/* * Thunderbolt Cactus Ridge driver - switch/port utility functions * * Copyright (c) 2014 Andreas Noever */ #include #include #include "tb.h" /* Switch authorization from userspace is serialized by this lock */ static DEFINE_MUTEX(switch_lock); /* port utility functions */ static const char *tb_port_type(struct tb_regs_port_header *port) { switch (port->type >> 16) { case 0: switch ((u8) port->type) { case 0: return "Inactive"; case 1: return "Port"; case 2: return "NHI"; default: return "unknown"; } case 0x2: return "Ethernet"; case 0x8: return "SATA"; case 0xe: return "DP/HDMI"; case 0x10: return "PCIe"; case 0x20: return "USB"; default: return "unknown"; } } static void tb_dump_port(struct tb *tb, struct tb_regs_port_header *port) { tb_info(tb, " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n", port->port_number, port->vendor_id, port->device_id, port->revision, port->thunderbolt_version, tb_port_type(port), port->type); tb_info(tb, " Max hop id (in/out): %d/%d\n", port->max_in_hop_id, port->max_out_hop_id); tb_info(tb, " Max counters: %d\n", port->max_counters); tb_info(tb, " NFC Credits: %#x\n", port->nfc_credits); } /** * tb_port_state() - get connectedness state of a port * * The port must have a TB_CAP_PHY (i.e. it should be a real port). * * Return: Returns an enum tb_port_state on success or an error code on failure. */ static int tb_port_state(struct tb_port *port) { struct tb_cap_phy phy; int res; if (port->cap_phy == 0) { tb_port_WARN(port, "does not have a PHY\n"); return -EINVAL; } res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2); if (res) return res; return phy.state; } /** * tb_wait_for_port() - wait for a port to become ready * * Wait up to 1 second for a port to reach state TB_PORT_UP. If * wait_if_unplugged is set then we also wait if the port is in state * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after * switch resume). Otherwise we only wait if a device is registered but the link * has not yet been established. * * Return: Returns an error code on failure. Returns 0 if the port is not * connected or failed to reach state TB_PORT_UP within one second. Returns 1 * if the port is connected and in state TB_PORT_UP. */ int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged) { int retries = 10; int state; if (!port->cap_phy) { tb_port_WARN(port, "does not have PHY\n"); return -EINVAL; } if (tb_is_upstream_port(port)) { tb_port_WARN(port, "is the upstream port\n"); return -EINVAL; } while (retries--) { state = tb_port_state(port); if (state < 0) return state; if (state == TB_PORT_DISABLED) { tb_port_info(port, "is disabled (state: 0)\n"); return 0; } if (state == TB_PORT_UNPLUGGED) { if (wait_if_unplugged) { /* used during resume */ tb_port_info(port, "is unplugged (state: 7), retrying...\n"); msleep(100); continue; } tb_port_info(port, "is unplugged (state: 7)\n"); return 0; } if (state == TB_PORT_UP) { tb_port_info(port, "is connected, link is up (state: 2)\n"); return 1; } /* * After plug-in the state is TB_PORT_CONNECTING. Give it some * time. */ tb_port_info(port, "is connected, link is not up (state: %d), retrying...\n", state); msleep(100); } tb_port_warn(port, "failed to reach state TB_PORT_UP. Ignoring port...\n"); return 0; } /** * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port * * Change the number of NFC credits allocated to @port by @credits. To remove * NFC credits pass a negative amount of credits. * * Return: Returns 0 on success or an error code on failure. */ int tb_port_add_nfc_credits(struct tb_port *port, int credits) { if (credits == 0) return 0; tb_port_info(port, "adding %#x NFC credits (%#x -> %#x)", credits, port->config.nfc_credits, port->config.nfc_credits + credits); port->config.nfc_credits += credits; return tb_port_write(port, &port->config.nfc_credits, TB_CFG_PORT, 4, 1); } /** * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER * * Return: Returns 0 on success or an error code on failure. */ int tb_port_clear_counter(struct tb_port *port, int counter) { u32 zero[3] = { 0, 0, 0 }; tb_port_info(port, "clearing counter %d\n", counter); return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3); } /** * tb_init_port() - initialize a port * * This is a helper method for tb_switch_alloc. Does not check or initialize * any downstream switches. * * Return: Returns 0 on success or an error code on failure. */ static int tb_init_port(struct tb_port *port) { int res; int cap; res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8); if (res) return res; /* Port 0 is the switch itself and has no PHY. */ if (port->config.type == TB_TYPE_PORT && port->port != 0) { cap = tb_port_find_cap(port, TB_PORT_CAP_PHY); if (cap > 0) port->cap_phy = cap; else tb_port_WARN(port, "non switch port without a PHY\n"); } tb_dump_port(port->sw->tb, &port->config); /* TODO: Read dual link port, DP port and more from EEPROM. */ return 0; } /* switch utility functions */ static void tb_dump_switch(struct tb *tb, struct tb_regs_switch_header *sw) { tb_info(tb, " Switch: %x:%x (Revision: %d, TB Version: %d)\n", sw->vendor_id, sw->device_id, sw->revision, sw->thunderbolt_version); tb_info(tb, " Max Port Number: %d\n", sw->max_port_number); tb_info(tb, " Config:\n"); tb_info(tb, " Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n", sw->upstream_port_number, sw->depth, (((u64) sw->route_hi) << 32) | sw->route_lo, sw->enabled, sw->plug_events_delay); tb_info(tb, " unknown1: %#x unknown4: %#x\n", sw->__unknown1, sw->__unknown4); } /** * reset_switch() - reconfigure route, enable and send TB_CFG_PKG_RESET * * Return: Returns 0 on success or an error code on failure. */ int tb_switch_reset(struct tb *tb, u64 route) { struct tb_cfg_result res; struct tb_regs_switch_header header = { header.route_hi = route >> 32, header.route_lo = route, header.enabled = true, }; tb_info(tb, "resetting switch at %llx\n", route); res.err = tb_cfg_write(tb->ctl, ((u32 *) &header) + 2, route, 0, 2, 2, 2); if (res.err) return res.err; res = tb_cfg_reset(tb->ctl, route, TB_CFG_DEFAULT_TIMEOUT); if (res.err > 0) return -EIO; return res.err; } struct tb_switch *get_switch_at_route(struct tb_switch *sw, u64 route) { u8 next_port = route; /* * Routes use a stride of 8 bits, * eventhough a port index has 6 bits at most. * */ if (route == 0) return sw; if (next_port > sw->config.max_port_number) return NULL; if (tb_is_upstream_port(&sw->ports[next_port])) return NULL; if (!sw->ports[next_port].remote) return NULL; return get_switch_at_route(sw->ports[next_port].remote->sw, route >> TB_ROUTE_SHIFT); } /** * tb_plug_events_active() - enable/disable plug events on a switch * * Also configures a sane plug_events_delay of 255ms. * * Return: Returns 0 on success or an error code on failure. */ static int tb_plug_events_active(struct tb_switch *sw, bool active) { u32 data; int res; if (!sw->config.enabled) return 0; sw->config.plug_events_delay = 0xff; res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1); if (res) return res; res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1); if (res) return res; if (active) { data = data & 0xFFFFFF83; switch (sw->config.device_id) { case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE: case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE: case PCI_DEVICE_ID_INTEL_PORT_RIDGE: break; default: data |= 4; } } else { data = data | 0x7c; } return tb_sw_write(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1); } static ssize_t authorized_show(struct device *dev, struct device_attribute *attr, char *buf) { struct tb_switch *sw = tb_to_switch(dev); return sprintf(buf, "%u\n", sw->authorized); } static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val) { int ret = -EINVAL; if (mutex_lock_interruptible(&switch_lock)) return -ERESTARTSYS; if (sw->authorized) goto unlock; switch (val) { /* Approve switch */ case 1: if (sw->key) ret = tb_domain_approve_switch_key(sw->tb, sw); else ret = tb_domain_approve_switch(sw->tb, sw); break; /* Challenge switch */ case 2: if (sw->key) ret = tb_domain_challenge_switch_key(sw->tb, sw); break; default: break; } if (!ret) { sw->authorized = val; /* Notify status change to the userspace */ kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE); } unlock: mutex_unlock(&switch_lock); return ret; } static ssize_t authorized_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct tb_switch *sw = tb_to_switch(dev); unsigned int val; ssize_t ret; ret = kstrtouint(buf, 0, &val); if (ret) return ret; if (val > 2) return -EINVAL; ret = tb_switch_set_authorized(sw, val); return ret ? ret : count; } static DEVICE_ATTR_RW(authorized); static ssize_t device_show(struct device *dev, struct device_attribute *attr, char *buf) { struct tb_switch *sw = tb_to_switch(dev); return sprintf(buf, "%#x\n", sw->device); } static DEVICE_ATTR_RO(device); static ssize_t device_name_show(struct device *dev, struct device_attribute *attr, char *buf) { struct tb_switch *sw = tb_to_switch(dev); return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : ""); } static DEVICE_ATTR_RO(device_name); static ssize_t key_show(struct device *dev, struct device_attribute *attr, char *buf) { struct tb_switch *sw = tb_to_switch(dev); ssize_t ret; if (mutex_lock_interruptible(&switch_lock)) return -ERESTARTSYS; if (sw->key) ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key); else ret = sprintf(buf, "\n"); mutex_unlock(&switch_lock); return ret; } static ssize_t key_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct tb_switch *sw = tb_to_switch(dev); u8 key[TB_SWITCH_KEY_SIZE]; ssize_t ret = count; if (count < 64) return -EINVAL; if (hex2bin(key, buf, sizeof(key))) return -EINVAL; if (mutex_lock_interruptible(&switch_lock)) return -ERESTARTSYS; if (sw->authorized) { ret = -EBUSY; } else { kfree(sw->key); sw->key = kmemdup(key, sizeof(key), GFP_KERNEL); if (!sw->key) ret = -ENOMEM; } mutex_unlock(&switch_lock); return ret; } static DEVICE_ATTR_RW(key); static ssize_t vendor_show(struct device *dev, struct device_attribute *attr, char *buf) { struct tb_switch *sw = tb_to_switch(dev); return sprintf(buf, "%#x\n", sw->vendor); } static DEVICE_ATTR_RO(vendor); static ssize_t vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf) { struct tb_switch *sw = tb_to_switch(dev); return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : ""); } static DEVICE_ATTR_RO(vendor_name); static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr, char *buf) { struct tb_switch *sw = tb_to_switch(dev); return sprintf(buf, "%pUb\n", sw->uuid); } static DEVICE_ATTR_RO(unique_id); static struct attribute *switch_attrs[] = { &dev_attr_authorized.attr, &dev_attr_device.attr, &dev_attr_device_name.attr, &dev_attr_key.attr, &dev_attr_vendor.attr, &dev_attr_vendor_name.attr, &dev_attr_unique_id.attr, NULL, }; static umode_t switch_attr_is_visible(struct kobject *kobj, struct attribute *attr, int n) { struct device *dev = container_of(kobj, struct device, kobj); struct tb_switch *sw = tb_to_switch(dev); if (attr == &dev_attr_key.attr) { if (tb_route(sw) && sw->tb->security_level == TB_SECURITY_SECURE && sw->security_level == TB_SECURITY_SECURE) return attr->mode; return 0; } return attr->mode; } static struct attribute_group switch_group = { .is_visible = switch_attr_is_visible, .attrs = switch_attrs, }; static const struct attribute_group *switch_groups[] = { &switch_group, NULL, }; static void tb_switch_release(struct device *dev) { struct tb_switch *sw = tb_to_switch(dev); dma_port_free(sw->dma_port); kfree(sw->uuid); kfree(sw->device_name); kfree(sw->vendor_name); kfree(sw->ports); kfree(sw->drom); kfree(sw->key); kfree(sw); } struct device_type tb_switch_type = { .name = "thunderbolt_device", .release = tb_switch_release, }; static int tb_switch_get_generation(struct tb_switch *sw) { switch (sw->config.device_id) { case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE: case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE: case PCI_DEVICE_ID_INTEL_LIGHT_PEAK: case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C: case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C: case PCI_DEVICE_ID_INTEL_PORT_RIDGE: case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE: case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE: return 1; case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE: case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE: case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE: return 2; case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE: case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE: case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE: case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE: case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE: return 3; default: /* * For unknown switches assume generation to be 1 to be * on the safe side. */ tb_sw_warn(sw, "unsupported switch device id %#x\n", sw->config.device_id); return 1; } } /** * tb_switch_alloc() - allocate a switch * @tb: Pointer to the owning domain * @parent: Parent device for this switch * @route: Route string for this switch * * Allocates and initializes a switch. Will not upload configuration to * the switch. For that you need to call tb_switch_configure() * separately. The returned switch should be released by calling * tb_switch_put(). * * Return: Pointer to the allocated switch or %NULL in case of failure */ struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent, u64 route) { int i; int cap; struct tb_switch *sw; int upstream_port = tb_cfg_get_upstream_port(tb->ctl, route); if (upstream_port < 0) return NULL; sw = kzalloc(sizeof(*sw), GFP_KERNEL); if (!sw) return NULL; sw->tb = tb; if (tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5)) goto err_free_sw_ports; tb_info(tb, "current switch config:\n"); tb_dump_switch(tb, &sw->config); /* configure switch */ sw->config.upstream_port_number = upstream_port; sw->config.depth = tb_route_length(route); sw->config.route_lo = route; sw->config.route_hi = route >> 32; sw->config.enabled = 0; /* initialize ports */ sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports), GFP_KERNEL); if (!sw->ports) goto err_free_sw_ports; for (i = 0; i <= sw->config.max_port_number; i++) { /* minimum setup for tb_find_cap and tb_drom_read to work */ sw->ports[i].sw = sw; sw->ports[i].port = i; } sw->generation = tb_switch_get_generation(sw); cap = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS); if (cap < 0) { tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n"); goto err_free_sw_ports; } sw->cap_plug_events = cap; /* Root switch is always authorized */ if (!route) sw->authorized = true; device_initialize(&sw->dev); sw->dev.parent = parent; sw->dev.bus = &tb_bus_type; sw->dev.type = &tb_switch_type; sw->dev.groups = switch_groups; dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw)); return sw; err_free_sw_ports: kfree(sw->ports); kfree(sw); return NULL; } /** * tb_switch_configure() - Uploads configuration to the switch * @sw: Switch to configure * * Call this function before the switch is added to the system. It will * upload configuration to the switch and makes it available for the * connection manager to use. * * Return: %0 in case of success and negative errno in case of failure */ int tb_switch_configure(struct tb_switch *sw) { struct tb *tb = sw->tb; u64 route; int ret; route = tb_route(sw); tb_info(tb, "initializing Switch at %#llx (depth: %d, up port: %d)\n", route, tb_route_length(route), sw->config.upstream_port_number); if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL) tb_sw_warn(sw, "unknown switch vendor id %#x\n", sw->config.vendor_id); sw->config.enabled = 1; /* upload configuration */ ret = tb_sw_write(sw, 1 + (u32 *)&sw->config, TB_CFG_SWITCH, 1, 3); if (ret) return ret; return tb_plug_events_active(sw, true); } static void tb_switch_set_uuid(struct tb_switch *sw) { u32 uuid[4]; int cap; if (sw->uuid) return; /* * The newer controllers include fused UUID as part of link * controller specific registers */ cap = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER); if (cap > 0) { tb_sw_read(sw, uuid, TB_CFG_SWITCH, cap + 3, 4); } else { /* * ICM generates UUID based on UID and fills the upper * two words with ones. This is not strictly following * UUID format but we want to be compatible with it so * we do the same here. */ uuid[0] = sw->uid & 0xffffffff; uuid[1] = (sw->uid >> 32) & 0xffffffff; uuid[2] = 0xffffffff; uuid[3] = 0xffffffff; } sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL); } static void tb_switch_add_dma_port(struct tb_switch *sw) { switch (sw->generation) { case 3: break; case 2: /* Only root switch can be upgraded */ if (tb_route(sw)) return; break; default: return; } sw->dma_port = dma_port_alloc(sw); } /** * tb_switch_add() - Add a switch to the domain * @sw: Switch to add * * This is the last step in adding switch to the domain. It will read * identification information from DROM and initializes ports so that * they can be used to connect other switches. The switch will be * exposed to the userspace when this function successfully returns. To * remove and release the switch, call tb_switch_remove(). * * Return: %0 in case of success and negative errno in case of failure */ int tb_switch_add(struct tb_switch *sw) { int i, ret; /* * Initialize DMA control port now before we read DROM. Recent * host controllers have more complete DROM on NVM that includes * vendor and model identification strings which we then expose * to the userspace. NVM can be accessed through DMA * configuration based mailbox. */ tb_switch_add_dma_port(sw); /* read drom */ ret = tb_drom_read(sw); if (ret) { tb_sw_warn(sw, "tb_eeprom_read_rom failed\n"); return ret; } tb_sw_info(sw, "uid: %#llx\n", sw->uid); tb_switch_set_uuid(sw); for (i = 0; i <= sw->config.max_port_number; i++) { if (sw->ports[i].disabled) { tb_port_info(&sw->ports[i], "disabled by eeprom\n"); continue; } ret = tb_init_port(&sw->ports[i]); if (ret) return ret; } return device_add(&sw->dev); } /** * tb_switch_remove() - Remove and release a switch * @sw: Switch to remove * * This will remove the switch from the domain and release it after last * reference count drops to zero. If there are switches connected below * this switch, they will be removed as well. */ void tb_switch_remove(struct tb_switch *sw) { int i; /* port 0 is the switch itself and never has a remote */ for (i = 1; i <= sw->config.max_port_number; i++) { if (tb_is_upstream_port(&sw->ports[i])) continue; if (sw->ports[i].remote) tb_switch_remove(sw->ports[i].remote->sw); sw->ports[i].remote = NULL; } if (!sw->is_unplugged) tb_plug_events_active(sw, false); device_unregister(&sw->dev); } /** * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches */ void tb_sw_set_unplugged(struct tb_switch *sw) { int i; if (sw == sw->tb->root_switch) { tb_sw_WARN(sw, "cannot unplug root switch\n"); return; } if (sw->is_unplugged) { tb_sw_WARN(sw, "is_unplugged already set\n"); return; } sw->is_unplugged = true; for (i = 0; i <= sw->config.max_port_number; i++) { if (!tb_is_upstream_port(&sw->ports[i]) && sw->ports[i].remote) tb_sw_set_unplugged(sw->ports[i].remote->sw); } } int tb_switch_resume(struct tb_switch *sw) { int i, err; tb_sw_info(sw, "resuming switch\n"); /* * Check for UID of the connected switches except for root * switch which we assume cannot be removed. */ if (tb_route(sw)) { u64 uid; err = tb_drom_read_uid_only(sw, &uid); if (err) { tb_sw_warn(sw, "uid read failed\n"); return err; } if (sw->uid != uid) { tb_sw_info(sw, "changed while suspended (uid %#llx -> %#llx)\n", sw->uid, uid); return -ENODEV; } } /* upload configuration */ err = tb_sw_write(sw, 1 + (u32 *) &sw->config, TB_CFG_SWITCH, 1, 3); if (err) return err; err = tb_plug_events_active(sw, true); if (err) return err; /* check for surviving downstream switches */ for (i = 1; i <= sw->config.max_port_number; i++) { struct tb_port *port = &sw->ports[i]; if (tb_is_upstream_port(port)) continue; if (!port->remote) continue; if (tb_wait_for_port(port, true) <= 0 || tb_switch_resume(port->remote->sw)) { tb_port_warn(port, "lost during suspend, disconnecting\n"); tb_sw_set_unplugged(port->remote->sw); } } return 0; } void tb_switch_suspend(struct tb_switch *sw) { int i, err; err = tb_plug_events_active(sw, false); if (err) return; for (i = 1; i <= sw->config.max_port_number; i++) { if (!tb_is_upstream_port(&sw->ports[i]) && sw->ports[i].remote) tb_switch_suspend(sw->ports[i].remote->sw); } /* * TODO: invoke tb_cfg_prepare_to_sleep here? does not seem to have any * effect? */ } struct tb_sw_lookup { struct tb *tb; u8 link; u8 depth; const uuid_be *uuid; }; static int tb_switch_match(struct device *dev, void *data) { struct tb_switch *sw = tb_to_switch(dev); struct tb_sw_lookup *lookup = data; if (!sw) return 0; if (sw->tb != lookup->tb) return 0; if (lookup->uuid) return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid)); /* Root switch is matched only by depth */ if (!lookup->depth) return !sw->depth; return sw->link == lookup->link && sw->depth == lookup->depth; } /** * tb_switch_find_by_link_depth() - Find switch by link and depth * @tb: Domain the switch belongs * @link: Link number the switch is connected * @depth: Depth of the switch in link * * Returned switch has reference count increased so the caller needs to * call tb_switch_put() when done with the switch. */ struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth) { struct tb_sw_lookup lookup; struct device *dev; memset(&lookup, 0, sizeof(lookup)); lookup.tb = tb; lookup.link = link; lookup.depth = depth; dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match); if (dev) return tb_to_switch(dev); return NULL; } /** * tb_switch_find_by_link_depth() - Find switch by UUID * @tb: Domain the switch belongs * @uuid: UUID to look for * * Returned switch has reference count increased so the caller needs to * call tb_switch_put() when done with the switch. */ struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_be *uuid) { struct tb_sw_lookup lookup; struct device *dev; memset(&lookup, 0, sizeof(lookup)); lookup.tb = tb; lookup.uuid = uuid; dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match); if (dev) return tb_to_switch(dev); return NULL; }