/* * Copyright 2013 Freescale Semiconductor, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define REG_SET 0x4 #define REG_CLR 0x8 #define REG_TOG 0xc #define MISC0 0x0150 #define MISC0_REFTOP_SELBIASOFF (1 << 3) #define MISC1 0x0160 #define MISC1_IRQ_TEMPHIGH (1 << 29) /* Below LOW and PANIC bits are only for TEMPMON_IMX6SX */ #define MISC1_IRQ_TEMPLOW (1 << 28) #define MISC1_IRQ_TEMPPANIC (1 << 27) #define TEMPSENSE0 0x0180 #define TEMPSENSE0_ALARM_VALUE_SHIFT 20 #define TEMPSENSE0_ALARM_VALUE_MASK (0xfff << TEMPSENSE0_ALARM_VALUE_SHIFT) #define TEMPSENSE0_TEMP_CNT_SHIFT 8 #define TEMPSENSE0_TEMP_CNT_MASK (0xfff << TEMPSENSE0_TEMP_CNT_SHIFT) #define TEMPSENSE0_FINISHED (1 << 2) #define TEMPSENSE0_MEASURE_TEMP (1 << 1) #define TEMPSENSE0_POWER_DOWN (1 << 0) #define TEMPSENSE1 0x0190 #define TEMPSENSE1_MEASURE_FREQ 0xffff /* Below TEMPSENSE2 is only for TEMPMON_IMX6SX */ #define TEMPSENSE2 0x0290 #define TEMPSENSE2_LOW_VALUE_SHIFT 0 #define TEMPSENSE2_LOW_VALUE_MASK 0xfff #define TEMPSENSE2_PANIC_VALUE_SHIFT 16 #define TEMPSENSE2_PANIC_VALUE_MASK 0xfff0000 #define OCOTP_ANA1 0x04e0 /* The driver supports 1 passive trip point and 1 critical trip point */ enum imx_thermal_trip { IMX_TRIP_PASSIVE, IMX_TRIP_CRITICAL, IMX_TRIP_NUM, }; /* * It defines the temperature in millicelsius for passive trip point * that will trigger cooling action when crossed. */ #define IMX_TEMP_PASSIVE 85000 #define IMX_POLLING_DELAY 2000 /* millisecond */ #define IMX_PASSIVE_DELAY 1000 #define FACTOR0 10000000 #define FACTOR1 15976 #define FACTOR2 4297157 #define TEMPMON_IMX6Q 1 #define TEMPMON_IMX6SX 2 struct thermal_soc_data { u32 version; }; static struct thermal_soc_data thermal_imx6q_data = { .version = TEMPMON_IMX6Q, }; static struct thermal_soc_data thermal_imx6sx_data = { .version = TEMPMON_IMX6SX, }; struct imx_thermal_data { struct thermal_zone_device *tz; struct thermal_cooling_device *cdev; enum thermal_device_mode mode; struct regmap *tempmon; u32 c1, c2; /* See formula in imx_get_sensor_data() */ unsigned long temp_passive; unsigned long temp_critical; unsigned long alarm_temp; unsigned long last_temp; bool irq_enabled; int irq; struct clk *thermal_clk; const struct thermal_soc_data *socdata; }; static void imx_set_panic_temp(struct imx_thermal_data *data, signed long panic_temp) { struct regmap *map = data->tempmon; int critical_value; critical_value = (data->c2 - panic_temp) / data->c1; regmap_write(map, TEMPSENSE2 + REG_CLR, TEMPSENSE2_PANIC_VALUE_MASK); regmap_write(map, TEMPSENSE2 + REG_SET, critical_value << TEMPSENSE2_PANIC_VALUE_SHIFT); } static void imx_set_alarm_temp(struct imx_thermal_data *data, signed long alarm_temp) { struct regmap *map = data->tempmon; int alarm_value; data->alarm_temp = alarm_temp; alarm_value = (data->c2 - alarm_temp) / data->c1; regmap_write(map, TEMPSENSE0 + REG_CLR, TEMPSENSE0_ALARM_VALUE_MASK); regmap_write(map, TEMPSENSE0 + REG_SET, alarm_value << TEMPSENSE0_ALARM_VALUE_SHIFT); } static int imx_get_temp(struct thermal_zone_device *tz, unsigned long *temp) { struct imx_thermal_data *data = tz->devdata; struct regmap *map = data->tempmon; unsigned int n_meas; bool wait; u32 val; if (data->mode == THERMAL_DEVICE_ENABLED) { /* Check if a measurement is currently in progress */ regmap_read(map, TEMPSENSE0, &val); wait = !(val & TEMPSENSE0_FINISHED); } else { /* * Every time we measure the temperature, we will power on the * temperature sensor, enable measurements, take a reading, * disable measurements, power off the temperature sensor. */ regmap_write(map, TEMPSENSE0 + REG_CLR, TEMPSENSE0_POWER_DOWN); regmap_write(map, TEMPSENSE0 + REG_SET, TEMPSENSE0_MEASURE_TEMP); wait = true; } /* * According to the temp sensor designers, it may require up to ~17us * to complete a measurement. */ if (wait) usleep_range(20, 50); regmap_read(map, TEMPSENSE0, &val); if (data->mode != THERMAL_DEVICE_ENABLED) { regmap_write(map, TEMPSENSE0 + REG_CLR, TEMPSENSE0_MEASURE_TEMP); regmap_write(map, TEMPSENSE0 + REG_SET, TEMPSENSE0_POWER_DOWN); } if ((val & TEMPSENSE0_FINISHED) == 0) { dev_dbg(&tz->device, "temp measurement never finished\n"); return -EAGAIN; } n_meas = (val & TEMPSENSE0_TEMP_CNT_MASK) >> TEMPSENSE0_TEMP_CNT_SHIFT; /* See imx_get_sensor_data() for formula derivation */ *temp = data->c2 - n_meas * data->c1; /* Update alarm value to next higher trip point for TEMPMON_IMX6Q */ if (data->socdata->version == TEMPMON_IMX6Q) { if (data->alarm_temp == data->temp_passive && *temp >= data->temp_passive) imx_set_alarm_temp(data, data->temp_critical); if (data->alarm_temp == data->temp_critical && *temp < data->temp_passive) { imx_set_alarm_temp(data, data->temp_passive); dev_dbg(&tz->device, "thermal alarm off: T < %lu\n", data->alarm_temp / 1000); } } if (*temp != data->last_temp) { dev_dbg(&tz->device, "millicelsius: %ld\n", *temp); data->last_temp = *temp; } /* Reenable alarm IRQ if temperature below alarm temperature */ if (!data->irq_enabled && *temp < data->alarm_temp) { data->irq_enabled = true; enable_irq(data->irq); } return 0; } static int imx_get_mode(struct thermal_zone_device *tz, enum thermal_device_mode *mode) { struct imx_thermal_data *data = tz->devdata; *mode = data->mode; return 0; } static int imx_set_mode(struct thermal_zone_device *tz, enum thermal_device_mode mode) { struct imx_thermal_data *data = tz->devdata; struct regmap *map = data->tempmon; if (mode == THERMAL_DEVICE_ENABLED) { tz->polling_delay = IMX_POLLING_DELAY; tz->passive_delay = IMX_PASSIVE_DELAY; regmap_write(map, TEMPSENSE0 + REG_CLR, TEMPSENSE0_POWER_DOWN); regmap_write(map, TEMPSENSE0 + REG_SET, TEMPSENSE0_MEASURE_TEMP); if (!data->irq_enabled) { data->irq_enabled = true; enable_irq(data->irq); } } else { regmap_write(map, TEMPSENSE0 + REG_CLR, TEMPSENSE0_MEASURE_TEMP); regmap_write(map, TEMPSENSE0 + REG_SET, TEMPSENSE0_POWER_DOWN); tz->polling_delay = 0; tz->passive_delay = 0; if (data->irq_enabled) { disable_irq(data->irq); data->irq_enabled = false; } } data->mode = mode; thermal_zone_device_update(tz); return 0; } static int imx_get_trip_type(struct thermal_zone_device *tz, int trip, enum thermal_trip_type *type) { *type = (trip == IMX_TRIP_PASSIVE) ? THERMAL_TRIP_PASSIVE : THERMAL_TRIP_CRITICAL; return 0; } static int imx_get_crit_temp(struct thermal_zone_device *tz, unsigned long *temp) { struct imx_thermal_data *data = tz->devdata; *temp = data->temp_critical; return 0; } static int imx_get_trip_temp(struct thermal_zone_device *tz, int trip, unsigned long *temp) { struct imx_thermal_data *data = tz->devdata; *temp = (trip == IMX_TRIP_PASSIVE) ? data->temp_passive : data->temp_critical; return 0; } static int imx_set_trip_temp(struct thermal_zone_device *tz, int trip, unsigned long temp) { struct imx_thermal_data *data = tz->devdata; if (trip == IMX_TRIP_CRITICAL) return -EPERM; if (temp > IMX_TEMP_PASSIVE) return -EINVAL; data->temp_passive = temp; imx_set_alarm_temp(data, temp); return 0; } static int imx_bind(struct thermal_zone_device *tz, struct thermal_cooling_device *cdev) { int ret; ret = thermal_zone_bind_cooling_device(tz, IMX_TRIP_PASSIVE, cdev, THERMAL_NO_LIMIT, THERMAL_NO_LIMIT); if (ret) { dev_err(&tz->device, "binding zone %s with cdev %s failed:%d\n", tz->type, cdev->type, ret); return ret; } return 0; } static int imx_unbind(struct thermal_zone_device *tz, struct thermal_cooling_device *cdev) { int ret; ret = thermal_zone_unbind_cooling_device(tz, IMX_TRIP_PASSIVE, cdev); if (ret) { dev_err(&tz->device, "unbinding zone %s with cdev %s failed:%d\n", tz->type, cdev->type, ret); return ret; } return 0; } static struct thermal_zone_device_ops imx_tz_ops = { .bind = imx_bind, .unbind = imx_unbind, .get_temp = imx_get_temp, .get_mode = imx_get_mode, .set_mode = imx_set_mode, .get_trip_type = imx_get_trip_type, .get_trip_temp = imx_get_trip_temp, .get_crit_temp = imx_get_crit_temp, .set_trip_temp = imx_set_trip_temp, }; static int imx_get_sensor_data(struct platform_device *pdev) { struct imx_thermal_data *data = platform_get_drvdata(pdev); struct regmap *map; int t1, n1; int ret; u32 val; u64 temp64; map = syscon_regmap_lookup_by_phandle(pdev->dev.of_node, "fsl,tempmon-data"); if (IS_ERR(map)) { ret = PTR_ERR(map); dev_err(&pdev->dev, "failed to get sensor regmap: %d\n", ret); return ret; } ret = regmap_read(map, OCOTP_ANA1, &val); if (ret) { dev_err(&pdev->dev, "failed to read sensor data: %d\n", ret); return ret; } if (val == 0 || val == ~0) { dev_err(&pdev->dev, "invalid sensor calibration data\n"); return -EINVAL; } /* * Sensor data layout: * [31:20] - sensor value @ 25C * Use universal formula now and only need sensor value @ 25C * slope = 0.4297157 - (0.0015976 * 25C fuse) */ n1 = val >> 20; t1 = 25; /* t1 always 25C */ /* * Derived from linear interpolation: * slope = 0.4297157 - (0.0015976 * 25C fuse) * slope = (FACTOR2 - FACTOR1 * n1) / FACTOR0 * (Nmeas - n1) / (Tmeas - t1) = slope * We want to reduce this down to the minimum computation necessary * for each temperature read. Also, we want Tmeas in millicelsius * and we don't want to lose precision from integer division. So... * Tmeas = (Nmeas - n1) / slope + t1 * milli_Tmeas = 1000 * (Nmeas - n1) / slope + 1000 * t1 * milli_Tmeas = -1000 * (n1 - Nmeas) / slope + 1000 * t1 * Let constant c1 = (-1000 / slope) * milli_Tmeas = (n1 - Nmeas) * c1 + 1000 * t1 * Let constant c2 = n1 *c1 + 1000 * t1 * milli_Tmeas = c2 - Nmeas * c1 */ temp64 = FACTOR0; temp64 *= 1000; do_div(temp64, FACTOR1 * n1 - FACTOR2); data->c1 = temp64; data->c2 = n1 * data->c1 + 1000 * t1; /* * Set the default passive cooling trip point, * can be changed from userspace. */ data->temp_passive = IMX_TEMP_PASSIVE; /* * The maximum die temperature set to 20 C higher than * IMX_TEMP_PASSIVE. */ data->temp_critical = 1000 * 20 + data->temp_passive; return 0; } static irqreturn_t imx_thermal_alarm_irq(int irq, void *dev) { struct imx_thermal_data *data = dev; disable_irq_nosync(irq); data->irq_enabled = false; return IRQ_WAKE_THREAD; } static irqreturn_t imx_thermal_alarm_irq_thread(int irq, void *dev) { struct imx_thermal_data *data = dev; dev_dbg(&data->tz->device, "THERMAL ALARM: T > %lu\n", data->alarm_temp / 1000); thermal_zone_device_update(data->tz); return IRQ_HANDLED; } static const struct of_device_id of_imx_thermal_match[] = { { .compatible = "fsl,imx6q-tempmon", .data = &thermal_imx6q_data, }, { .compatible = "fsl,imx6sx-tempmon", .data = &thermal_imx6sx_data, }, { /* end */ } }; MODULE_DEVICE_TABLE(of, of_imx_thermal_match); static int imx_thermal_probe(struct platform_device *pdev) { const struct of_device_id *of_id = of_match_device(of_imx_thermal_match, &pdev->dev); struct imx_thermal_data *data; struct cpumask clip_cpus; struct regmap *map; int measure_freq; int ret; if (!cpufreq_get_current_driver()) { dev_dbg(&pdev->dev, "no cpufreq driver!"); return -EPROBE_DEFER; } data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; map = syscon_regmap_lookup_by_phandle(pdev->dev.of_node, "fsl,tempmon"); if (IS_ERR(map)) { ret = PTR_ERR(map); dev_err(&pdev->dev, "failed to get tempmon regmap: %d\n", ret); return ret; } data->tempmon = map; data->socdata = of_id->data; /* make sure the IRQ flag is clear before enabling irq on i.MX6SX */ if (data->socdata->version == TEMPMON_IMX6SX) { regmap_write(map, MISC1 + REG_CLR, MISC1_IRQ_TEMPHIGH | MISC1_IRQ_TEMPLOW | MISC1_IRQ_TEMPPANIC); /* * reset value of LOW ALARM is incorrect, set it to lowest * value to avoid false trigger of low alarm. */ regmap_write(map, TEMPSENSE2 + REG_SET, TEMPSENSE2_LOW_VALUE_MASK); } data->irq = platform_get_irq(pdev, 0); if (data->irq < 0) return data->irq; ret = devm_request_threaded_irq(&pdev->dev, data->irq, imx_thermal_alarm_irq, imx_thermal_alarm_irq_thread, 0, "imx_thermal", data); if (ret < 0) { dev_err(&pdev->dev, "failed to request alarm irq: %d\n", ret); return ret; } platform_set_drvdata(pdev, data); ret = imx_get_sensor_data(pdev); if (ret) { dev_err(&pdev->dev, "failed to get sensor data\n"); return ret; } /* Make sure sensor is in known good state for measurements */ regmap_write(map, TEMPSENSE0 + REG_CLR, TEMPSENSE0_POWER_DOWN); regmap_write(map, TEMPSENSE0 + REG_CLR, TEMPSENSE0_MEASURE_TEMP); regmap_write(map, TEMPSENSE1 + REG_CLR, TEMPSENSE1_MEASURE_FREQ); regmap_write(map, MISC0 + REG_SET, MISC0_REFTOP_SELBIASOFF); regmap_write(map, TEMPSENSE0 + REG_SET, TEMPSENSE0_POWER_DOWN); cpumask_set_cpu(0, &clip_cpus); data->cdev = cpufreq_cooling_register(&clip_cpus); if (IS_ERR(data->cdev)) { ret = PTR_ERR(data->cdev); dev_err(&pdev->dev, "failed to register cpufreq cooling device: %d\n", ret); return ret; } data->tz = thermal_zone_device_register("imx_thermal_zone", IMX_TRIP_NUM, BIT(IMX_TRIP_PASSIVE), data, &imx_tz_ops, NULL, IMX_PASSIVE_DELAY, IMX_POLLING_DELAY); if (IS_ERR(data->tz)) { ret = PTR_ERR(data->tz); dev_err(&pdev->dev, "failed to register thermal zone device %d\n", ret); cpufreq_cooling_unregister(data->cdev); return ret; } data->thermal_clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(data->thermal_clk)) { dev_warn(&pdev->dev, "failed to get thermal clk!\n"); } else { /* * Thermal sensor needs clk on to get correct value, normally * we should enable its clk before taking measurement and disable * clk after measurement is done, but if alarm function is enabled, * hardware will auto measure the temperature periodically, so we * need to keep the clk always on for alarm function. */ ret = clk_prepare_enable(data->thermal_clk); if (ret) dev_warn(&pdev->dev, "failed to enable thermal clk: %d\n", ret); } /* Enable measurements at ~ 10 Hz */ regmap_write(map, TEMPSENSE1 + REG_CLR, TEMPSENSE1_MEASURE_FREQ); measure_freq = DIV_ROUND_UP(32768, 10); /* 10 Hz */ regmap_write(map, TEMPSENSE1 + REG_SET, measure_freq); imx_set_alarm_temp(data, data->temp_passive); if (data->socdata->version == TEMPMON_IMX6SX) imx_set_panic_temp(data, data->temp_critical); regmap_write(map, TEMPSENSE0 + REG_CLR, TEMPSENSE0_POWER_DOWN); regmap_write(map, TEMPSENSE0 + REG_SET, TEMPSENSE0_MEASURE_TEMP); data->irq_enabled = true; data->mode = THERMAL_DEVICE_ENABLED; return 0; } static int imx_thermal_remove(struct platform_device *pdev) { struct imx_thermal_data *data = platform_get_drvdata(pdev); struct regmap *map = data->tempmon; /* Disable measurements */ regmap_write(map, TEMPSENSE0 + REG_SET, TEMPSENSE0_POWER_DOWN); if (!IS_ERR(data->thermal_clk)) clk_disable_unprepare(data->thermal_clk); thermal_zone_device_unregister(data->tz); cpufreq_cooling_unregister(data->cdev); return 0; } #ifdef CONFIG_PM_SLEEP static int imx_thermal_suspend(struct device *dev) { struct imx_thermal_data *data = dev_get_drvdata(dev); struct regmap *map = data->tempmon; /* * Need to disable thermal sensor, otherwise, when thermal core * try to get temperature before thermal sensor resume, a wrong * temperature will be read as the thermal sensor is powered * down. */ regmap_write(map, TEMPSENSE0 + REG_CLR, TEMPSENSE0_MEASURE_TEMP); regmap_write(map, TEMPSENSE0 + REG_SET, TEMPSENSE0_POWER_DOWN); data->mode = THERMAL_DEVICE_DISABLED; return 0; } static int imx_thermal_resume(struct device *dev) { struct imx_thermal_data *data = dev_get_drvdata(dev); struct regmap *map = data->tempmon; /* Enabled thermal sensor after resume */ regmap_write(map, TEMPSENSE0 + REG_CLR, TEMPSENSE0_POWER_DOWN); regmap_write(map, TEMPSENSE0 + REG_SET, TEMPSENSE0_MEASURE_TEMP); data->mode = THERMAL_DEVICE_ENABLED; return 0; } #endif static SIMPLE_DEV_PM_OPS(imx_thermal_pm_ops, imx_thermal_suspend, imx_thermal_resume); static struct platform_driver imx_thermal = { .driver = { .name = "imx_thermal", .owner = THIS_MODULE, .pm = &imx_thermal_pm_ops, .of_match_table = of_imx_thermal_match, }, .probe = imx_thermal_probe, .remove = imx_thermal_remove, }; module_platform_driver(imx_thermal); MODULE_AUTHOR("Freescale Semiconductor, Inc."); MODULE_DESCRIPTION("Thermal driver for Freescale i.MX SoCs"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:imx-thermal");