free_rxchan; dws->master->dma_rx = dws->rxchan; dws->master->dma_tx = dws->txchan; init_completion(&dws->dma_completion); dw_spi_dma_maxburst_init(dws); dw_spi_dma_sg_burst_init(dws); return 0; free_rxchan: dma_release_channel(dws->rxchan); dws->rxchan = NULL; err_exit: return -EBUSY; } static int dw_spi_dma_init_generic(struct device *dev, struct dw_spi *dws) { dws->rxchan = dma_request_slave_channel(dev, "rx"); if (!dws->rxchan) return -ENODEV; dws->txchan = dma_request_slave_channel(dev, "tx"); if (!dws->txchan) { dma_release_channel(dws->rxchan); dws->rxchan = NULL; return -ENODEV; } dws->master->dma_rx = dws->rxchan; dws->master->dma_tx = dws->txchan; init_completion(&dws->dma_completion); dw_spi_dma_maxburst_init(dws); dw_spi_dma_sg_burst_init(dws); return 0; } static void dw_spi_dma_exit(struct dw_spi *dws) { if (dws->txchan) { dmaengine_terminate_sync(dws->txchan); dma_release_channel(dws->txchan); } if (dws->rxchan) { dmaengine_terminate_sync(dws->rxchan); dma_release_channel(dws->rxchan); } } static irqreturn_t dw_spi_dma_transfer_handler(struct dw_spi *dws) { dw_spi_check_status(dws, false); complete(&dws->dma_completion); return IRQ_HANDLED; } static bool dw_spi_can_dma(struct spi_controller *master, struct spi_device *spi, struct spi_transfer *xfer) { struct dw_spi *dws = spi_controller_get_devdata(master); return xfer->len > dws->fifo_len; } static enum dma_slave_buswidth dw_spi_dma_convert_width(u8 n_bytes) { if (n_bytes == 1) return DMA_SLAVE_BUSWIDTH_1_BYTE; else if (n_bytes == 2) return DMA_SLAVE_BUSWIDTH_2_BYTES; return DMA_SLAVE_BUSWIDTH_UNDEFINED; } static int dw_spi_dma_wait(struct dw_spi *dws, unsigned int len, u32 speed) { unsigned long long ms; ms = len * MSEC_PER_SEC * BITS_PER_BYTE; do_div(ms, speed); ms += ms + 200; if (ms > UINT_MAX) ms = UINT_MAX; ms = wait_for_completion_timeout(&dws->dma_completion, msecs_to_jiffies(ms)); if (ms == 0) { dev_err(&dws->master->cur_msg->spi->dev, "DMA transaction timed out\n"); return -ETIMEDOUT; } return 0; } static inline bool dw_spi_dma_tx_busy(struct dw_spi *dws) { return !(dw_readl(dws, DW_SPI_SR) & SR_TF_EMPT); } static int dw_spi_dma_wait_tx_done(struct dw_spi *dws, struct spi_transfer *xfer) { int retry = SPI_WAIT_RETRIES; struct spi_delay delay; u32 nents; nents = dw_readl(dws, DW_SPI_TXFLR); delay.unit = SPI_DELAY_UNIT_SCK; delay.value = nents * dws->n_bytes * BITS_PER_BYTE; while (dw_spi_dma_tx_busy(dws) && retry--) spi_delay_exec(&delay, xfer); if (retry < 0) { dev_err(&dws->master->dev, "Tx hanged up\n"); return -EIO; } return 0; } /* * dws->dma_chan_busy is set before the dma transfer starts, callback for tx * channel will clear a corresponding bit. */ static void dw_spi_dma_tx_done(void *arg) { struct dw_spi *dws = arg; clear_bit(TX_BUSY, &dws->dma_chan_busy); if (test_bit(RX_BUSY, &dws->dma_chan_busy)) return; complete(&dws->dma_completion); } static int dw_spi_dma_config_tx(struct dw_spi *dws) { struct dma_slave_config txconf; memset(&txconf, 0, sizeof(txconf)); txconf.direction = DMA_MEM_TO_DEV; txconf.dst_addr = dws->dma_addr; txconf.dst_maxburst = dws->txburst; txconf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; txconf.dst_addr_width = dw_spi_dma_convert_width(dws->n_bytes); txconf.device_fc = false; return dmaengine_slave_config(dws->txchan, &txconf); } static int dw_spi_dma_submit_tx(struct dw_spi *dws, struct scatterlist *sgl, unsigned int nents) { struct dma_async_tx_descriptor *txdesc; dma_cookie_t cookie; int ret; txdesc = dmaengine_prep_slave_sg(dws->txchan, sgl, nents, DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!txdesc) return -ENOMEM; txdesc->callback = dw_spi_dma_tx_done; txdesc->callback_param = dws; cookie = dmaengine_submit(txdesc); ret = dma_submit_error(cookie); if (ret) { dmaengine_terminate_sync(dws->txchan); return ret; } set_bit(TX_BUSY, &dws->dma_chan_busy); return 0; } static inline bool dw_spi_dma_rx_busy(struct dw_spi *dws) { return !!(dw_readl(dws, DW_SPI_SR) & SR_RF_NOT_EMPT); } static int dw_spi_dma_wait_rx_done(struct dw_spi *dws) { int retry = SPI_WAIT_RETRIES; struct spi_delay delay; unsigned long ns, us; u32 nents; /* * It's unlikely that DMA engine is still doing the data fetching, but * if it's let's give it some reasonable time. The timeout calculation * is based on the synchronous APB/SSI reference clock rate, on a * number of data entries left in the Rx FIFO, times a number of clock * periods normally needed for a single APB read/write transaction * without PREADY signal utilized (which is true for the DW APB SSI * controller). */ nents = dw_readl(dws, DW_SPI_RXFLR); ns = 4U * NSEC_PER_SEC / dws->max_freq * nents; if (ns <= NSEC_PER_USEC) { delay.unit = SPI_DELAY_UNIT_NSECS; delay.value = ns; } else { us = DIV_ROUND_UP(ns, NSEC_PER_USEC); delay.unit = SPI_DELAY_UNIT_USECS; delay.value = clamp_val(us, 0, USHRT_MAX); } while (dw_spi_dma_rx_busy(dws) && retry--) spi_delay_exec(&delay, NULL); if (retry < 0) { dev_err(&dws->master->dev, "Rx hanged up\n"); return -EIO; } return 0; } /* * dws->dma_chan_busy is set before the dma transfer starts, callback for rx * channel will clear a corresponding bit. */ static void dw_spi_dma_rx_done(void *arg) { struct dw_spi *dws = arg; clear_bit(RX_BUSY, &dws->dma_chan_busy); if (test_bit(TX_BUSY, &dws->dma_chan_busy)) return; complete(&dws->dma_completion); } static int dw_spi_dma_config_rx(struct dw_spi *dws) { struct dma_slave_config rxconf; memset(&rxconf, 0, sizeof(rxconf)); rxconf.direction = DMA_DEV_TO_MEM; rxconf.src_addr = dws->dma_addr; rxconf.src_maxburst = dws->rxburst; rxconf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; rxconf.src_addr_width = dw_spi_dma_convert_width(dws->n_bytes); rxconf.device_fc = false; return dmaengine_slave_config(dws->rxchan, &rxconf); } static int dw_spi_dma_submit_rx(struct dw_spi *dws, struct scatterlist *sgl, unsigned int nents) { struct dma_async_tx_descriptor *rxdesc; dma_cookie_t cookie; int ret; rxdesc = dmaengine_prep_slave_sg(dws->rxchan, sgl, nents, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!rxdesc) return -ENOMEM; rxdesc->callback = dw_spi_dma_rx_done; rxdesc->callback_param = dws; cookie = dmaengine_submit(rxdesc); ret = dma_submit_error(cookie); if (ret) { dmaengine_terminate_sync(dws->rxchan); return ret; } set_bit(RX_BUSY, &dws->dma_chan_busy); return 0; } static int dw_spi_dma_setup(struct dw_spi *dws, struct spi_transfer *xfer) { u16 imr, dma_ctrl; int ret; if (!xfer->tx_buf) return -EINVAL; /* Setup DMA channels */ ret = dw_spi_dma_config_tx(dws); if (ret) return ret; if (xfer->rx_buf) { ret = dw_spi_dma_config_rx(dws); if (ret) return ret; } /* Set the DMA handshaking interface */ dma_ctrl = SPI_DMA_TDMAE; if (xfer->rx_buf) dma_ctrl |= SPI_DMA_RDMAE; dw_writel(dws, DW_SPI_DMACR, dma_ctrl); /* Set the interrupt mask */ imr = SPI_INT_TXOI; if (xfer->rx_buf) imr |= SPI_INT_RXUI | SPI_INT_RXOI; spi_umask_intr(dws, imr); reinit_completion(&dws->dma_completion); dws->transfer_handler = dw_spi_dma_transfer_handler; return 0; } static int dw_spi_dma_transfer_all(struct dw_spi *dws, struct spi_transfer *xfer) { int ret; /* Submit the DMA Tx transfer */ ret = dw_spi_dma_submit_tx(dws, xfer->tx_sg.sgl, xfer->tx_sg.nents); if (ret) goto err_clear_dmac; /* Submit the DMA Rx transfer if required */ if (xfer->rx_buf) { ret = dw_spi_dma_submit_rx(dws, xfer->rx_sg.sgl, xfer->rx_sg.nents); if (ret) goto err_clear_dmac; /* rx must be started before tx due to spi instinct */ dma_async_issue_pending(dws->rxchan); } dma_async_issue_pending(dws->txchan); ret = dw_spi_dma_wait(dws, xfer->len, xfer->effective_speed_hz); err_clear_dmac: dw_writel(dws, DW_SPI_DMACR, 0); return ret; } /* * In case if at least one of the requested DMA channels doesn't support the * hardware accelerated SG list entries traverse, the DMA driver will most * likely work that around by performing the IRQ-based SG list entries * resubmission. That might and will cause a problem if the DMA Tx channel is * recharged and re-executed before the Rx DMA channel. Due to * non-deterministic IRQ-handler execution latency the DMA Tx channel will * start pushing data to the SPI bus before the Rx DMA channel is even * reinitialized with the next inbound SG list entry. By doing so the DMA Tx * channel will implicitly start filling the DW APB SSI Rx FIFO up, which while * the DMA Rx channel being recharged and re-executed will eventually be * overflown. * * In order to solve the problem we have to feed the DMA engine with SG list * entries one-by-one. It shall keep the DW APB SSI Tx and Rx FIFOs * synchronized and prevent the Rx FIFO overflow. Since in general the tx_sg * and rx_sg lists may have different number of entries of different lengths * (though total length should match) let's virtually split the SG-lists to the * set of DMA transfers, which length is a minimum of the ordered SG-entries * lengths. An ASCII-sketch of the implemented algo is following: * xfer->len * |___________| * tx_sg list: |___|____|__| * rx_sg list: |_|____|____| * DMA transfers: |_|_|__|_|__| * * Note in order to have this workaround solving the denoted problem the DMA * engine driver should properly initialize the max_sg_burst capability and set * the DMA device max segment size parameter with maximum data block size the * DMA engine supports. */ static int dw_spi_dma_transfer_one(struct dw_spi *dws, struct spi_transfer *xfer) { struct scatterlist *tx_sg = NULL, *rx_sg = NULL, tx_tmp, rx_tmp; unsigned int tx_len = 0, rx_len = 0; unsigned int base, len; int ret; sg_init_table(&tx_tmp, 1); sg_init_table(&rx_tmp, 1); for (base = 0, len = 0; base < xfer->len; base += len) { /* Fetch next Tx DMA data chunk */ if (!tx_len) { tx_sg = !tx_sg ? &xfer->tx_sg.sgl[0] : sg_next(tx_sg); sg_dma_address(&tx_tmp) = sg_dma_address(tx_sg); tx_len = sg_dma_len(tx_sg); } /* Fetch next Rx DMA data chunk */ if (!rx_len) { rx_sg = !rx_sg ? &xfer->rx_sg.sgl[0] : sg_next(rx_sg); sg_dma_address(&rx_tmp) = sg_dma_address(rx_sg); rx_len = sg_dma_len(rx_sg); } len = min(tx_len, rx_len); sg_dma_len(&tx_tmp) = len; sg_dma_len(&rx_tmp) = len; /* Submit DMA Tx transfer */ ret = dw_spi_dma_submit_tx(dws, &tx_tmp, 1); if (ret) break; /* Submit DMA Rx transfer */ ret = dw_spi_dma_submit_rx(dws, &rx_tmp, 1); if (ret) break; /* Rx must be started before Tx due to SPI instinct */ dma_async_issue_pending(dws->rxchan); dma_async_issue_pending(dws->txchan); /* * Here we only need to wait for the DMA transfer to be * finished since SPI controller is kept enabled during the * procedure this loop implements and there is no risk to lose * data left in the Tx/Rx FIFOs. */ ret = dw_spi_dma_wait(dws, len, xfer->effective_speed_hz); if (ret) break; reinit_completion(&dws->dma_completion); sg_dma_address(&tx_tmp) += len; sg_dma_address(&rx_tmp) += len; tx_len -= len; rx_len -= len; } dw_writel(dws, DW_SPI_DMACR, 0); return ret; } static int dw_spi_dma_transfer(struct dw_spi *dws, struct spi_transfer *xfer) { unsigned int nents; int ret; nents = max(xfer->tx_sg.nents, xfer->rx_sg.nents); /* * Execute normal DMA-based transfer (which submits the Rx and Tx SG * lists directly to the DMA engine at once) if either full hardware * accelerated SG list traverse is supported by both channels, or the * Tx-only SPI transfer is requested, or the DMA engine is capable to * handle both SG lists on hardware accelerated basis. */ if (!dws->dma_sg_burst || !xfer->rx_buf || nents <= dws->dma_sg_burst) ret = dw_spi_dma_transfer_all(dws, xfer); else ret = dw_spi_dma_transfer_one(dws, xfer); if (ret) return ret; if (dws->master->cur_msg->status == -EINPROGRESS) { ret = dw_spi_dma_wait_tx_done(dws, xfer); if (ret) return ret; } if (xfer->rx_buf && dws->master->cur_msg->status == -EINPROGRESS) ret = dw_spi_dma_wait_rx_done(dws); return ret; } static void dw_spi_dma_stop(struct dw_spi *dws) { if (test_bit(TX_BUSY, &dws->dma_chan_busy)) { dmaengine_terminate_sync(dws->txchan); clear_bit(TX_BUSY, &dws->dma_chan_busy); } if (test_bit(RX_BUSY, &dws->dma_chan_busy)) { dmaengine_terminate_sync(dws->rxchan); clear_bit(RX_BUSY, &dws->dma_chan_busy); } } static const struct dw_spi_dma_ops dw_spi_dma_mfld_ops = { .dma_init = dw_spi_dma_init_mfld, .dma_exit = dw_spi_dma_exit, .dma_setup = dw_spi_dma_setup, .can_dma = dw_spi_can_dma, .dma_transfer = dw_spi_dma_transfer, .dma_stop = dw_spi_dma_stop, }; void dw_spi_dma_setup_mfld(struct dw_spi *dws) { dws->dma_ops = &dw_spi_dma_mfld_ops; } EXPORT_SYMBOL_NS_GPL(dw_spi_dma_setup_mfld, SPI_DW_CORE); static const struct dw_spi_dma_ops dw_spi_dma_generic_ops = { .dma_init = dw_spi_dma_init_generic, .dma_exit = dw_spi_dma_exit, .dma_setup = dw_spi_dma_setup, .can_dma = dw_spi_can_dma, .dma_transfer = dw_spi_dma_transfer, .dma_stop = dw_spi_dma_stop, }; void dw_spi_dma_setup_generic(struct dw_spi *dws) { dws->dma_ops = &dw_spi_dma_generic_ops; } EXPORT_SYMBOL_NS_GPL(dw_spi_dma_setup_generic, SPI_DW_CORE);