/* * SPI bus driver for CSR SiRFprimaII * * Copyright (c) 2011 Cambridge Silicon Radio Limited, a CSR plc group company. * * Licensed under GPLv2 or later. */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/clk.h> #include <linux/completion.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/of.h> #include <linux/bitops.h> #include <linux/err.h> #include <linux/platform_device.h> #include <linux/of_gpio.h> #include <linux/spi/spi.h> #include <linux/spi/spi_bitbang.h> #include <linux/dmaengine.h> #include <linux/dma-direction.h> #include <linux/dma-mapping.h> #include <linux/reset.h> #define DRIVER_NAME "sirfsoc_spi" /* SPI CTRL register defines */ #define SIRFSOC_SPI_SLV_MODE BIT(16) #define SIRFSOC_SPI_CMD_MODE BIT(17) #define SIRFSOC_SPI_CS_IO_OUT BIT(18) #define SIRFSOC_SPI_CS_IO_MODE BIT(19) #define SIRFSOC_SPI_CLK_IDLE_STAT BIT(20) #define SIRFSOC_SPI_CS_IDLE_STAT BIT(21) #define SIRFSOC_SPI_TRAN_MSB BIT(22) #define SIRFSOC_SPI_DRV_POS_EDGE BIT(23) #define SIRFSOC_SPI_CS_HOLD_TIME BIT(24) #define SIRFSOC_SPI_CLK_SAMPLE_MODE BIT(25) #define SIRFSOC_SPI_TRAN_DAT_FORMAT_8 (0 << 26) #define SIRFSOC_SPI_TRAN_DAT_FORMAT_12 (1 << 26) #define SIRFSOC_SPI_TRAN_DAT_FORMAT_16 (2 << 26) #define SIRFSOC_SPI_TRAN_DAT_FORMAT_32 (3 << 26) #define SIRFSOC_SPI_CMD_BYTE_NUM(x) ((x & 3) << 28) #define SIRFSOC_SPI_ENA_AUTO_CLR BIT(30) #define SIRFSOC_SPI_MUL_DAT_MODE BIT(31) /* Interrupt Enable */ #define SIRFSOC_SPI_RX_DONE_INT_EN BIT(0) #define SIRFSOC_SPI_TX_DONE_INT_EN BIT(1) #define SIRFSOC_SPI_RX_OFLOW_INT_EN BIT(2) #define SIRFSOC_SPI_TX_UFLOW_INT_EN BIT(3) #define SIRFSOC_SPI_RX_IO_DMA_INT_EN BIT(4) #define SIRFSOC_SPI_TX_IO_DMA_INT_EN BIT(5) #define SIRFSOC_SPI_RXFIFO_FULL_INT_EN BIT(6) #define SIRFSOC_SPI_TXFIFO_EMPTY_INT_EN BIT(7) #define SIRFSOC_SPI_RXFIFO_THD_INT_EN BIT(8) #define SIRFSOC_SPI_TXFIFO_THD_INT_EN BIT(9) #define SIRFSOC_SPI_FRM_END_INT_EN BIT(10) /* Interrupt status */ #define SIRFSOC_SPI_RX_DONE BIT(0) #define SIRFSOC_SPI_TX_DONE BIT(1) #define SIRFSOC_SPI_RX_OFLOW BIT(2) #define SIRFSOC_SPI_TX_UFLOW BIT(3) #define SIRFSOC_SPI_RX_IO_DMA BIT(4) #define SIRFSOC_SPI_RX_FIFO_FULL BIT(6) #define SIRFSOC_SPI_TXFIFO_EMPTY BIT(7) #define SIRFSOC_SPI_RXFIFO_THD_REACH BIT(8) #define SIRFSOC_SPI_TXFIFO_THD_REACH BIT(9) #define SIRFSOC_SPI_FRM_END BIT(10) /* TX RX enable */ #define SIRFSOC_SPI_RX_EN BIT(0) #define SIRFSOC_SPI_TX_EN BIT(1) #define SIRFSOC_SPI_CMD_TX_EN BIT(2) #define SIRFSOC_SPI_IO_MODE_SEL BIT(0) #define SIRFSOC_SPI_RX_DMA_FLUSH BIT(2) /* FIFO OPs */ #define SIRFSOC_SPI_FIFO_RESET BIT(0) #define SIRFSOC_SPI_FIFO_START BIT(1) /* FIFO CTRL */ #define SIRFSOC_SPI_FIFO_WIDTH_BYTE (0 << 0) #define SIRFSOC_SPI_FIFO_WIDTH_WORD (1 << 0) #define SIRFSOC_SPI_FIFO_WIDTH_DWORD (2 << 0) /* USP related */ #define SIRFSOC_USP_SYNC_MODE BIT(0) #define SIRFSOC_USP_SLV_MODE BIT(1) #define SIRFSOC_USP_LSB BIT(4) #define SIRFSOC_USP_EN BIT(5) #define SIRFSOC_USP_RXD_FALLING_EDGE BIT(6) #define SIRFSOC_USP_TXD_FALLING_EDGE BIT(7) #define SIRFSOC_USP_CS_HIGH_VALID BIT(9) #define SIRFSOC_USP_SCLK_IDLE_STAT BIT(11) #define SIRFSOC_USP_TFS_IO_MODE BIT(14) #define SIRFSOC_USP_TFS_IO_INPUT BIT(19) #define SIRFSOC_USP_RXD_DELAY_LEN_MASK 0xFF #define SIRFSOC_USP_TXD_DELAY_LEN_MASK 0xFF #define SIRFSOC_USP_RXD_DELAY_OFFSET 0 #define SIRFSOC_USP_TXD_DELAY_OFFSET 8 #define SIRFSOC_USP_RXD_DELAY_LEN 1 #define SIRFSOC_USP_TXD_DELAY_LEN 1 #define SIRFSOC_USP_CLK_DIVISOR_OFFSET 21 #define SIRFSOC_USP_CLK_DIVISOR_MASK 0x3FF #define SIRFSOC_USP_CLK_10_11_MASK 0x3 #define SIRFSOC_USP_CLK_10_11_OFFSET 30 #define SIRFSOC_USP_CLK_12_15_MASK 0xF #define SIRFSOC_USP_CLK_12_15_OFFSET 24 #define SIRFSOC_USP_TX_DATA_OFFSET 0 #define SIRFSOC_USP_TX_SYNC_OFFSET 8 #define SIRFSOC_USP_TX_FRAME_OFFSET 16 #define SIRFSOC_USP_TX_SHIFTER_OFFSET 24 #define SIRFSOC_USP_TX_DATA_MASK 0xFF #define SIRFSOC_USP_TX_SYNC_MASK 0xFF #define SIRFSOC_USP_TX_FRAME_MASK 0xFF #define SIRFSOC_USP_TX_SHIFTER_MASK 0x1F #define SIRFSOC_USP_RX_DATA_OFFSET 0 #define SIRFSOC_USP_RX_FRAME_OFFSET 8 #define SIRFSOC_USP_RX_SHIFTER_OFFSET 16 #define SIRFSOC_USP_RX_DATA_MASK 0xFF #define SIRFSOC_USP_RX_FRAME_MASK 0xFF #define SIRFSOC_USP_RX_SHIFTER_MASK 0x1F #define SIRFSOC_USP_CS_HIGH_VALUE BIT(1) #define SIRFSOC_SPI_FIFO_SC_OFFSET 0 #define SIRFSOC_SPI_FIFO_LC_OFFSET 10 #define SIRFSOC_SPI_FIFO_HC_OFFSET 20 #define SIRFSOC_SPI_FIFO_FULL_MASK(s) (1 << ((s)->fifo_full_offset)) #define SIRFSOC_SPI_FIFO_EMPTY_MASK(s) (1 << ((s)->fifo_full_offset + 1)) #define SIRFSOC_SPI_FIFO_THD_MASK(s) ((s)->fifo_size - 1) #define SIRFSOC_SPI_FIFO_THD_OFFSET 2 #define SIRFSOC_SPI_FIFO_LEVEL_CHK_MASK(s, val) \ ((val) & (s)->fifo_level_chk_mask) enum sirf_spi_type { SIRF_REAL_SPI, SIRF_USP_SPI_P2, SIRF_USP_SPI_A7, }; /* * only if the rx/tx buffer and transfer size are 4-bytes aligned, we use dma * due to the limitation of dma controller */ #define ALIGNED(x) (!((u32)x & 0x3)) #define IS_DMA_VALID(x) (x && ALIGNED(x->tx_buf) && ALIGNED(x->rx_buf) && \ ALIGNED(x->len) && (x->len < 2 * PAGE_SIZE)) #define SIRFSOC_MAX_CMD_BYTES 4 #define SIRFSOC_SPI_DEFAULT_FRQ 1000000 struct sirf_spi_register { /*SPI and USP-SPI common*/ u32 tx_rx_en; u32 int_en; u32 int_st; u32 tx_dma_io_ctrl; u32 tx_dma_io_len; u32 txfifo_ctrl; u32 txfifo_level_chk; u32 txfifo_op; u32 txfifo_st; u32 txfifo_data; u32 rx_dma_io_ctrl; u32 rx_dma_io_len; u32 rxfifo_ctrl; u32 rxfifo_level_chk; u32 rxfifo_op; u32 rxfifo_st; u32 rxfifo_data; /*SPI self*/ u32 spi_ctrl; u32 spi_cmd; u32 spi_dummy_delay_ctrl; /*USP-SPI self*/ u32 usp_mode1; u32 usp_mode2; u32 usp_tx_frame_ctrl; u32 usp_rx_frame_ctrl; u32 usp_pin_io_data; u32 usp_risc_dsp_mode; u32 usp_async_param_reg; u32 usp_irda_x_mode_div; u32 usp_sm_cfg; u32 usp_int_en_clr; }; static const struct sirf_spi_register real_spi_register = { .tx_rx_en = 0x8, .int_en = 0xc, .int_st = 0x10, .tx_dma_io_ctrl = 0x100, .tx_dma_io_len = 0x104, .txfifo_ctrl = 0x108, .txfifo_level_chk = 0x10c, .txfifo_op = 0x110, .txfifo_st = 0x114, .txfifo_data = 0x118, .rx_dma_io_ctrl = 0x120, .rx_dma_io_len = 0x124, .rxfifo_ctrl = 0x128, .rxfifo_level_chk = 0x12c, .rxfifo_op = 0x130, .rxfifo_st = 0x134, .rxfifo_data = 0x138, .spi_ctrl = 0x0, .spi_cmd = 0x4, .spi_dummy_delay_ctrl = 0x144, }; static const struct sirf_spi_register usp_spi_register = { .tx_rx_en = 0x10, .int_en = 0x14, .int_st = 0x18, .tx_dma_io_ctrl = 0x100, .tx_dma_io_len = 0x104, .txfifo_ctrl = 0x108, .txfifo_level_chk = 0x10c, .txfifo_op = 0x110, .txfifo_st = 0x114, .txfifo_data = 0x118, .rx_dma_io_ctrl = 0x120, .rx_dma_io_len = 0x124, .rxfifo_ctrl = 0x128, .rxfifo_level_chk = 0x12c, .rxfifo_op = 0x130, .rxfifo_st = 0x134, .rxfifo_data = 0x138, .usp_mode1 = 0x0, .usp_mode2 = 0x4, .usp_tx_frame_ctrl = 0x8, .usp_rx_frame_ctrl = 0xc, .usp_pin_io_data = 0x1c, .usp_risc_dsp_mode = 0x20, .usp_async_param_reg = 0x24, .usp_irda_x_mode_div = 0x28, .usp_sm_cfg = 0x2c, .usp_int_en_clr = 0x140, }; struct sirfsoc_spi { struct spi_bitbang bitbang; struct completion rx_done; struct completion tx_done; void __iomem *base; u32 ctrl_freq; /* SPI controller clock speed */ struct clk *clk; /* rx & tx bufs from the spi_transfer */ const void *tx; void *rx; /* place received word into rx buffer */ void (*rx_word) (struct sirfsoc_spi *); /* get word from tx buffer for sending */ void (*tx_word) (struct sirfsoc_spi *); /* number of words left to be tranmitted/received */ unsigned int left_tx_word; unsigned int left_rx_word; /* rx & tx DMA channels */ struct dma_chan *rx_chan; struct dma_chan *tx_chan; dma_addr_t src_start; dma_addr_t dst_start; int word_width; /* in bytes */ /* * if tx size is not more than 4 and rx size is NULL, use * command model */ bool tx_by_cmd; bool hw_cs; enum sirf_spi_type type; const struct sirf_spi_register *regs; unsigned int fifo_size; /* fifo empty offset is (fifo full offset + 1)*/ unsigned int fifo_full_offset; /* fifo_level_chk_mask is (fifo_size/4 - 1) */ unsigned int fifo_level_chk_mask; unsigned int dat_max_frm_len; }; struct sirf_spi_comp_data { const struct sirf_spi_register *regs; enum sirf_spi_type type; unsigned int dat_max_frm_len; unsigned int fifo_size; void (*hwinit)(struct sirfsoc_spi *sspi); }; static void sirfsoc_usp_hwinit(struct sirfsoc_spi *sspi) { /* reset USP and let USP can operate */ writel(readl(sspi->base + sspi->regs->usp_mode1) & ~SIRFSOC_USP_EN, sspi->base + sspi->regs->usp_mode1); writel(readl(sspi->base + sspi->regs->usp_mode1) | SIRFSOC_USP_EN, sspi->base + sspi->regs->usp_mode1); } static void spi_sirfsoc_rx_word_u8(struct sirfsoc_spi *sspi) { u32 data; u8 *rx = sspi->rx; data = readl(sspi->base + sspi->regs->rxfifo_data); if (rx) { *rx++ = (u8) data; sspi->rx = rx; } sspi->left_rx_word--; } static void spi_sirfsoc_tx_word_u8(struct sirfsoc_spi *sspi) { u32 data = 0; const u8 *tx = sspi->tx; if (tx) { data = *tx++; sspi->tx = tx; } writel(data, sspi->base + sspi->regs->txfifo_data); sspi->left_tx_word--; } static void spi_sirfsoc_rx_word_u16(struct sirfsoc_spi *sspi) { u32 data; u16 *rx = sspi->rx; data = readl(sspi->base + sspi->regs->rxfifo_data); if (rx) { *rx++ = (u16) data; sspi->rx = rx; } sspi->left_rx_word--; } static void spi_sirfsoc_tx_word_u16(struct sirfsoc_spi *sspi) { u32 data = 0; const u16 *tx = sspi->tx; if (tx) { data = *tx++; sspi->tx = tx; } writel(data, sspi->base + sspi->regs->txfifo_data); sspi->left_tx_word--; } static void spi_sirfsoc_rx_word_u32(struct sirfsoc_spi *sspi) { u32 data; u32 *rx = sspi->rx; data = readl(sspi->base + sspi->regs->rxfifo_data); if (rx) { *rx++ = (u32) data; sspi->rx = rx; } sspi->left_rx_word--; } static void spi_sirfsoc_tx_word_u32(struct sirfsoc_spi *sspi) { u32 data = 0; const u32 *tx = sspi->tx; if (tx) { data = *tx++; sspi->tx = tx; } writel(data, sspi->base + sspi->regs->txfifo_data); sspi->left_tx_word--; } static irqreturn_t spi_sirfsoc_irq(int irq, void *dev_id) { struct sirfsoc_spi *sspi = dev_id; u32 spi_stat; spi_stat = readl(sspi->base + sspi->regs->int_st); if (sspi->tx_by_cmd && sspi->type == SIRF_REAL_SPI && (spi_stat & SIRFSOC_SPI_FRM_END)) { complete(&sspi->tx_done); writel(0x0, sspi->base + sspi->regs->int_en); writel(readl(sspi->base + sspi->regs->int_st), sspi->base + sspi->regs->int_st); return IRQ_HANDLED; } /* Error Conditions */ if (spi_stat & SIRFSOC_SPI_RX_OFLOW || spi_stat & SIRFSOC_SPI_TX_UFLOW) { complete(&sspi->tx_done); complete(&sspi->rx_done); switch (sspi->type) { case SIRF_REAL_SPI: case SIRF_USP_SPI_P2: writel(0x0, sspi->base + sspi->regs->int_en); break; case SIRF_USP_SPI_A7: writel(~0UL, sspi->base + sspi->regs->usp_int_en_clr); break; } writel(readl(sspi->base + sspi->regs->int_st), sspi->base + sspi->regs->int_st); return IRQ_HANDLED; } if (spi_stat & SIRFSOC_SPI_TXFIFO_EMPTY) complete(&sspi->tx_done); while (!(readl(sspi->base + sspi->regs->int_st) & SIRFSOC_SPI_RX_IO_DMA)) cpu_relax(); complete(&sspi->rx_done); switch (sspi->type) { case SIRF_REAL_SPI: case SIRF_USP_SPI_P2: writel(0x0, sspi->base + sspi->regs->int_en); break; case SIRF_USP_SPI_A7: writel(~0UL, sspi->base + sspi->regs->usp_int_en_clr); break; } writel(readl(sspi->base + sspi->regs->int_st), sspi->base + sspi->regs->int_st); return IRQ_HANDLED; } static void spi_sirfsoc_dma_fini_callback(void *data) { struct completion *dma_complete = data; complete(dma_complete); } static void spi_sirfsoc_cmd_transfer(struct spi_device *spi, struct spi_transfer *t) { struct sirfsoc_spi *sspi; int timeout = t->len * 10; u32 cmd; sspi = spi_master_get_devdata(spi->master); writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + sspi->regs->txfifo_op); writel(SIRFSOC_SPI_FIFO_START, sspi->base + sspi->regs->txfifo_op); memcpy(&cmd, sspi->tx, t->len); if (sspi->word_width == 1 && !(spi->mode & SPI_LSB_FIRST)) cmd = cpu_to_be32(cmd) >> ((SIRFSOC_MAX_CMD_BYTES - t->len) * 8); if (sspi->word_width == 2 && t->len == 4 && (!(spi->mode & SPI_LSB_FIRST))) cmd = ((cmd & 0xffff) << 16) | (cmd >> 16); writel(cmd, sspi->base + sspi->regs->spi_cmd); writel(SIRFSOC_SPI_FRM_END_INT_EN, sspi->base + sspi->regs->int_en); writel(SIRFSOC_SPI_CMD_TX_EN, sspi->base + sspi->regs->tx_rx_en); if (wait_for_completion_timeout(&sspi->tx_done, timeout) == 0) { dev_err(&spi->dev, "cmd transfer timeout\n"); return; } sspi->left_rx_word -= t->len; } static void spi_sirfsoc_dma_transfer(struct spi_device *spi, struct spi_transfer *t) { struct sirfsoc_spi *sspi; struct dma_async_tx_descriptor *rx_desc, *tx_desc; int timeout = t->len * 10; sspi = spi_master_get_devdata(spi->master); writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + sspi->regs->rxfifo_op); writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + sspi->regs->txfifo_op); switch (sspi->type) { case SIRF_REAL_SPI: writel(SIRFSOC_SPI_FIFO_START, sspi->base + sspi->regs->rxfifo_op); writel(SIRFSOC_SPI_FIFO_START, sspi->base + sspi->regs->txfifo_op); writel(0, sspi->base + sspi->regs->int_en); break; case SIRF_USP_SPI_P2: writel(0x0, sspi->base + sspi->regs->rxfifo_op); writel(0x0, sspi->base + sspi->regs->txfifo_op); writel(0, sspi->base + sspi->regs->int_en); break; case SIRF_USP_SPI_A7: writel(0x0, sspi->base + sspi->regs->rxfifo_op); writel(0x0, sspi->base + sspi->regs->txfifo_op); writel(~0UL, sspi->base + sspi->regs->usp_int_en_clr); break; } writel(readl(sspi->base + sspi->regs->int_st), sspi->base + sspi->regs->int_st); if (sspi->left_tx_word < sspi->dat_max_frm_len) { switch (sspi->type) { case SIRF_REAL_SPI: writel(readl(sspi->base + sspi->regs->spi_ctrl) | SIRFSOC_SPI_ENA_AUTO_CLR | SIRFSOC_SPI_MUL_DAT_MODE, sspi->base + sspi->regs->spi_ctrl); writel(sspi->left_tx_word - 1, sspi->base + sspi->regs->tx_dma_io_len); writel(sspi->left_tx_word - 1, sspi->base + sspi->regs->rx_dma_io_len); break; case SIRF_USP_SPI_P2: case SIRF_USP_SPI_A7: /*USP simulate SPI, tx/rx_dma_io_len indicates bytes*/ writel(sspi->left_tx_word * sspi->word_width, sspi->base + sspi->regs->tx_dma_io_len); writel(sspi->left_tx_word * sspi->word_width, sspi->base + sspi->regs->rx_dma_io_len); break; } } else { if (sspi->type == SIRF_REAL_SPI) writel(readl(sspi->base + sspi->regs->spi_ctrl), sspi->base + sspi->regs->spi_ctrl); writel(0, sspi->base + sspi->regs->tx_dma_io_len); writel(0, sspi->base + sspi->regs->rx_dma_io_len); } sspi->dst_start = dma_map_single(&spi->dev, sspi->rx, t->len, (t->tx_buf != t->rx_buf) ? DMA_FROM_DEVICE : DMA_BIDIRECTIONAL); rx_desc = dmaengine_prep_slave_single(sspi->rx_chan, sspi->dst_start, t->len, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); rx_desc->callback = spi_sirfsoc_dma_fini_callback; rx_desc->callback_param = &sspi->rx_done; sspi->src_start = dma_map_single(&spi->dev, (void *)sspi->tx, t->len, (t->tx_buf != t->rx_buf) ? DMA_TO_DEVICE : DMA_BIDIRECTIONAL); tx_desc = dmaengine_prep_slave_single(sspi->tx_chan, sspi->src_start, t->len, DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); tx_desc->callback = spi_sirfsoc_dma_fini_callback; tx_desc->callback_param = &sspi->tx_done; dmaengine_submit(tx_desc); dmaengine_submit(rx_desc); dma_async_issue_pending(sspi->tx_chan); dma_async_issue_pending(sspi->rx_chan); writel(SIRFSOC_SPI_RX_EN | SIRFSOC_SPI_TX_EN, sspi->base + sspi->regs->tx_rx_en); if (sspi->type == SIRF_USP_SPI_P2 || sspi->type == SIRF_USP_SPI_A7) { writel(SIRFSOC_SPI_FIFO_START, sspi->base + sspi->regs->rxfifo_op); writel(SIRFSOC_SPI_FIFO_START, sspi->base + sspi->regs->txfifo_op); } if (wait_for_completion_timeout(&sspi->rx_done, timeout) == 0) { dev_err(&spi->dev, "transfer timeout\n"); dmaengine_terminate_all(sspi->rx_chan); } else sspi->left_rx_word = 0; /* * we only wait tx-done event if transferring by DMA. for PIO, * we get rx data by writing tx data, so if rx is done, tx has * done earlier */ if (wait_for_completion_timeout(&sspi->tx_done, timeout) == 0) { dev_err(&spi->dev, "transfer timeout\n"); if (sspi->type == SIRF_USP_SPI_P2 || sspi->type == SIRF_USP_SPI_A7) writel(0, sspi->base + sspi->regs->tx_rx_en); dmaengine_terminate_all(sspi->tx_chan); } dma_unmap_single(&spi->dev, sspi->src_start, t->len, DMA_TO_DEVICE); dma_unmap_single(&spi->dev, sspi->dst_start, t->len, DMA_FROM_DEVICE); /* TX, RX FIFO stop */ writel(0, sspi->base + sspi->regs->rxfifo_op); writel(0, sspi->base + sspi->regs->txfifo_op); if (sspi->left_tx_word >= sspi->dat_max_frm_len) writel(0, sspi->base + sspi->regs->tx_rx_en); if (sspi->type == SIRF_USP_SPI_P2 || sspi->type == SIRF_USP_SPI_A7) writel(0, sspi->base + sspi->regs->tx_rx_en); } static void spi_sirfsoc_pio_transfer(struct spi_device *spi, struct spi_transfer *t) { struct sirfsoc_spi *sspi; int timeout = t->len * 10; unsigned int data_units; sspi = spi_master_get_devdata(spi->master); do { writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + sspi->regs->rxfifo_op); writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + sspi->regs->txfifo_op); switch (sspi->type) { case SIRF_USP_SPI_P2: writel(0x0, sspi->base + sspi->regs->rxfifo_op); writel(0x0, sspi->base + sspi->regs->txfifo_op); writel(0, sspi->base + sspi->regs->int_en); writel(readl(sspi->base + sspi->regs->int_st), sspi->base + sspi->regs->int_st); writel(min((sspi->left_tx_word * sspi->word_width), sspi->fifo_size), sspi->base + sspi->regs->tx_dma_io_len); writel(min((sspi->left_rx_word * sspi->word_width), sspi->fifo_size), sspi->base + sspi->regs->rx_dma_io_len); break; case SIRF_USP_SPI_A7: writel(0x0, sspi->base + sspi->regs->rxfifo_op); writel(0x0, sspi->base + sspi->regs->txfifo_op); writel(~0UL, sspi->base + sspi->regs->usp_int_en_clr); writel(readl(sspi->base + sspi->regs->int_st), sspi->base + sspi->regs->int_st); writel(min((sspi->left_tx_word * sspi->word_width), sspi->fifo_size), sspi->base + sspi->regs->tx_dma_io_len); writel(min((sspi->left_rx_word * sspi->word_width), sspi->fifo_size), sspi->base + sspi->regs->rx_dma_io_len); break; case SIRF_REAL_SPI: writel(SIRFSOC_SPI_FIFO_START, sspi->base + sspi->regs->rxfifo_op); writel(SIRFSOC_SPI_FIFO_START, sspi->base + sspi->regs->txfifo_op); writel(0, sspi->base + sspi->regs->int_en); writel(readl(sspi->base + sspi->regs->int_st), sspi->base + sspi->regs->int_st); writel(readl(sspi->base + sspi->regs->spi_ctrl) | SIRFSOC_SPI_MUL_DAT_MODE | SIRFSOC_SPI_ENA_AUTO_CLR, sspi->base + sspi->regs->spi_ctrl); data_units = sspi->fifo_size / sspi->word_width; writel(min(sspi->left_tx_word, data_units) - 1, sspi->base + sspi->regs->tx_dma_io_len); writel(min(sspi->left_rx_word, data_units) - 1, sspi->base + sspi->regs->rx_dma_io_len); break; } while (!((readl(sspi->base + sspi->regs->txfifo_st) & SIRFSOC_SPI_FIFO_FULL_MASK(sspi))) && sspi->left_tx_word) sspi->tx_word(sspi); writel(SIRFSOC_SPI_TXFIFO_EMPTY_INT_EN | SIRFSOC_SPI_TX_UFLOW_INT_EN | SIRFSOC_SPI_RX_OFLOW_INT_EN | SIRFSOC_SPI_RX_IO_DMA_INT_EN, sspi->base + sspi->regs->int_en); writel(SIRFSOC_SPI_RX_EN | SIRFSOC_SPI_TX_EN, sspi->base + sspi->regs->tx_rx_en); if (sspi->type == SIRF_USP_SPI_P2 || sspi->type == SIRF_USP_SPI_A7) { writel(SIRFSOC_SPI_FIFO_START, sspi->base + sspi->regs->rxfifo_op); writel(SIRFSOC_SPI_FIFO_START, sspi->base + sspi->regs->txfifo_op); } if (!wait_for_completion_timeout(&sspi->tx_done, timeout) || !wait_for_completion_timeout(&sspi->rx_done, timeout)) { dev_err(&spi->dev, "transfer timeout\n"); if (sspi->type == SIRF_USP_SPI_P2 || sspi->type == SIRF_USP_SPI_A7) writel(0, sspi->base + sspi->regs->tx_rx_en); break; } while (!((readl(sspi->base + sspi->regs->rxfifo_st) & SIRFSOC_SPI_FIFO_EMPTY_MASK(sspi))) && sspi->left_rx_word) sspi->rx_word(sspi); if (sspi->type == SIRF_USP_SPI_P2 || sspi->type == SIRF_USP_SPI_A7) writel(0, sspi->base + sspi->regs->tx_rx_en); writel(0, sspi->base + sspi->regs->rxfifo_op); writel(0, sspi->base + sspi->regs->txfifo_op); } while (sspi->left_tx_word != 0 || sspi->left_rx_word != 0); } static int spi_sirfsoc_transfer(struct spi_device *spi, struct spi_transfer *t) { struct sirfsoc_spi *sspi; sspi = spi_master_get_devdata(spi->master); sspi->tx = t->tx_buf; sspi->rx = t->rx_buf; sspi->left_tx_word = sspi->left_rx_word = t->len / sspi->word_width; reinit_completion(&sspi->rx_done); reinit_completion(&sspi->tx_done); /* * in the transfer, if transfer data using command register with rx_buf * null, just fill command data into command register and wait for its * completion. */ if (sspi->type == SIRF_REAL_SPI && sspi->tx_by_cmd) spi_sirfsoc_cmd_transfer(spi, t); else if (IS_DMA_VALID(t)) spi_sirfsoc_dma_transfer(spi, t); else spi_sirfsoc_pio_transfer(spi, t); return t->len - sspi->left_rx_word * sspi->word_width; } static void spi_sirfsoc_chipselect(struct spi_device *spi, int value) { struct sirfsoc_spi *sspi = spi_master_get_devdata(spi->master); if (sspi->hw_cs) { u32 regval; switch (sspi->type) { case SIRF_REAL_SPI: regval = readl(sspi->base + sspi->regs->spi_ctrl); switch (value) { case BITBANG_CS_ACTIVE: if (spi->mode & SPI_CS_HIGH) regval |= SIRFSOC_SPI_CS_IO_OUT; else regval &= ~SIRFSOC_SPI_CS_IO_OUT; break; case BITBANG_CS_INACTIVE: if (spi->mode & SPI_CS_HIGH) regval &= ~SIRFSOC_SPI_CS_IO_OUT; else regval |= SIRFSOC_SPI_CS_IO_OUT; break; } writel(regval, sspi->base + sspi->regs->spi_ctrl); break; case SIRF_USP_SPI_P2: case SIRF_USP_SPI_A7: regval = readl(sspi->base + sspi->regs->usp_pin_io_data); switch (value) { case BITBANG_CS_ACTIVE: if (spi->mode & SPI_CS_HIGH) regval |= SIRFSOC_USP_CS_HIGH_VALUE; else regval &= ~(SIRFSOC_USP_CS_HIGH_VALUE); break; case BITBANG_CS_INACTIVE: if (spi->mode & SPI_CS_HIGH) regval &= ~(SIRFSOC_USP_CS_HIGH_VALUE); else regval |= SIRFSOC_USP_CS_HIGH_VALUE; break; } writel(regval, sspi->base + sspi->regs->usp_pin_io_data); break; } } else { switch (value) { case BITBANG_CS_ACTIVE: gpio_direction_output(spi->cs_gpio, spi->mode & SPI_CS_HIGH ? 1 : 0); break; case BITBANG_CS_INACTIVE: gpio_direction_output(spi->cs_gpio, spi->mode & SPI_CS_HIGH ? 0 : 1); break; } } } static int spi_sirfsoc_config_mode(struct spi_device *spi) { struct sirfsoc_spi *sspi; u32 regval, usp_mode1; sspi = spi_master_get_devdata(spi->master); regval = readl(sspi->base + sspi->regs->spi_ctrl); usp_mode1 = readl(sspi->base + sspi->regs->usp_mode1); if (!(spi->mode & SPI_CS_HIGH)) { regval |= SIRFSOC_SPI_CS_IDLE_STAT; usp_mode1 &= ~SIRFSOC_USP_CS_HIGH_VALID; } else { regval &= ~SIRFSOC_SPI_CS_IDLE_STAT; usp_mode1 |= SIRFSOC_USP_CS_HIGH_VALID; } if (!(spi->mode & SPI_LSB_FIRST)) { regval |= SIRFSOC_SPI_TRAN_MSB; usp_mode1 &= ~SIRFSOC_USP_LSB; } else { regval &= ~SIRFSOC_SPI_TRAN_MSB; usp_mode1 |= SIRFSOC_USP_LSB; } if (spi->mode & SPI_CPOL) { regval |= SIRFSOC_SPI_CLK_IDLE_STAT; usp_mode1 |= SIRFSOC_USP_SCLK_IDLE_STAT; } else { regval &= ~SIRFSOC_SPI_CLK_IDLE_STAT; usp_mode1 &= ~SIRFSOC_USP_SCLK_IDLE_STAT; } /* * Data should be driven at least 1/2 cycle before the fetch edge * to make sure that data gets stable at the fetch edge. */ if (((spi->mode & SPI_CPOL) && (spi->mode & SPI_CPHA)) || (!(spi->mode & SPI_CPOL) && !(spi->mode & SPI_CPHA))) { regval &= ~SIRFSOC_SPI_DRV_POS_EDGE; usp_mode1 |= (SIRFSOC_USP_TXD_FALLING_EDGE | SIRFSOC_USP_RXD_FALLING_EDGE); } else { regval |= SIRFSOC_SPI_DRV_POS_EDGE; usp_mode1 &= ~(SIRFSOC_USP_RXD_FALLING_EDGE | SIRFSOC_USP_TXD_FALLING_EDGE); } writel((SIRFSOC_SPI_FIFO_LEVEL_CHK_MASK(sspi, sspi->fifo_size - 2) << SIRFSOC_SPI_FIFO_SC_OFFSET) | (SIRFSOC_SPI_FIFO_LEVEL_CHK_MASK(sspi, sspi->fifo_size / 2) << SIRFSOC_SPI_FIFO_LC_OFFSET) | (SIRFSOC_SPI_FIFO_LEVEL_CHK_MASK(sspi, 2) << SIRFSOC_SPI_FIFO_HC_OFFSET), sspi->base + sspi->regs->txfifo_level_chk); writel((SIRFSOC_SPI_FIFO_LEVEL_CHK_MASK(sspi, 2) << SIRFSOC_SPI_FIFO_SC_OFFSET) | (SIRFSOC_SPI_FIFO_LEVEL_CHK_MASK(sspi, sspi->fifo_size / 2) << SIRFSOC_SPI_FIFO_LC_OFFSET) | (SIRFSOC_SPI_FIFO_LEVEL_CHK_MASK(sspi, sspi->fifo_size - 2) << SIRFSOC_SPI_FIFO_HC_OFFSET), sspi->base + sspi->regs->rxfifo_level_chk); /* * it should never set to hardware cs mode because in hardware cs mode, * cs signal can't controlled by driver. */ switch (sspi->type) { case SIRF_REAL_SPI: regval |= SIRFSOC_SPI_CS_IO_MODE; writel(regval, sspi->base + sspi->regs->spi_ctrl); break; case SIRF_USP_SPI_P2: case SIRF_USP_SPI_A7: usp_mode1 |= SIRFSOC_USP_SYNC_MODE; usp_mode1 |= SIRFSOC_USP_TFS_IO_MODE; usp_mode1 &= ~SIRFSOC_USP_TFS_IO_INPUT; writel(usp_mode1, sspi->base + sspi->regs->usp_mode1); break; } return 0; } static int spi_sirfsoc_setup_transfer(struct spi_device *spi, struct spi_transfer *t) { struct sirfsoc_spi *sspi; u8 bits_per_word = 0; int hz = 0; u32 regval, txfifo_ctrl, rxfifo_ctrl, tx_frm_ctl, rx_frm_ctl, usp_mode2; sspi = spi_master_get_devdata(spi->master); bits_per_word = (t) ? t->bits_per_word : spi->bits_per_word; hz = t && t->speed_hz ? t->speed_hz : spi->max_speed_hz; usp_mode2 = regval = (sspi->ctrl_freq / (2 * hz)) - 1; if (regval > 0xFFFF || regval < 0) { dev_err(&spi->dev, "Speed %d not supported\n", hz); return -EINVAL; } switch (bits_per_word) { case 8: regval |= SIRFSOC_SPI_TRAN_DAT_FORMAT_8; sspi->rx_word = spi_sirfsoc_rx_word_u8; sspi->tx_word = spi_sirfsoc_tx_word_u8; break; case 12: case 16: regval |= (bits_per_word == 12) ? SIRFSOC_SPI_TRAN_DAT_FORMAT_12 : SIRFSOC_SPI_TRAN_DAT_FORMAT_16; sspi->rx_word = spi_sirfsoc_rx_word_u16; sspi->tx_word = spi_sirfsoc_tx_word_u16; break; case 32: regval |= SIRFSOC_SPI_TRAN_DAT_FORMAT_32; sspi->rx_word = spi_sirfsoc_rx_word_u32; sspi->tx_word = spi_sirfsoc_tx_word_u32; break; default: dev_err(&spi->dev, "bpw %d not supported\n", bits_per_word); return -EINVAL; } sspi->word_width = DIV_ROUND_UP(bits_per_word, 8); txfifo_ctrl = (((sspi->fifo_size / 2) & SIRFSOC_SPI_FIFO_THD_MASK(sspi)) << SIRFSOC_SPI_FIFO_THD_OFFSET) | (sspi->word_width >> 1); rxfifo_ctrl = (((sspi->fifo_size / 2) & SIRFSOC_SPI_FIFO_THD_MASK(sspi)) << SIRFSOC_SPI_FIFO_THD_OFFSET) | (sspi->word_width >> 1); writel(txfifo_ctrl, sspi->base + sspi->regs->txfifo_ctrl); writel(rxfifo_ctrl, sspi->base + sspi->regs->rxfifo_ctrl); if (sspi->type == SIRF_USP_SPI_P2 || sspi->type == SIRF_USP_SPI_A7) { tx_frm_ctl = 0; tx_frm_ctl |= ((bits_per_word - 1) & SIRFSOC_USP_TX_DATA_MASK) << SIRFSOC_USP_TX_DATA_OFFSET; tx_frm_ctl |= ((bits_per_word + 1 + SIRFSOC_USP_TXD_DELAY_LEN - 1) & SIRFSOC_USP_TX_SYNC_MASK) << SIRFSOC_USP_TX_SYNC_OFFSET; tx_frm_ctl |= ((bits_per_word + 1 + SIRFSOC_USP_TXD_DELAY_LEN + 2 - 1) & SIRFSOC_USP_TX_FRAME_MASK) << SIRFSOC_USP_TX_FRAME_OFFSET; tx_frm_ctl |= ((bits_per_word - 1) & SIRFSOC_USP_TX_SHIFTER_MASK) << SIRFSOC_USP_TX_SHIFTER_OFFSET; rx_frm_ctl = 0; rx_frm_ctl |= ((bits_per_word - 1) & SIRFSOC_USP_RX_DATA_MASK) << SIRFSOC_USP_RX_DATA_OFFSET; rx_frm_ctl |= ((bits_per_word + 1 + SIRFSOC_USP_RXD_DELAY_LEN + 2 - 1) & SIRFSOC_USP_RX_FRAME_MASK) << SIRFSOC_USP_RX_FRAME_OFFSET; rx_frm_ctl |= ((bits_per_word - 1) & SIRFSOC_USP_RX_SHIFTER_MASK) << SIRFSOC_USP_RX_SHIFTER_OFFSET; writel(tx_frm_ctl | (((usp_mode2 >> 10) & SIRFSOC_USP_CLK_10_11_MASK) << SIRFSOC_USP_CLK_10_11_OFFSET), sspi->base + sspi->regs->usp_tx_frame_ctrl); writel(rx_frm_ctl | (((usp_mode2 >> 12) & SIRFSOC_USP_CLK_12_15_MASK) << SIRFSOC_USP_CLK_12_15_OFFSET), sspi->base + sspi->regs->usp_rx_frame_ctrl); writel(readl(sspi->base + sspi->regs->usp_mode2) | ((usp_mode2 & SIRFSOC_USP_CLK_DIVISOR_MASK) << SIRFSOC_USP_CLK_DIVISOR_OFFSET) | (SIRFSOC_USP_RXD_DELAY_LEN << SIRFSOC_USP_RXD_DELAY_OFFSET) | (SIRFSOC_USP_TXD_DELAY_LEN << SIRFSOC_USP_TXD_DELAY_OFFSET), sspi->base + sspi->regs->usp_mode2); } if (sspi->type == SIRF_REAL_SPI) writel(regval, sspi->base + sspi->regs->spi_ctrl); spi_sirfsoc_config_mode(spi); if (sspi->type == SIRF_REAL_SPI) { if (t && t->tx_buf && !t->rx_buf && (t->len <= SIRFSOC_MAX_CMD_BYTES)) { sspi->tx_by_cmd = true; writel(readl(sspi->base + sspi->regs->spi_ctrl) | (SIRFSOC_SPI_CMD_BYTE_NUM((t->len - 1)) | SIRFSOC_SPI_CMD_MODE), sspi->base + sspi->regs->spi_ctrl); } else { sspi->tx_by_cmd = false; writel(readl(sspi->base + sspi->regs->spi_ctrl) & ~SIRFSOC_SPI_CMD_MODE, sspi->base + sspi->regs->spi_ctrl); } } if (IS_DMA_VALID(t)) { /* Enable DMA mode for RX, TX */ writel(0, sspi->base + sspi->regs->tx_dma_io_ctrl); writel(SIRFSOC_SPI_RX_DMA_FLUSH, sspi->base + sspi->regs->rx_dma_io_ctrl); } else { /* Enable IO mode for RX, TX */ writel(SIRFSOC_SPI_IO_MODE_SEL, sspi->base + sspi->regs->tx_dma_io_ctrl); writel(SIRFSOC_SPI_IO_MODE_SEL, sspi->base + sspi->regs->rx_dma_io_ctrl); } return 0; } static int spi_sirfsoc_setup(struct spi_device *spi) { struct sirfsoc_spi *sspi; int ret = 0; sspi = spi_master_get_devdata(spi->master); if (spi->cs_gpio == -ENOENT) sspi->hw_cs = true; else { sspi->hw_cs = false; if (!spi_get_ctldata(spi)) { void *cs = kmalloc(sizeof(int), GFP_KERNEL); if (!cs) { ret = -ENOMEM; goto exit; } ret = gpio_is_valid(spi->cs_gpio); if (!ret) { dev_err(&spi->dev, "no valid gpio\n"); ret = -ENOENT; goto exit; } ret = gpio_request(spi->cs_gpio, DRIVER_NAME); if (ret) { dev_err(&spi->dev, "failed to request gpio\n"); goto exit; } spi_set_ctldata(spi, cs); } } spi_sirfsoc_config_mode(spi); spi_sirfsoc_chipselect(spi, BITBANG_CS_INACTIVE); exit: return ret; } static void spi_sirfsoc_cleanup(struct spi_device *spi) { if (spi_get_ctldata(spi)) { gpio_free(spi->cs_gpio); kfree(spi_get_ctldata(spi)); } } static const struct sirf_spi_comp_data sirf_real_spi = { .regs = &real_spi_register, .type = SIRF_REAL_SPI, .dat_max_frm_len = 64 * 1024, .fifo_size = 256, }; static const struct sirf_spi_comp_data sirf_usp_spi_p2 = { .regs = &usp_spi_register, .type = SIRF_USP_SPI_P2, .dat_max_frm_len = 1024 * 1024, .fifo_size = 128, .hwinit = sirfsoc_usp_hwinit, }; static const struct sirf_spi_comp_data sirf_usp_spi_a7 = { .regs = &usp_spi_register, .type = SIRF_USP_SPI_A7, .dat_max_frm_len = 1024 * 1024, .fifo_size = 512, .hwinit = sirfsoc_usp_hwinit, }; static const struct of_device_id spi_sirfsoc_of_match[] = { { .compatible = "sirf,prima2-spi", .data = &sirf_real_spi}, { .compatible = "sirf,prima2-usp-spi", .data = &sirf_usp_spi_p2}, { .compatible = "sirf,atlas7-usp-spi", .data = &sirf_usp_spi_a7}, {} }; MODULE_DEVICE_TABLE(of, spi_sirfsoc_of_match); static int spi_sirfsoc_probe(struct platform_device *pdev) { struct sirfsoc_spi *sspi; struct spi_master *master; struct resource *mem_res; struct sirf_spi_comp_data *spi_comp_data; int irq; int ret; const struct of_device_id *match; ret = device_reset(&pdev->dev); if (ret) { dev_err(&pdev->dev, "SPI reset failed!\n"); return ret; } master = spi_alloc_master(&pdev->dev, sizeof(*sspi)); if (!master) { dev_err(&pdev->dev, "Unable to allocate SPI master\n"); return -ENOMEM; } match = of_match_node(spi_sirfsoc_of_match, pdev->dev.of_node); platform_set_drvdata(pdev, master); sspi = spi_master_get_devdata(master); sspi->fifo_full_offset = ilog2(sspi->fifo_size); spi_comp_data = (struct sirf_spi_comp_data *)match->data; sspi->regs = spi_comp_data->regs; sspi->type = spi_comp_data->type; sspi->fifo_level_chk_mask = (sspi->fifo_size / 4) - 1; sspi->dat_max_frm_len = spi_comp_data->dat_max_frm_len; sspi->fifo_size = spi_comp_data->fifo_size; mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0); sspi->base = devm_ioremap_resource(&pdev->dev, mem_res); if (IS_ERR(sspi->base)) { ret = PTR_ERR(sspi->base); goto free_master; } irq = platform_get_irq(pdev, 0); if (irq < 0) { ret = -ENXIO; goto free_master; } ret = devm_request_irq(&pdev->dev, irq, spi_sirfsoc_irq, 0, DRIVER_NAME, sspi); if (ret) goto free_master; sspi->bitbang.master = master; sspi->bitbang.chipselect = spi_sirfsoc_chipselect; sspi->bitbang.setup_transfer = spi_sirfsoc_setup_transfer; sspi->bitbang.txrx_bufs = spi_sirfsoc_transfer; sspi->bitbang.master->setup = spi_sirfsoc_setup; sspi->bitbang.master->cleanup = spi_sirfsoc_cleanup; master->bus_num = pdev->id; master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST | SPI_CS_HIGH; master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(12) | SPI_BPW_MASK(16) | SPI_BPW_MASK(32); master->max_speed_hz = SIRFSOC_SPI_DEFAULT_FRQ; master->flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX; sspi->bitbang.master->dev.of_node = pdev->dev.of_node; /* request DMA channels */ sspi->rx_chan = dma_request_slave_channel(&pdev->dev, "rx"); if (!sspi->rx_chan) { dev_err(&pdev->dev, "can not allocate rx dma channel\n"); ret = -ENODEV; goto free_master; } sspi->tx_chan = dma_request_slave_channel(&pdev->dev, "tx"); if (!sspi->tx_chan) { dev_err(&pdev->dev, "can not allocate tx dma channel\n"); ret = -ENODEV; goto free_rx_dma; } sspi->clk = clk_get(&pdev->dev, NULL); if (IS_ERR(sspi->clk)) { ret = PTR_ERR(sspi->clk); goto free_tx_dma; } clk_prepare_enable(sspi->clk); if (spi_comp_data->hwinit) spi_comp_data->hwinit(sspi); sspi->ctrl_freq = clk_get_rate(sspi->clk); init_completion(&sspi->rx_done); init_completion(&sspi->tx_done); ret = spi_bitbang_start(&sspi->bitbang); if (ret) goto free_clk; dev_info(&pdev->dev, "registerred, bus number = %d\n", master->bus_num); return 0; free_clk: clk_disable_unprepare(sspi->clk); clk_put(sspi->clk); free_tx_dma: dma_release_channel(sspi->tx_chan); free_rx_dma: dma_release_channel(sspi->rx_chan); free_master: spi_master_put(master); return ret; } static int spi_sirfsoc_remove(struct platform_device *pdev) { struct spi_master *master; struct sirfsoc_spi *sspi; master = platform_get_drvdata(pdev); sspi = spi_master_get_devdata(master); spi_bitbang_stop(&sspi->bitbang); clk_disable_unprepare(sspi->clk); clk_put(sspi->clk); dma_release_channel(sspi->rx_chan); dma_release_channel(sspi->tx_chan); spi_master_put(master); return 0; } #ifdef CONFIG_PM_SLEEP static int spi_sirfsoc_suspend(struct device *dev) { struct spi_master *master = dev_get_drvdata(dev); struct sirfsoc_spi *sspi = spi_master_get_devdata(master); int ret; ret = spi_master_suspend(master); if (ret) return ret; clk_disable(sspi->clk); return 0; } static int spi_sirfsoc_resume(struct device *dev) { struct spi_master *master = dev_get_drvdata(dev); struct sirfsoc_spi *sspi = spi_master_get_devdata(master); clk_enable(sspi->clk); writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + sspi->regs->txfifo_op); writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + sspi->regs->rxfifo_op); writel(SIRFSOC_SPI_FIFO_START, sspi->base + sspi->regs->txfifo_op); writel(SIRFSOC_SPI_FIFO_START, sspi->base + sspi->regs->rxfifo_op); return 0; } #endif static SIMPLE_DEV_PM_OPS(spi_sirfsoc_pm_ops, spi_sirfsoc_suspend, spi_sirfsoc_resume); static struct platform_driver spi_sirfsoc_driver = { .driver = { .name = DRIVER_NAME, .pm = &spi_sirfsoc_pm_ops, .of_match_table = spi_sirfsoc_of_match, }, .probe = spi_sirfsoc_probe, .remove = spi_sirfsoc_remove, }; module_platform_driver(spi_sirfsoc_driver); MODULE_DESCRIPTION("SiRF SoC SPI master driver"); MODULE_AUTHOR("Zhiwu Song <Zhiwu.Song@csr.com>"); MODULE_AUTHOR("Barry Song <Baohua.Song@csr.com>"); MODULE_AUTHOR("Qipan Li <Qipan.Li@csr.com>"); MODULE_LICENSE("GPL v2");