/* * Sonics Silicon Backplane * Subsystem core * * Copyright 2005, Broadcom Corporation * Copyright 2006, 2007, Michael Buesch * * Licensed under the GNU/GPL. See COPYING for details. */ #include "ssb_private.h" #include #include #include #include #include #include #include #include #include #include #include #include #include MODULE_DESCRIPTION("Sonics Silicon Backplane driver"); MODULE_LICENSE("GPL"); /* Temporary list of yet-to-be-attached buses */ static LIST_HEAD(attach_queue); /* List if running buses */ static LIST_HEAD(buses); /* Software ID counter */ static unsigned int next_busnumber; /* buses_mutes locks the two buslists and the next_busnumber. * Don't lock this directly, but use ssb_buses_[un]lock() below. */ static DEFINE_MUTEX(buses_mutex); /* There are differences in the codeflow, if the bus is * initialized from early boot, as various needed services * are not available early. This is a mechanism to delay * these initializations to after early boot has finished. * It's also used to avoid mutex locking, as that's not * available and needed early. */ static bool ssb_is_early_boot = 1; static void ssb_buses_lock(void); static void ssb_buses_unlock(void); #ifdef CONFIG_SSB_PCIHOST struct ssb_bus *ssb_pci_dev_to_bus(struct pci_dev *pdev) { struct ssb_bus *bus; ssb_buses_lock(); list_for_each_entry(bus, &buses, list) { if (bus->bustype == SSB_BUSTYPE_PCI && bus->host_pci == pdev) goto found; } bus = NULL; found: ssb_buses_unlock(); return bus; } #endif /* CONFIG_SSB_PCIHOST */ #ifdef CONFIG_SSB_PCMCIAHOST struct ssb_bus *ssb_pcmcia_dev_to_bus(struct pcmcia_device *pdev) { struct ssb_bus *bus; ssb_buses_lock(); list_for_each_entry(bus, &buses, list) { if (bus->bustype == SSB_BUSTYPE_PCMCIA && bus->host_pcmcia == pdev) goto found; } bus = NULL; found: ssb_buses_unlock(); return bus; } #endif /* CONFIG_SSB_PCMCIAHOST */ #ifdef CONFIG_SSB_SDIOHOST struct ssb_bus *ssb_sdio_func_to_bus(struct sdio_func *func) { struct ssb_bus *bus; ssb_buses_lock(); list_for_each_entry(bus, &buses, list) { if (bus->bustype == SSB_BUSTYPE_SDIO && bus->host_sdio == func) goto found; } bus = NULL; found: ssb_buses_unlock(); return bus; } #endif /* CONFIG_SSB_SDIOHOST */ int ssb_for_each_bus_call(unsigned long data, int (*func)(struct ssb_bus *bus, unsigned long data)) { struct ssb_bus *bus; int res; ssb_buses_lock(); list_for_each_entry(bus, &buses, list) { res = func(bus, data); if (res >= 0) { ssb_buses_unlock(); return res; } } ssb_buses_unlock(); return -ENODEV; } static struct ssb_device *ssb_device_get(struct ssb_device *dev) { if (dev) get_device(dev->dev); return dev; } static void ssb_device_put(struct ssb_device *dev) { if (dev) put_device(dev->dev); } static int ssb_device_resume(struct device *dev) { struct ssb_device *ssb_dev = dev_to_ssb_dev(dev); struct ssb_driver *ssb_drv; int err = 0; if (dev->driver) { ssb_drv = drv_to_ssb_drv(dev->driver); if (ssb_drv && ssb_drv->resume) err = ssb_drv->resume(ssb_dev); if (err) goto out; } out: return err; } static int ssb_device_suspend(struct device *dev, pm_message_t state) { struct ssb_device *ssb_dev = dev_to_ssb_dev(dev); struct ssb_driver *ssb_drv; int err = 0; if (dev->driver) { ssb_drv = drv_to_ssb_drv(dev->driver); if (ssb_drv && ssb_drv->suspend) err = ssb_drv->suspend(ssb_dev, state); if (err) goto out; } out: return err; } int ssb_bus_resume(struct ssb_bus *bus) { int err; /* Reset HW state information in memory, so that HW is * completely reinitialized. */ bus->mapped_device = NULL; #ifdef CONFIG_SSB_DRIVER_PCICORE bus->pcicore.setup_done = 0; #endif err = ssb_bus_powerup(bus, 0); if (err) return err; err = ssb_pcmcia_hardware_setup(bus); if (err) { ssb_bus_may_powerdown(bus); return err; } ssb_chipco_resume(&bus->chipco); ssb_bus_may_powerdown(bus); return 0; } EXPORT_SYMBOL(ssb_bus_resume); int ssb_bus_suspend(struct ssb_bus *bus) { ssb_chipco_suspend(&bus->chipco); ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 0); return 0; } EXPORT_SYMBOL(ssb_bus_suspend); #ifdef CONFIG_SSB_SPROM /** ssb_devices_freeze - Freeze all devices on the bus. * * After freezing no device driver will be handling a device * on this bus anymore. ssb_devices_thaw() must be called after * a successful freeze to reactivate the devices. * * @bus: The bus. * @ctx: Context structure. Pass this to ssb_devices_thaw(). */ int ssb_devices_freeze(struct ssb_bus *bus, struct ssb_freeze_context *ctx) { struct ssb_device *sdev; struct ssb_driver *sdrv; unsigned int i; memset(ctx, 0, sizeof(*ctx)); ctx->bus = bus; SSB_WARN_ON(bus->nr_devices > ARRAY_SIZE(ctx->device_frozen)); for (i = 0; i < bus->nr_devices; i++) { sdev = ssb_device_get(&bus->devices[i]); if (!sdev->dev || !sdev->dev->driver || !device_is_registered(sdev->dev)) { ssb_device_put(sdev); continue; } sdrv = drv_to_ssb_drv(sdev->dev->driver); if (SSB_WARN_ON(!sdrv->remove)) continue; sdrv->remove(sdev); ctx->device_frozen[i] = 1; } return 0; } /** ssb_devices_thaw - Unfreeze all devices on the bus. * * This will re-attach the device drivers and re-init the devices. * * @ctx: The context structure from ssb_devices_freeze() */ int ssb_devices_thaw(struct ssb_freeze_context *ctx) { struct ssb_bus *bus = ctx->bus; struct ssb_device *sdev; struct ssb_driver *sdrv; unsigned int i; int err, result = 0; for (i = 0; i < bus->nr_devices; i++) { if (!ctx->device_frozen[i]) continue; sdev = &bus->devices[i]; if (SSB_WARN_ON(!sdev->dev || !sdev->dev->driver)) continue; sdrv = drv_to_ssb_drv(sdev->dev->driver); if (SSB_WARN_ON(!sdrv || !sdrv->probe)) continue; err = sdrv->probe(sdev, &sdev->id); if (err) { ssb_printk(KERN_ERR PFX "Failed to thaw device %s\n", dev_name(sdev->dev)); result = err; } ssb_device_put(sdev); } return result; } #endif /* CONFIG_SSB_SPROM */ static void ssb_device_shutdown(struct device *dev) { struct ssb_device *ssb_dev = dev_to_ssb_dev(dev); struct ssb_driver *ssb_drv; if (!dev->driver) return; ssb_drv = drv_to_ssb_drv(dev->driver); if (ssb_drv && ssb_drv->shutdown) ssb_drv->shutdown(ssb_dev); } static int ssb_device_remove(struct device *dev) { struct ssb_device *ssb_dev = dev_to_ssb_dev(dev); struct ssb_driver *ssb_drv = drv_to_ssb_drv(dev->driver); if (ssb_drv && ssb_drv->remove) ssb_drv->remove(ssb_dev); ssb_device_put(ssb_dev); return 0; } static int ssb_device_probe(struct device *dev) { struct ssb_device *ssb_dev = dev_to_ssb_dev(dev); struct ssb_driver *ssb_drv = drv_to_ssb_drv(dev->driver); int err = 0; ssb_device_get(ssb_dev); if (ssb_drv && ssb_drv->probe) err = ssb_drv->probe(ssb_dev, &ssb_dev->id); if (err) ssb_device_put(ssb_dev); return err; } static int ssb_match_devid(const struct ssb_device_id *tabid, const struct ssb_device_id *devid) { if ((tabid->vendor != devid->vendor) && tabid->vendor != SSB_ANY_VENDOR) return 0; if ((tabid->coreid != devid->coreid) && tabid->coreid != SSB_ANY_ID) return 0; if ((tabid->revision != devid->revision) && tabid->revision != SSB_ANY_REV) return 0; return 1; } static int ssb_bus_match(struct device *dev, struct device_driver *drv) { struct ssb_device *ssb_dev = dev_to_ssb_dev(dev); struct ssb_driver *ssb_drv = drv_to_ssb_drv(drv); const struct ssb_device_id *id; for (id = ssb_drv->id_table; id->vendor || id->coreid || id->revision; id++) { if (ssb_match_devid(id, &ssb_dev->id)) return 1; /* found */ } return 0; } static int ssb_device_uevent(struct device *dev, struct kobj_uevent_env *env) { struct ssb_device *ssb_dev = dev_to_ssb_dev(dev); if (!dev) return -ENODEV; return add_uevent_var(env, "MODALIAS=ssb:v%04Xid%04Xrev%02X", ssb_dev->id.vendor, ssb_dev->id.coreid, ssb_dev->id.revision); } #define ssb_config_attr(attrib, field, format_string) \ static ssize_t \ attrib##_show(struct device *dev, struct device_attribute *attr, char *buf) \ { \ return sprintf(buf, format_string, dev_to_ssb_dev(dev)->field); \ } ssb_config_attr(core_num, core_index, "%u\n") ssb_config_attr(coreid, id.coreid, "0x%04x\n") ssb_config_attr(vendor, id.vendor, "0x%04x\n") ssb_config_attr(revision, id.revision, "%u\n") ssb_config_attr(irq, irq, "%u\n") static ssize_t name_show(struct device *dev, struct device_attribute *attr, char *buf) { return sprintf(buf, "%s\n", ssb_core_name(dev_to_ssb_dev(dev)->id.coreid)); } static struct device_attribute ssb_device_attrs[] = { __ATTR_RO(name), __ATTR_RO(core_num), __ATTR_RO(coreid), __ATTR_RO(vendor), __ATTR_RO(revision), __ATTR_RO(irq), __ATTR_NULL, }; static struct bus_type ssb_bustype = { .name = "ssb", .match = ssb_bus_match, .probe = ssb_device_probe, .remove = ssb_device_remove, .shutdown = ssb_device_shutdown, .suspend = ssb_device_suspend, .resume = ssb_device_resume, .uevent = ssb_device_uevent, .dev_attrs = ssb_device_attrs, }; static void ssb_buses_lock(void) { /* See the comment at the ssb_is_early_boot definition */ if (!ssb_is_early_boot) mutex_lock(&buses_mutex); } static void ssb_buses_unlock(void) { /* See the comment at the ssb_is_early_boot definition */ if (!ssb_is_early_boot) mutex_unlock(&buses_mutex); } static void ssb_devices_unregister(struct ssb_bus *bus) { struct ssb_device *sdev; int i; for (i = bus->nr_devices - 1; i >= 0; i--) { sdev = &(bus->devices[i]); if (sdev->dev) device_unregister(sdev->dev); } #ifdef CONFIG_SSB_EMBEDDED if (bus->bustype == SSB_BUSTYPE_SSB) platform_device_unregister(bus->watchdog); #endif } void ssb_bus_unregister(struct ssb_bus *bus) { ssb_buses_lock(); ssb_devices_unregister(bus); list_del(&bus->list); ssb_buses_unlock(); ssb_pcmcia_exit(bus); ssb_pci_exit(bus); ssb_iounmap(bus); } EXPORT_SYMBOL(ssb_bus_unregister); static void ssb_release_dev(struct device *dev) { struct __ssb_dev_wrapper *devwrap; devwrap = container_of(dev, struct __ssb_dev_wrapper, dev); kfree(devwrap); } static int ssb_devices_register(struct ssb_bus *bus) { struct ssb_device *sdev; struct device *dev; struct __ssb_dev_wrapper *devwrap; int i, err = 0; int dev_idx = 0; for (i = 0; i < bus->nr_devices; i++) { sdev = &(bus->devices[i]); /* We don't register SSB-system devices to the kernel, * as the drivers for them are built into SSB. */ switch (sdev->id.coreid) { case SSB_DEV_CHIPCOMMON: case SSB_DEV_PCI: case SSB_DEV_PCIE: case SSB_DEV_PCMCIA: case SSB_DEV_MIPS: case SSB_DEV_MIPS_3302: case SSB_DEV_EXTIF: continue; } devwrap = kzalloc(sizeof(*devwrap), GFP_KERNEL); if (!devwrap) { ssb_printk(KERN_ERR PFX "Could not allocate device\n"); err = -ENOMEM; goto error; } dev = &devwrap->dev; devwrap->sdev = sdev; dev->release = ssb_release_dev; dev->bus = &ssb_bustype; dev_set_name(dev, "ssb%u:%d", bus->busnumber, dev_idx); switch (bus->bustype) { case SSB_BUSTYPE_PCI: #ifdef CONFIG_SSB_PCIHOST sdev->irq = bus->host_pci->irq; dev->parent = &bus->host_pci->dev; sdev->dma_dev = dev->parent; #endif break; case SSB_BUSTYPE_PCMCIA: #ifdef CONFIG_SSB_PCMCIAHOST sdev->irq = bus->host_pcmcia->irq; dev->parent = &bus->host_pcmcia->dev; #endif break; case SSB_BUSTYPE_SDIO: #ifdef CONFIG_SSB_SDIOHOST dev->parent = &bus->host_sdio->dev; #endif break; case SSB_BUSTYPE_SSB: dev->dma_mask = &dev->coherent_dma_mask; sdev->dma_dev = dev; break; } sdev->dev = dev; err = device_register(dev); if (err) { ssb_printk(KERN_ERR PFX "Could not register %s\n", dev_name(dev)); /* Set dev to NULL to not unregister * dev on error unwinding. */ sdev->dev = NULL; kfree(devwrap); goto error; } dev_idx++; } #ifdef CONFIG_SSB_DRIVER_MIPS if (bus->mipscore.pflash.present) { err = platform_device_register(&ssb_pflash_dev); if (err) pr_err("Error registering parallel flash\n"); } #endif return 0; error: /* Unwind the already registered devices. */ ssb_devices_unregister(bus); return err; } /* Needs ssb_buses_lock() */ static int ssb_attach_queued_buses(void) { struct ssb_bus *bus, *n; int err = 0; int drop_them_all = 0; list_for_each_entry_safe(bus, n, &attach_queue, list) { if (drop_them_all) { list_del(&bus->list); continue; } /* Can't init the PCIcore in ssb_bus_register(), as that * is too early in boot for embedded systems * (no udelay() available). So do it here in attach stage. */ err = ssb_bus_powerup(bus, 0); if (err) goto error; ssb_pcicore_init(&bus->pcicore); if (bus->bustype == SSB_BUSTYPE_SSB) ssb_watchdog_register(bus); ssb_bus_may_powerdown(bus); err = ssb_devices_register(bus); error: if (err) { drop_them_all = 1; list_del(&bus->list); continue; } list_move_tail(&bus->list, &buses); } return err; } static u8 ssb_ssb_read8(struct ssb_device *dev, u16 offset) { struct ssb_bus *bus = dev->bus; offset += dev->core_index * SSB_CORE_SIZE; return readb(bus->mmio + offset); } static u16 ssb_ssb_read16(struct ssb_device *dev, u16 offset) { struct ssb_bus *bus = dev->bus; offset += dev->core_index * SSB_CORE_SIZE; return readw(bus->mmio + offset); } static u32 ssb_ssb_read32(struct ssb_device *dev, u16 offset) { struct ssb_bus *bus = dev->bus; offset += dev->core_index * SSB_CORE_SIZE; return readl(bus->mmio + offset); } #ifdef CONFIG_SSB_BLOCKIO static void ssb_ssb_block_read(struct ssb_device *dev, void *buffer, size_t count, u16 offset, u8 reg_width) { struct ssb_bus *bus = dev->bus; void __iomem *addr; offset += dev->core_index * SSB_CORE_SIZE; addr = bus->mmio + offset; switch (reg_width) { case sizeof(u8): { u8 *buf = buffer; while (count) { *buf = __raw_readb(addr); buf++; count--; } break; } case sizeof(u16): { __le16 *buf = buffer; SSB_WARN_ON(count & 1); while (count) { *buf = (__force __le16)__raw_readw(addr); buf++; count -= 2; } break; } case sizeof(u32): { __le32 *buf = buffer; SSB_WARN_ON(count & 3); while (count) { *buf = (__force __le32)__raw_readl(addr); buf++; count -= 4; } break; } default: SSB_WARN_ON(1); } } #endif /* CONFIG_SSB_BLOCKIO */ static void ssb_ssb_write8(struct ssb_device *dev, u16 offset, u8 value) { struct ssb_bus *bus = dev->bus; offset += dev->core_index * SSB_CORE_SIZE; writeb(value, bus->mmio + offset); } static void ssb_ssb_write16(struct ssb_device *dev, u16 offset, u16 value) { struct ssb_bus *bus = dev->bus; offset += dev->core_index * SSB_CORE_SIZE; writew(value, bus->mmio + offset); } static void ssb_ssb_write32(struct ssb_device *dev, u16 offset, u32 value) { struct ssb_bus *bus = dev->bus; offset += dev->core_index * SSB_CORE_SIZE; writel(value, bus->mmio + offset); } #ifdef CONFIG_SSB_BLOCKIO static void ssb_ssb_block_write(struct ssb_device *dev, const void *buffer, size_t count, u16 offset, u8 reg_width) { struct ssb_bus *bus = dev->bus; void __iomem *addr; offset += dev->core_index * SSB_CORE_SIZE; addr = bus->mmio + offset; switch (reg_width) { case sizeof(u8): { const u8 *buf = buffer; while (count) { __raw_writeb(*buf, addr); buf++; count--; } break; } case sizeof(u16): { const __le16 *buf = buffer; SSB_WARN_ON(count & 1); while (count) { __raw_writew((__force u16)(*buf), addr); buf++; count -= 2; } break; } case sizeof(u32): { const __le32 *buf = buffer; SSB_WARN_ON(count & 3); while (count) { __raw_writel((__force u32)(*buf), addr); buf++; count -= 4; } break; } default: SSB_WARN_ON(1); } } #endif /* CONFIG_SSB_BLOCKIO */ /* Ops for the plain SSB bus without a host-device (no PCI or PCMCIA). */ static const struct ssb_bus_ops ssb_ssb_ops = { .read8 = ssb_ssb_read8, .read16 = ssb_ssb_read16, .read32 = ssb_ssb_read32, .write8 = ssb_ssb_write8, .write16 = ssb_ssb_write16, .write32 = ssb_ssb_write32, #ifdef CONFIG_SSB_BLOCKIO .block_read = ssb_ssb_block_read, .block_write = ssb_ssb_block_write, #endif }; static int ssb_fetch_invariants(struct ssb_bus *bus, ssb_invariants_func_t get_invariants) { struct ssb_init_invariants iv; int err; memset(&iv, 0, sizeof(iv)); err = get_invariants(bus, &iv); if (err) goto out; memcpy(&bus->boardinfo, &iv.boardinfo, sizeof(iv.boardinfo)); memcpy(&bus->sprom, &iv.sprom, sizeof(iv.sprom)); bus->has_cardbus_slot = iv.has_cardbus_slot; out: return err; } static int ssb_bus_register(struct ssb_bus *bus, ssb_invariants_func_t get_invariants, unsigned long baseaddr) { int err; spin_lock_init(&bus->bar_lock); INIT_LIST_HEAD(&bus->list); #ifdef CONFIG_SSB_EMBEDDED spin_lock_init(&bus->gpio_lock); #endif /* Powerup the bus */ err = ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 1); if (err) goto out; /* Init SDIO-host device (if any), before the scan */ err = ssb_sdio_init(bus); if (err) goto err_disable_xtal; ssb_buses_lock(); bus->busnumber = next_busnumber; /* Scan for devices (cores) */ err = ssb_bus_scan(bus, baseaddr); if (err) goto err_sdio_exit; /* Init PCI-host device (if any) */ err = ssb_pci_init(bus); if (err) goto err_unmap; /* Init PCMCIA-host device (if any) */ err = ssb_pcmcia_init(bus); if (err) goto err_pci_exit; /* Initialize basic system devices (if available) */ err = ssb_bus_powerup(bus, 0); if (err) goto err_pcmcia_exit; ssb_chipcommon_init(&bus->chipco); ssb_extif_init(&bus->extif); ssb_mipscore_init(&bus->mipscore); err = ssb_gpio_init(bus); if (err == -ENOTSUPP) ssb_dprintk(KERN_DEBUG PFX "GPIO driver not activated\n"); else if (err) ssb_dprintk(KERN_ERR PFX "Error registering GPIO driver: %i\n", err); err = ssb_fetch_invariants(bus, get_invariants); if (err) { ssb_bus_may_powerdown(bus); goto err_pcmcia_exit; } ssb_bus_may_powerdown(bus); /* Queue it for attach. * See the comment at the ssb_is_early_boot definition. */ list_add_tail(&bus->list, &attach_queue); if (!ssb_is_early_boot) { /* This is not early boot, so we must attach the bus now */ err = ssb_attach_queued_buses(); if (err) goto err_dequeue; } next_busnumber++; ssb_buses_unlock(); out: return err; err_dequeue: list_del(&bus->list); err_pcmcia_exit: ssb_pcmcia_exit(bus); err_pci_exit: ssb_pci_exit(bus); err_unmap: ssb_iounmap(bus); err_sdio_exit: ssb_sdio_exit(bus); err_disable_xtal: ssb_buses_unlock(); ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 0); return err; } #ifdef CONFIG_SSB_PCIHOST int ssb_bus_pcibus_register(struct ssb_bus *bus, struct pci_dev *host_pci) { int err; bus->bustype = SSB_BUSTYPE_PCI; bus->host_pci = host_pci; bus->ops = &ssb_pci_ops; err = ssb_bus_register(bus, ssb_pci_get_invariants, 0); if (!err) { ssb_printk(KERN_INFO PFX "Sonics Silicon Backplane found on " "PCI device %s\n", dev_name(&host_pci->dev)); } else { ssb_printk(KERN_ERR PFX "Failed to register PCI version" " of SSB with error %d\n", err); } return err; } EXPORT_SYMBOL(ssb_bus_pcibus_register); #endif /* CONFIG_SSB_PCIHOST */ #ifdef CONFIG_SSB_PCMCIAHOST int ssb_bus_pcmciabus_register(struct ssb_bus *bus, struct pcmcia_device *pcmcia_dev, unsigned long baseaddr) { int err; bus->bustype = SSB_BUSTYPE_PCMCIA; bus->host_pcmcia = pcmcia_dev; bus->ops = &ssb_pcmcia_ops; err = ssb_bus_register(bus, ssb_pcmcia_get_invariants, baseaddr); if (!err) { ssb_printk(KERN_INFO PFX "Sonics Silicon Backplane found on " "PCMCIA device %s\n", pcmcia_dev->devname); } return err; } EXPORT_SYMBOL(ssb_bus_pcmciabus_register); #endif /* CONFIG_SSB_PCMCIAHOST */ #ifdef CONFIG_SSB_SDIOHOST int ssb_bus_sdiobus_register(struct ssb_bus *bus, struct sdio_func *func, unsigned int quirks) { int err; bus->bustype = SSB_BUSTYPE_SDIO; bus->host_sdio = func; bus->ops = &ssb_sdio_ops; bus->quirks = quirks; err = ssb_bus_register(bus, ssb_sdio_get_invariants, ~0); if (!err) { ssb_printk(KERN_INFO PFX "Sonics Silicon Backplane found on " "SDIO device %s\n", sdio_func_id(func)); } return err; } EXPORT_SYMBOL(ssb_bus_sdiobus_register); #endif /* CONFIG_SSB_PCMCIAHOST */ int ssb_bus_ssbbus_register(struct ssb_bus *bus, unsigned long baseaddr, ssb_invariants_func_t get_invariants) { int err; bus->bustype = SSB_BUSTYPE_SSB; bus->ops = &ssb_ssb_ops; err = ssb_bus_register(bus, get_invariants, baseaddr); if (!err) { ssb_printk(KERN_INFO PFX "Sonics Silicon Backplane found at " "address 0x%08lX\n", baseaddr); } return err; } int __ssb_driver_register(struct ssb_driver *drv, struct module *owner) { drv->drv.name = drv->name; drv->drv.bus = &ssb_bustype; drv->drv.owner = owner; return driver_register(&drv->drv); } EXPORT_SYMBOL(__ssb_driver_register); void ssb_driver_unregister(struct ssb_driver *drv) { driver_unregister(&drv->drv); } EXPORT_SYMBOL(ssb_driver_unregister); void ssb_set_devtypedata(struct ssb_device *dev, void *data) { struct ssb_bus *bus = dev->bus; struct ssb_device *ent; int i; for (i = 0; i < bus->nr_devices; i++) { ent = &(bus->devices[i]); if (ent->id.vendor != dev->id.vendor) continue; if (ent->id.coreid != dev->id.coreid) continue; ent->devtypedata = data; } } EXPORT_SYMBOL(ssb_set_devtypedata); static u32 clkfactor_f6_resolve(u32 v) { /* map the magic values */ switch (v) { case SSB_CHIPCO_CLK_F6_2: return 2; case SSB_CHIPCO_CLK_F6_3: return 3; case SSB_CHIPCO_CLK_F6_4: return 4; case SSB_CHIPCO_CLK_F6_5: return 5; case SSB_CHIPCO_CLK_F6_6: return 6; case SSB_CHIPCO_CLK_F6_7: return 7; } return 0; } /* Calculate the speed the backplane would run at a given set of clockcontrol values */ u32 ssb_calc_clock_rate(u32 plltype, u32 n, u32 m) { u32 n1, n2, clock, m1, m2, m3, mc; n1 = (n & SSB_CHIPCO_CLK_N1); n2 = ((n & SSB_CHIPCO_CLK_N2) >> SSB_CHIPCO_CLK_N2_SHIFT); switch (plltype) { case SSB_PLLTYPE_6: /* 100/200 or 120/240 only */ if (m & SSB_CHIPCO_CLK_T6_MMASK) return SSB_CHIPCO_CLK_T6_M1; return SSB_CHIPCO_CLK_T6_M0; case SSB_PLLTYPE_1: /* 48Mhz base, 3 dividers */ case SSB_PLLTYPE_3: /* 25Mhz, 2 dividers */ case SSB_PLLTYPE_4: /* 48Mhz, 4 dividers */ case SSB_PLLTYPE_7: /* 25Mhz, 4 dividers */ n1 = clkfactor_f6_resolve(n1); n2 += SSB_CHIPCO_CLK_F5_BIAS; break; case SSB_PLLTYPE_2: /* 48Mhz, 4 dividers */ n1 += SSB_CHIPCO_CLK_T2_BIAS; n2 += SSB_CHIPCO_CLK_T2_BIAS; SSB_WARN_ON(!((n1 >= 2) && (n1 <= 7))); SSB_WARN_ON(!((n2 >= 5) && (n2 <= 23))); break; case SSB_PLLTYPE_5: /* 25Mhz, 4 dividers */ return 100000000; default: SSB_WARN_ON(1); } switch (plltype) { case SSB_PLLTYPE_3: /* 25Mhz, 2 dividers */ case SSB_PLLTYPE_7: /* 25Mhz, 4 dividers */ clock = SSB_CHIPCO_CLK_BASE2 * n1 * n2; break; default: clock = SSB_CHIPCO_CLK_BASE1 * n1 * n2; } if (!clock) return 0; m1 = (m & SSB_CHIPCO_CLK_M1); m2 = ((m & SSB_CHIPCO_CLK_M2) >> SSB_CHIPCO_CLK_M2_SHIFT); m3 = ((m & SSB_CHIPCO_CLK_M3) >> SSB_CHIPCO_CLK_M3_SHIFT); mc = ((m & SSB_CHIPCO_CLK_MC) >> SSB_CHIPCO_CLK_MC_SHIFT); switch (plltype) { case SSB_PLLTYPE_1: /* 48Mhz base, 3 dividers */ case SSB_PLLTYPE_3: /* 25Mhz, 2 dividers */ case SSB_PLLTYPE_4: /* 48Mhz, 4 dividers */ case SSB_PLLTYPE_7: /* 25Mhz, 4 dividers */ m1 = clkfactor_f6_resolve(m1); if ((plltype == SSB_PLLTYPE_1) || (plltype == SSB_PLLTYPE_3)) m2 += SSB_CHIPCO_CLK_F5_BIAS; else m2 = clkfactor_f6_resolve(m2); m3 = clkfactor_f6_resolve(m3); switch (mc) { case SSB_CHIPCO_CLK_MC_BYPASS: return clock; case SSB_CHIPCO_CLK_MC_M1: return (clock / m1); case SSB_CHIPCO_CLK_MC_M1M2: return (clock / (m1 * m2)); case SSB_CHIPCO_CLK_MC_M1M2M3: return (clock / (m1 * m2 * m3)); case SSB_CHIPCO_CLK_MC_M1M3: return (clock / (m1 * m3)); } return 0; case SSB_PLLTYPE_2: m1 += SSB_CHIPCO_CLK_T2_BIAS; m2 += SSB_CHIPCO_CLK_T2M2_BIAS; m3 += SSB_CHIPCO_CLK_T2_BIAS; SSB_WARN_ON(!((m1 >= 2) && (m1 <= 7))); SSB_WARN_ON(!((m2 >= 3) && (m2 <= 10))); SSB_WARN_ON(!((m3 >= 2) && (m3 <= 7))); if (!(mc & SSB_CHIPCO_CLK_T2MC_M1BYP)) clock /= m1; if (!(mc & SSB_CHIPCO_CLK_T2MC_M2BYP)) clock /= m2; if (!(mc & SSB_CHIPCO_CLK_T2MC_M3BYP)) clock /= m3; return clock; default: SSB_WARN_ON(1); } return 0; } /* Get the current speed the backplane is running at */ u32 ssb_clockspeed(struct ssb_bus *bus) { u32 rate; u32 plltype; u32 clkctl_n, clkctl_m; if (bus->chipco.capabilities & SSB_CHIPCO_CAP_PMU) return ssb_pmu_get_controlclock(&bus->chipco); if (ssb_extif_available(&bus->extif)) ssb_extif_get_clockcontrol(&bus->extif, &plltype, &clkctl_n, &clkctl_m); else if (bus->chipco.dev) ssb_chipco_get_clockcontrol(&bus->chipco, &plltype, &clkctl_n, &clkctl_m); else return 0; if (bus->chip_id == 0x5365) { rate = 100000000; } else { rate = ssb_calc_clock_rate(plltype, clkctl_n, clkctl_m); if (plltype == SSB_PLLTYPE_3) /* 25Mhz, 2 dividers */ rate /= 2; } return rate; } EXPORT_SYMBOL(ssb_clockspeed); static u32 ssb_tmslow_reject_bitmask(struct ssb_device *dev) { u32 rev = ssb_read32(dev, SSB_IDLOW) & SSB_IDLOW_SSBREV; /* The REJECT bit seems to be different for Backplane rev 2.3 */ switch (rev) { case SSB_IDLOW_SSBREV_22: case SSB_IDLOW_SSBREV_24: case SSB_IDLOW_SSBREV_26: return SSB_TMSLOW_REJECT; case SSB_IDLOW_SSBREV_23: return SSB_TMSLOW_REJECT_23; case SSB_IDLOW_SSBREV_25: /* TODO - find the proper REJECT bit */ case SSB_IDLOW_SSBREV_27: /* same here */ return SSB_TMSLOW_REJECT; /* this is a guess */ default: WARN(1, KERN_INFO "ssb: Backplane Revision 0x%.8X\n", rev); } return (SSB_TMSLOW_REJECT | SSB_TMSLOW_REJECT_23); } int ssb_device_is_enabled(struct ssb_device *dev) { u32 val; u32 reject; reject = ssb_tmslow_reject_bitmask(dev); val = ssb_read32(dev, SSB_TMSLOW); val &= SSB_TMSLOW_CLOCK | SSB_TMSLOW_RESET | reject; return (val == SSB_TMSLOW_CLOCK); } EXPORT_SYMBOL(ssb_device_is_enabled); static void ssb_flush_tmslow(struct ssb_device *dev) { /* Make _really_ sure the device has finished the TMSLOW * register write transaction, as we risk running into * a machine check exception otherwise. * Do this by reading the register back to commit the * PCI write and delay an additional usec for the device * to react to the change. */ ssb_read32(dev, SSB_TMSLOW); udelay(1); } void ssb_device_enable(struct ssb_device *dev, u32 core_specific_flags) { u32 val; ssb_device_disable(dev, core_specific_flags); ssb_write32(dev, SSB_TMSLOW, SSB_TMSLOW_RESET | SSB_TMSLOW_CLOCK | SSB_TMSLOW_FGC | core_specific_flags); ssb_flush_tmslow(dev); /* Clear SERR if set. This is a hw bug workaround. */ if (ssb_read32(dev, SSB_TMSHIGH) & SSB_TMSHIGH_SERR) ssb_write32(dev, SSB_TMSHIGH, 0); val = ssb_read32(dev, SSB_IMSTATE); if (val & (SSB_IMSTATE_IBE | SSB_IMSTATE_TO)) { val &= ~(SSB_IMSTATE_IBE | SSB_IMSTATE_TO); ssb_write32(dev, SSB_IMSTATE, val); } ssb_write32(dev, SSB_TMSLOW, SSB_TMSLOW_CLOCK | SSB_TMSLOW_FGC | core_specific_flags); ssb_flush_tmslow(dev); ssb_write32(dev, SSB_TMSLOW, SSB_TMSLOW_CLOCK | core_specific_flags); ssb_flush_tmslow(dev); } EXPORT_SYMBOL(ssb_device_enable); /* Wait for bitmask in a register to get set or cleared. * timeout is in units of ten-microseconds */ static int ssb_wait_bits(struct ssb_device *dev, u16 reg, u32 bitmask, int timeout, int set) { int i; u32 val; for (i = 0; i < timeout; i++) { val = ssb_read32(dev, reg); if (set) { if ((val & bitmask) == bitmask) return 0; } else { if (!(val & bitmask)) return 0; } udelay(10); } printk(KERN_ERR PFX "Timeout waiting for bitmask %08X on " "register %04X to %s.\n", bitmask, reg, (set ? "set" : "clear")); return -ETIMEDOUT; } void ssb_device_disable(struct ssb_device *dev, u32 core_specific_flags) { u32 reject, val; if (ssb_read32(dev, SSB_TMSLOW) & SSB_TMSLOW_RESET) return; reject = ssb_tmslow_reject_bitmask(dev); if (ssb_read32(dev, SSB_TMSLOW) & SSB_TMSLOW_CLOCK) { ssb_write32(dev, SSB_TMSLOW, reject | SSB_TMSLOW_CLOCK); ssb_wait_bits(dev, SSB_TMSLOW, reject, 1000, 1); ssb_wait_bits(dev, SSB_TMSHIGH, SSB_TMSHIGH_BUSY, 1000, 0); if (ssb_read32(dev, SSB_IDLOW) & SSB_IDLOW_INITIATOR) { val = ssb_read32(dev, SSB_IMSTATE); val |= SSB_IMSTATE_REJECT; ssb_write32(dev, SSB_IMSTATE, val); ssb_wait_bits(dev, SSB_IMSTATE, SSB_IMSTATE_BUSY, 1000, 0); } ssb_write32(dev, SSB_TMSLOW, SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK | reject | SSB_TMSLOW_RESET | core_specific_flags); ssb_flush_tmslow(dev); if (ssb_read32(dev, SSB_IDLOW) & SSB_IDLOW_INITIATOR) { val = ssb_read32(dev, SSB_IMSTATE); val &= ~SSB_IMSTATE_REJECT; ssb_write32(dev, SSB_IMSTATE, val); } } ssb_write32(dev, SSB_TMSLOW, reject | SSB_TMSLOW_RESET | core_specific_flags); ssb_flush_tmslow(dev); } EXPORT_SYMBOL(ssb_device_disable); /* Some chipsets need routing known for PCIe and 64-bit DMA */ static bool ssb_dma_translation_special_bit(struct ssb_device *dev) { u16 chip_id = dev->bus->chip_id; if (dev->id.coreid == SSB_DEV_80211) { return (chip_id == 0x4322 || chip_id == 43221 || chip_id == 43231 || chip_id == 43222); } return 0; } u32 ssb_dma_translation(struct ssb_device *dev) { switch (dev->bus->bustype) { case SSB_BUSTYPE_SSB: return 0; case SSB_BUSTYPE_PCI: if (pci_is_pcie(dev->bus->host_pci) && ssb_read32(dev, SSB_TMSHIGH) & SSB_TMSHIGH_DMA64) { return SSB_PCIE_DMA_H32; } else { if (ssb_dma_translation_special_bit(dev)) return SSB_PCIE_DMA_H32; else return SSB_PCI_DMA; } default: __ssb_dma_not_implemented(dev); } return 0; } EXPORT_SYMBOL(ssb_dma_translation); int ssb_bus_may_powerdown(struct ssb_bus *bus) { struct ssb_chipcommon *cc; int err = 0; /* On buses where more than one core may be working * at a time, we must not powerdown stuff if there are * still cores that may want to run. */ if (bus->bustype == SSB_BUSTYPE_SSB) goto out; cc = &bus->chipco; if (!cc->dev) goto out; if (cc->dev->id.revision < 5) goto out; ssb_chipco_set_clockmode(cc, SSB_CLKMODE_SLOW); err = ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 0); if (err) goto error; out: #ifdef CONFIG_SSB_DEBUG bus->powered_up = 0; #endif return err; error: ssb_printk(KERN_ERR PFX "Bus powerdown failed\n"); goto out; } EXPORT_SYMBOL(ssb_bus_may_powerdown); int ssb_bus_powerup(struct ssb_bus *bus, bool dynamic_pctl) { int err; enum ssb_clkmode mode; err = ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 1); if (err) goto error; #ifdef CONFIG_SSB_DEBUG bus->powered_up = 1; #endif mode = dynamic_pctl ? SSB_CLKMODE_DYNAMIC : SSB_CLKMODE_FAST; ssb_chipco_set_clockmode(&bus->chipco, mode); return 0; error: ssb_printk(KERN_ERR PFX "Bus powerup failed\n"); return err; } EXPORT_SYMBOL(ssb_bus_powerup); static void ssb_broadcast_value(struct ssb_device *dev, u32 address, u32 data) { #ifdef CONFIG_SSB_DRIVER_PCICORE /* This is used for both, PCI and ChipCommon core, so be careful. */ BUILD_BUG_ON(SSB_PCICORE_BCAST_ADDR != SSB_CHIPCO_BCAST_ADDR); BUILD_BUG_ON(SSB_PCICORE_BCAST_DATA != SSB_CHIPCO_BCAST_DATA); #endif ssb_write32(dev, SSB_CHIPCO_BCAST_ADDR, address); ssb_read32(dev, SSB_CHIPCO_BCAST_ADDR); /* flush */ ssb_write32(dev, SSB_CHIPCO_BCAST_DATA, data); ssb_read32(dev, SSB_CHIPCO_BCAST_DATA); /* flush */ } void ssb_commit_settings(struct ssb_bus *bus) { struct ssb_device *dev; #ifdef CONFIG_SSB_DRIVER_PCICORE dev = bus->chipco.dev ? bus->chipco.dev : bus->pcicore.dev; #else dev = bus->chipco.dev; #endif if (WARN_ON(!dev)) return; /* This forces an update of the cached registers. */ ssb_broadcast_value(dev, 0xFD8, 0); } EXPORT_SYMBOL(ssb_commit_settings); u32 ssb_admatch_base(u32 adm) { u32 base = 0; switch (adm & SSB_ADM_TYPE) { case SSB_ADM_TYPE0: base = (adm & SSB_ADM_BASE0); break; case SSB_ADM_TYPE1: SSB_WARN_ON(adm & SSB_ADM_NEG); /* unsupported */ base = (adm & SSB_ADM_BASE1); break; case SSB_ADM_TYPE2: SSB_WARN_ON(adm & SSB_ADM_NEG); /* unsupported */ base = (adm & SSB_ADM_BASE2); break; default: SSB_WARN_ON(1); } return base; } EXPORT_SYMBOL(ssb_admatch_base); u32 ssb_admatch_size(u32 adm) { u32 size = 0; switch (adm & SSB_ADM_TYPE) { case SSB_ADM_TYPE0: size = ((adm & SSB_ADM_SZ0) >> SSB_ADM_SZ0_SHIFT); break; case SSB_ADM_TYPE1: SSB_WARN_ON(adm & SSB_ADM_NEG); /* unsupported */ size = ((adm & SSB_ADM_SZ1) >> SSB_ADM_SZ1_SHIFT); break; case SSB_ADM_TYPE2: SSB_WARN_ON(adm & SSB_ADM_NEG); /* unsupported */ size = ((adm & SSB_ADM_SZ2) >> SSB_ADM_SZ2_SHIFT); break; default: SSB_WARN_ON(1); } size = (1 << (size + 1)); return size; } EXPORT_SYMBOL(ssb_admatch_size); static int __init ssb_modinit(void) { int err; /* See the comment at the ssb_is_early_boot definition */ ssb_is_early_boot = 0; err = bus_register(&ssb_bustype); if (err) return err; /* Maybe we already registered some buses at early boot. * Check for this and attach them */ ssb_buses_lock(); err = ssb_attach_queued_buses(); ssb_buses_unlock(); if (err) { bus_unregister(&ssb_bustype); goto out; } err = b43_pci_ssb_bridge_init(); if (err) { ssb_printk(KERN_ERR "Broadcom 43xx PCI-SSB-bridge " "initialization failed\n"); /* don't fail SSB init because of this */ err = 0; } err = ssb_gige_init(); if (err) { ssb_printk(KERN_ERR "SSB Broadcom Gigabit Ethernet " "driver initialization failed\n"); /* don't fail SSB init because of this */ err = 0; } out: return err; } /* ssb must be initialized after PCI but before the ssb drivers. * That means we must use some initcall between subsys_initcall * and device_initcall. */ fs_initcall(ssb_modinit); static void __exit ssb_modexit(void) { ssb_gige_exit(); b43_pci_ssb_bridge_exit(); bus_unregister(&ssb_bustype); } module_exit(ssb_modexit)