// SPDX-License-Identifier: GPL-2.0 /* * Thunderbolt driver - switch/port utility functions * * Copyright (c) 2014 Andreas Noever * Copyright (C) 2018, Intel Corporation */ #include #include #include #include #include #include #include #include #include "tb.h" /* Switch NVM support */ #define NVM_CSS 0x10 struct nvm_auth_status { struct list_head list; uuid_t uuid; u32 status; }; static bool clx_enabled = true; module_param_named(clx, clx_enabled, bool, 0444); MODULE_PARM_DESC(clx, "allow low power states on the high-speed lanes (default: true)"); /* * Hold NVM authentication failure status per switch This information * needs to stay around even when the switch gets power cycled so we * keep it separately. */ static LIST_HEAD(nvm_auth_status_cache); static DEFINE_MUTEX(nvm_auth_status_lock); static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw) { struct nvm_auth_status *st; list_for_each_entry(st, &nvm_auth_status_cache, list) { if (uuid_equal(&st->uuid, sw->uuid)) return st; } return NULL; } static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status) { struct nvm_auth_status *st; mutex_lock(&nvm_auth_status_lock); st = __nvm_get_auth_status(sw); mutex_unlock(&nvm_auth_status_lock); *status = st ? st->status : 0; } static void nvm_set_auth_status(const struct tb_switch *sw, u32 status) { struct nvm_auth_status *st; if (WARN_ON(!sw->uuid)) return; mutex_lock(&nvm_auth_status_lock); st = __nvm_get_auth_status(sw); if (!st) { st = kzalloc(sizeof(*st), GFP_KERNEL); if (!st) goto unlock; memcpy(&st->uuid, sw->uuid, sizeof(st->uuid)); INIT_LIST_HEAD(&st->list); list_add_tail(&st->list, &nvm_auth_status_cache); } st->status = status; unlock: mutex_unlock(&nvm_auth_status_lock); } static void nvm_clear_auth_status(const struct tb_switch *sw) { struct nvm_auth_status *st; mutex_lock(&nvm_auth_status_lock); st = __nvm_get_auth_status(sw); if (st) { list_del(&st->list); kfree(st); } mutex_unlock(&nvm_auth_status_lock); } static int nvm_validate_and_write(struct tb_switch *sw) { unsigned int image_size, hdr_size; const u8 *buf = sw->nvm->buf; u16 ds_size; int ret; if (!buf) return -EINVAL; image_size = sw->nvm->buf_data_size; if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE) return -EINVAL; /* * FARB pointer must point inside the image and must at least * contain parts of the digital section we will be reading here. */ hdr_size = (*(u32 *)buf) & 0xffffff; if (hdr_size + NVM_DEVID + 2 >= image_size) return -EINVAL; /* Digital section start should be aligned to 4k page */ if (!IS_ALIGNED(hdr_size, SZ_4K)) return -EINVAL; /* * Read digital section size and check that it also fits inside * the image. */ ds_size = *(u16 *)(buf + hdr_size); if (ds_size >= image_size) return -EINVAL; if (!sw->safe_mode) { u16 device_id; /* * Make sure the device ID in the image matches the one * we read from the switch config space. */ device_id = *(u16 *)(buf + hdr_size + NVM_DEVID); if (device_id != sw->config.device_id) return -EINVAL; if (sw->generation < 3) { /* Write CSS headers first */ ret = dma_port_flash_write(sw->dma_port, DMA_PORT_CSS_ADDRESS, buf + NVM_CSS, DMA_PORT_CSS_MAX_SIZE); if (ret) return ret; } /* Skip headers in the image */ buf += hdr_size; image_size -= hdr_size; } if (tb_switch_is_usb4(sw)) ret = usb4_switch_nvm_write(sw, 0, buf, image_size); else ret = dma_port_flash_write(sw->dma_port, 0, buf, image_size); if (!ret) sw->nvm->flushed = true; return ret; } static int nvm_authenticate_host_dma_port(struct tb_switch *sw) { int ret = 0; /* * Root switch NVM upgrade requires that we disconnect the * existing paths first (in case it is not in safe mode * already). */ if (!sw->safe_mode) { u32 status; ret = tb_domain_disconnect_all_paths(sw->tb); if (ret) return ret; /* * The host controller goes away pretty soon after this if * everything goes well so getting timeout is expected. */ ret = dma_port_flash_update_auth(sw->dma_port); if (!ret || ret == -ETIMEDOUT) return 0; /* * Any error from update auth operation requires power * cycling of the host router. */ tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n"); if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0) nvm_set_auth_status(sw, status); } /* * From safe mode we can get out by just power cycling the * switch. */ dma_port_power_cycle(sw->dma_port); return ret; } static int nvm_authenticate_device_dma_port(struct tb_switch *sw) { int ret, retries = 10; ret = dma_port_flash_update_auth(sw->dma_port); switch (ret) { case 0: case -ETIMEDOUT: case -EACCES: case -EINVAL: /* Power cycle is required */ break; default: return ret; } /* * Poll here for the authentication status. It takes some time * for the device to respond (we get timeout for a while). Once * we get response the device needs to be power cycled in order * to the new NVM to be taken into use. */ do { u32 status; ret = dma_port_flash_update_auth_status(sw->dma_port, &status); if (ret < 0 && ret != -ETIMEDOUT) return ret; if (ret > 0) { if (status) { tb_sw_warn(sw, "failed to authenticate NVM\n"); nvm_set_auth_status(sw, status); } tb_sw_info(sw, "power cycling the switch now\n"); dma_port_power_cycle(sw->dma_port); return 0; } msleep(500); } while (--retries); return -ETIMEDOUT; } static void nvm_authenticate_start_dma_port(struct tb_switch *sw) { struct pci_dev *root_port; /* * During host router NVM upgrade we should not allow root port to * go into D3cold because some root ports cannot trigger PME * itself. To be on the safe side keep the root port in D0 during * the whole upgrade process. */ root_port = pcie_find_root_port(sw->tb->nhi->pdev); if (root_port) pm_runtime_get_noresume(&root_port->dev); } static void nvm_authenticate_complete_dma_port(struct tb_switch *sw) { struct pci_dev *root_port; root_port = pcie_find_root_port(sw->tb->nhi->pdev); if (root_port) pm_runtime_put(&root_port->dev); } static inline bool nvm_readable(struct tb_switch *sw) { if (tb_switch_is_usb4(sw)) { /* * USB4 devices must support NVM operations but it is * optional for hosts. Therefore we query the NVM sector * size here and if it is supported assume NVM * operations are implemented. */ return usb4_switch_nvm_sector_size(sw) > 0; } /* Thunderbolt 2 and 3 devices support NVM through DMA port */ return !!sw->dma_port; } static inline bool nvm_upgradeable(struct tb_switch *sw) { if (sw->no_nvm_upgrade) return false; return nvm_readable(sw); } static inline int nvm_read(struct tb_switch *sw, unsigned int address, void *buf, size_t size) { if (tb_switch_is_usb4(sw)) return usb4_switch_nvm_read(sw, address, buf, size); return dma_port_flash_read(sw->dma_port, address, buf, size); } static int nvm_authenticate(struct tb_switch *sw, bool auth_only) { int ret; if (tb_switch_is_usb4(sw)) { if (auth_only) { ret = usb4_switch_nvm_set_offset(sw, 0); if (ret) return ret; } sw->nvm->authenticating = true; return usb4_switch_nvm_authenticate(sw); } else if (auth_only) { return -EOPNOTSUPP; } sw->nvm->authenticating = true; if (!tb_route(sw)) { nvm_authenticate_start_dma_port(sw); ret = nvm_authenticate_host_dma_port(sw); } else { ret = nvm_authenticate_device_dma_port(sw); } return ret; } static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val, size_t bytes) { struct tb_nvm *nvm = priv; struct tb_switch *sw = tb_to_switch(nvm->dev); int ret; pm_runtime_get_sync(&sw->dev); if (!mutex_trylock(&sw->tb->lock)) { ret = restart_syscall(); goto out; } ret = nvm_read(sw, offset, val, bytes); mutex_unlock(&sw->tb->lock); out: pm_runtime_mark_last_busy(&sw->dev); pm_runtime_put_autosuspend(&sw->dev); return ret; } static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val, size_t bytes) { struct tb_nvm *nvm = priv; struct tb_switch *sw = tb_to_switch(nvm->dev); int ret; if (!mutex_trylock(&sw->tb->lock)) return restart_syscall(); /* * Since writing the NVM image might require some special steps, * for example when CSS headers are written, we cache the image * locally here and handle the special cases when the user asks * us to authenticate the image. */ ret = tb_nvm_write_buf(nvm, offset, val, bytes); mutex_unlock(&sw->tb->lock); return ret; } static int tb_switch_nvm_add(struct tb_switch *sw) { struct tb_nvm *nvm; u32 val; int ret; if (!nvm_readable(sw)) return 0; /* * The NVM format of non-Intel hardware is not known so * currently restrict NVM upgrade for Intel hardware. We may * relax this in the future when we learn other NVM formats. */ if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL && sw->config.vendor_id != 0x8087) { dev_info(&sw->dev, "NVM format of vendor %#x is not known, disabling NVM upgrade\n", sw->config.vendor_id); return 0; } nvm = tb_nvm_alloc(&sw->dev); if (IS_ERR(nvm)) return PTR_ERR(nvm); /* * If the switch is in safe-mode the only accessible portion of * the NVM is the non-active one where userspace is expected to * write new functional NVM. */ if (!sw->safe_mode) { u32 nvm_size, hdr_size; ret = nvm_read(sw, NVM_FLASH_SIZE, &val, sizeof(val)); if (ret) goto err_nvm; hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K; nvm_size = (SZ_1M << (val & 7)) / 8; nvm_size = (nvm_size - hdr_size) / 2; ret = nvm_read(sw, NVM_VERSION, &val, sizeof(val)); if (ret) goto err_nvm; nvm->major = val >> 16; nvm->minor = val >> 8; ret = tb_nvm_add_active(nvm, nvm_size, tb_switch_nvm_read); if (ret) goto err_nvm; } if (!sw->no_nvm_upgrade) { ret = tb_nvm_add_non_active(nvm, NVM_MAX_SIZE, tb_switch_nvm_write); if (ret) goto err_nvm; } sw->nvm = nvm; return 0; err_nvm: tb_nvm_free(nvm); return ret; } static void tb_switch_nvm_remove(struct tb_switch *sw) { struct tb_nvm *nvm; nvm = sw->nvm; sw->nvm = NULL; if (!nvm) return; /* Remove authentication status in case the switch is unplugged */ if (!nvm->authenticating) nvm_clear_auth_status(sw); tb_nvm_free(nvm); } /* port utility functions */ static const char *tb_port_type(const struct tb_regs_port_header *port) { switch (port->type >> 16) { case 0: switch ((u8) port->type) { case 0: return "Inactive"; case 1: return "Port"; case 2: return "NHI"; default: return "unknown"; } case 0x2: return "Ethernet"; case 0x8: return "SATA"; case 0xe: return "DP/HDMI"; case 0x10: return "PCIe"; case 0x20: return "USB"; default: return "unknown"; } } static void tb_dump_port(struct tb *tb, const struct tb_port *port) { const struct tb_regs_port_header *regs = &port->config; tb_dbg(tb, " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n", regs->port_number, regs->vendor_id, regs->device_id, regs->revision, regs->thunderbolt_version, tb_port_type(regs), regs->type); tb_dbg(tb, " Max hop id (in/out): %d/%d\n", regs->max_in_hop_id, regs->max_out_hop_id); tb_dbg(tb, " Max counters: %d\n", regs->max_counters); tb_dbg(tb, " NFC Credits: %#x\n", regs->nfc_credits); tb_dbg(tb, " Credits (total/control): %u/%u\n", port->total_credits, port->ctl_credits); } /** * tb_port_state() - get connectedness state of a port * @port: the port to check * * The port must have a TB_CAP_PHY (i.e. it should be a real port). * * Return: Returns an enum tb_port_state on success or an error code on failure. */ int tb_port_state(struct tb_port *port) { struct tb_cap_phy phy; int res; if (port->cap_phy == 0) { tb_port_WARN(port, "does not have a PHY\n"); return -EINVAL; } res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2); if (res) return res; return phy.state; } /** * tb_wait_for_port() - wait for a port to become ready * @port: Port to wait * @wait_if_unplugged: Wait also when port is unplugged * * Wait up to 1 second for a port to reach state TB_PORT_UP. If * wait_if_unplugged is set then we also wait if the port is in state * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after * switch resume). Otherwise we only wait if a device is registered but the link * has not yet been established. * * Return: Returns an error code on failure. Returns 0 if the port is not * connected or failed to reach state TB_PORT_UP within one second. Returns 1 * if the port is connected and in state TB_PORT_UP. */ int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged) { int retries = 10; int state; if (!port->cap_phy) { tb_port_WARN(port, "does not have PHY\n"); return -EINVAL; } if (tb_is_upstream_port(port)) { tb_port_WARN(port, "is the upstream port\n"); return -EINVAL; } while (retries--) { state = tb_port_state(port); if (state < 0) return state; if (state == TB_PORT_DISABLED) { tb_port_dbg(port, "is disabled (state: 0)\n"); return 0; } if (state == TB_PORT_UNPLUGGED) { if (wait_if_unplugged) { /* used during resume */ tb_port_dbg(port, "is unplugged (state: 7), retrying...\n"); msleep(100); continue; } tb_port_dbg(port, "is unplugged (state: 7)\n"); return 0; } if (state == TB_PORT_UP) { tb_port_dbg(port, "is connected, link is up (state: 2)\n"); return 1; } /* * After plug-in the state is TB_PORT_CONNECTING. Give it some * time. */ tb_port_dbg(port, "is connected, link is not up (state: %d), retrying...\n", state); msleep(100); } tb_port_warn(port, "failed to reach state TB_PORT_UP. Ignoring port...\n"); return 0; } /** * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port * @port: Port to add/remove NFC credits * @credits: Credits to add/remove * * Change the number of NFC credits allocated to @port by @credits. To remove * NFC credits pass a negative amount of credits. * * Return: Returns 0 on success or an error code on failure. */ int tb_port_add_nfc_credits(struct tb_port *port, int credits) { u32 nfc_credits; if (credits == 0 || port->sw->is_unplugged) return 0; /* * USB4 restricts programming NFC buffers to lane adapters only * so skip other ports. */ if (tb_switch_is_usb4(port->sw) && !tb_port_is_null(port)) return 0; nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK; if (credits < 0) credits = max_t(int, -nfc_credits, credits); nfc_credits += credits; tb_port_dbg(port, "adding %d NFC credits to %lu", credits, port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK); port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK; port->config.nfc_credits |= nfc_credits; return tb_port_write(port, &port->config.nfc_credits, TB_CFG_PORT, ADP_CS_4, 1); } /** * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER * @port: Port whose counters to clear * @counter: Counter index to clear * * Return: Returns 0 on success or an error code on failure. */ int tb_port_clear_counter(struct tb_port *port, int counter) { u32 zero[3] = { 0, 0, 0 }; tb_port_dbg(port, "clearing counter %d\n", counter); return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3); } /** * tb_port_unlock() - Unlock downstream port * @port: Port to unlock * * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the * downstream router accessible for CM. */ int tb_port_unlock(struct tb_port *port) { if (tb_switch_is_icm(port->sw)) return 0; if (!tb_port_is_null(port)) return -EINVAL; if (tb_switch_is_usb4(port->sw)) return usb4_port_unlock(port); return 0; } static int __tb_port_enable(struct tb_port *port, bool enable) { int ret; u32 phy; if (!tb_port_is_null(port)) return -EINVAL; ret = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy + LANE_ADP_CS_1, 1); if (ret) return ret; if (enable) phy &= ~LANE_ADP_CS_1_LD; else phy |= LANE_ADP_CS_1_LD; ret = tb_port_write(port, &phy, TB_CFG_PORT, port->cap_phy + LANE_ADP_CS_1, 1); if (ret) return ret; tb_port_dbg(port, "lane %sabled\n", enable ? "en" : "dis"); return 0; } /** * tb_port_enable() - Enable lane adapter * @port: Port to enable (can be %NULL) * * This is used for lane 0 and 1 adapters to enable it. */ int tb_port_enable(struct tb_port *port) { return __tb_port_enable(port, true); } /** * tb_port_disable() - Disable lane adapter * @port: Port to disable (can be %NULL) * * This is used for lane 0 and 1 adapters to disable it. */ int tb_port_disable(struct tb_port *port) { return __tb_port_enable(port, false); } /* * tb_init_port() - initialize a port * * This is a helper method for tb_switch_alloc. Does not check or initialize * any downstream switches. * * Return: Returns 0 on success or an error code on failure. */ static int tb_init_port(struct tb_port *port) { int res; int cap; INIT_LIST_HEAD(&port->list); /* Control adapter does not have configuration space */ if (!port->port) return 0; res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8); if (res) { if (res == -ENODEV) { tb_dbg(port->sw->tb, " Port %d: not implemented\n", port->port); port->disabled = true; return 0; } return res; } /* Port 0 is the switch itself and has no PHY. */ if (port->config.type == TB_TYPE_PORT) { cap = tb_port_find_cap(port, TB_PORT_CAP_PHY); if (cap > 0) port->cap_phy = cap; else tb_port_WARN(port, "non switch port without a PHY\n"); cap = tb_port_find_cap(port, TB_PORT_CAP_USB4); if (cap > 0) port->cap_usb4 = cap; /* * USB4 ports the buffers allocated for the control path * can be read from the path config space. Legacy * devices we use hard-coded value. */ if (tb_switch_is_usb4(port->sw)) { struct tb_regs_hop hop; if (!tb_port_read(port, &hop, TB_CFG_HOPS, 0, 2)) port->ctl_credits = hop.initial_credits; } if (!port->ctl_credits) port->ctl_credits = 2; } else { cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP); if (cap > 0) port->cap_adap = cap; } port->total_credits = (port->config.nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >> ADP_CS_4_TOTAL_BUFFERS_SHIFT; tb_dump_port(port->sw->tb, port); return 0; } static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid, int max_hopid) { int port_max_hopid; struct ida *ida; if (in) { port_max_hopid = port->config.max_in_hop_id; ida = &port->in_hopids; } else { port_max_hopid = port->config.max_out_hop_id; ida = &port->out_hopids; } /* * NHI can use HopIDs 1-max for other adapters HopIDs 0-7 are * reserved. */ if (!tb_port_is_nhi(port) && min_hopid < TB_PATH_MIN_HOPID) min_hopid = TB_PATH_MIN_HOPID; if (max_hopid < 0 || max_hopid > port_max_hopid) max_hopid = port_max_hopid; return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL); } /** * tb_port_alloc_in_hopid() - Allocate input HopID from port * @port: Port to allocate HopID for * @min_hopid: Minimum acceptable input HopID * @max_hopid: Maximum acceptable input HopID * * Return: HopID between @min_hopid and @max_hopid or negative errno in * case of error. */ int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid) { return tb_port_alloc_hopid(port, true, min_hopid, max_hopid); } /** * tb_port_alloc_out_hopid() - Allocate output HopID from port * @port: Port to allocate HopID for * @min_hopid: Minimum acceptable output HopID * @max_hopid: Maximum acceptable output HopID * * Return: HopID between @min_hopid and @max_hopid or negative errno in * case of error. */ int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid) { return tb_port_alloc_hopid(port, false, min_hopid, max_hopid); } /** * tb_port_release_in_hopid() - Release allocated input HopID from port * @port: Port whose HopID to release * @hopid: HopID to release */ void tb_port_release_in_hopid(struct tb_port *port, int hopid) { ida_simple_remove(&port->in_hopids, hopid); } /** * tb_port_release_out_hopid() - Release allocated output HopID from port * @port: Port whose HopID to release * @hopid: HopID to release */ void tb_port_release_out_hopid(struct tb_port *port, int hopid) { ida_simple_remove(&port->out_hopids, hopid); } static inline bool tb_switch_is_reachable(const struct tb_switch *parent, const struct tb_switch *sw) { u64 mask = (1ULL << parent->config.depth * 8) - 1; return (tb_route(parent) & mask) == (tb_route(sw) & mask); } /** * tb_next_port_on_path() - Return next port for given port on a path * @start: Start port of the walk * @end: End port of the walk * @prev: Previous port (%NULL if this is the first) * * This function can be used to walk from one port to another if they * are connected through zero or more switches. If the @prev is dual * link port, the function follows that link and returns another end on * that same link. * * If the @end port has been reached, return %NULL. * * Domain tb->lock must be held when this function is called. */ struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end, struct tb_port *prev) { struct tb_port *next; if (!prev) return start; if (prev->sw == end->sw) { if (prev == end) return NULL; return end; } if (tb_switch_is_reachable(prev->sw, end->sw)) { next = tb_port_at(tb_route(end->sw), prev->sw); /* Walk down the topology if next == prev */ if (prev->remote && (next == prev || next->dual_link_port == prev)) next = prev->remote; } else { if (tb_is_upstream_port(prev)) { next = prev->remote; } else { next = tb_upstream_port(prev->sw); /* * Keep the same link if prev and next are both * dual link ports. */ if (next->dual_link_port && next->link_nr != prev->link_nr) { next = next->dual_link_port; } } } return next != prev ? next : NULL; } /** * tb_port_get_link_speed() - Get current link speed * @port: Port to check (USB4 or CIO) * * Returns link speed in Gb/s or negative errno in case of failure. */ int tb_port_get_link_speed(struct tb_port *port) { u32 val, speed; int ret; if (!port->cap_phy) return -EINVAL; ret = tb_port_read(port, &val, TB_CFG_PORT, port->cap_phy + LANE_ADP_CS_1, 1); if (ret) return ret; speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >> LANE_ADP_CS_1_CURRENT_SPEED_SHIFT; return speed == LANE_ADP_CS_1_CURRENT_SPEED_GEN3 ? 20 : 10; } /** * tb_port_get_link_width() - Get current link width * @port: Port to check (USB4 or CIO) * * Returns link width. Return values can be 1 (Single-Lane), 2 (Dual-Lane) * or negative errno in case of failure. */ int tb_port_get_link_width(struct tb_port *port) { u32 val; int ret; if (!port->cap_phy) return -EINVAL; ret = tb_port_read(port, &val, TB_CFG_PORT, port->cap_phy + LANE_ADP_CS_1, 1); if (ret) return ret; return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >> LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT; } static bool tb_port_is_width_supported(struct tb_port *port, int width) { u32 phy, widths; int ret; if (!port->cap_phy) return false; ret = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy + LANE_ADP_CS_0, 1); if (ret) return false; widths = (phy & LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK) >> LANE_ADP_CS_0_SUPPORTED_WIDTH_SHIFT; return !!(widths & width); } /** * tb_port_set_link_width() - Set target link width of the lane adapter * @port: Lane adapter * @width: Target link width (%1 or %2) * * Sets the target link width of the lane adapter to @width. Does not * enable/disable lane bonding. For that call tb_port_set_lane_bonding(). * * Return: %0 in case of success and negative errno in case of error */ int tb_port_set_link_width(struct tb_port *port, unsigned int width) { u32 val; int ret; if (!port->cap_phy) return -EINVAL; ret = tb_port_read(port, &val, TB_CFG_PORT, port->cap_phy + LANE_ADP_CS_1, 1); if (ret) return ret; val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK; switch (width) { case 1: val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE << LANE_ADP_CS_1_TARGET_WIDTH_SHIFT; break; case 2: val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL << LANE_ADP_CS_1_TARGET_WIDTH_SHIFT; break; default: return -EINVAL; } return tb_port_write(port, &val, TB_CFG_PORT, port->cap_phy + LANE_ADP_CS_1, 1); } /** * tb_port_set_lane_bonding() - Enable/disable lane bonding * @port: Lane adapter * @bonding: enable/disable bonding * * Enables or disables lane bonding. This should be called after target * link width has been set (tb_port_set_link_width()). Note in most * cases one should use tb_port_lane_bonding_enable() instead to enable * lane bonding. * * As a side effect sets @port->bonding accordingly (and does the same * for lane 1 too). * * Return: %0 in case of success and negative errno in case of error */ int tb_port_set_lane_bonding(struct tb_port *port, bool bonding) { u32 val; int ret; if (!port->cap_phy) return -EINVAL; ret = tb_port_read(port, &val, TB_CFG_PORT, port->cap_phy + LANE_ADP_CS_1, 1); if (ret) return ret; if (bonding) val |= LANE_ADP_CS_1_LB; else val &= ~LANE_ADP_CS_1_LB; ret = tb_port_write(port, &val, TB_CFG_PORT, port->cap_phy + LANE_ADP_CS_1, 1); if (ret) return ret; /* * When lane 0 bonding is set it will affect lane 1 too so * update both. */ port->bonded = bonding; port->dual_link_port->bonded = bonding; return 0; } /** * tb_port_lane_bonding_enable() - Enable bonding on port * @port: port to enable * * Enable bonding by setting the link width of the port and the other * port in case of dual link port. Does not wait for the link to * actually reach the bonded state so caller needs to call * tb_port_wait_for_link_width() before enabling any paths through the * link to make sure the link is in expected state. * * Return: %0 in case of success and negative errno in case of error */ int tb_port_lane_bonding_enable(struct tb_port *port) { int ret; /* * Enable lane bonding for both links if not already enabled by * for example the boot firmware. */ ret = tb_port_get_link_width(port); if (ret == 1) { ret = tb_port_set_link_width(port, 2); if (ret) goto err_lane0; } ret = tb_port_get_link_width(port->dual_link_port); if (ret == 1) { ret = tb_port_set_link_width(port->dual_link_port, 2); if (ret) goto err_lane0; } ret = tb_port_set_lane_bonding(port, true); if (ret) goto err_lane1; return 0; err_lane1: tb_port_set_link_width(port->dual_link_port, 1); err_lane0: tb_port_set_link_width(port, 1); return ret; } /** * tb_port_lane_bonding_disable() - Disable bonding on port * @port: port to disable * * Disable bonding by setting the link width of the port and the * other port in case of dual link port. */ void tb_port_lane_bonding_disable(struct tb_port *port) { tb_port_set_lane_bonding(port, false); tb_port_set_link_width(port->dual_link_port, 1); tb_port_set_link_width(port, 1); } /** * tb_port_wait_for_link_width() - Wait until link reaches specific width * @port: Port to wait for * @width: Expected link width (%1 or %2) * @timeout_msec: Timeout in ms how long to wait * * Should be used after both ends of the link have been bonded (or * bonding has been disabled) to wait until the link actually reaches * the expected state. Returns %-ETIMEDOUT if the @width was not reached * within the given timeout, %0 if it did. */ int tb_port_wait_for_link_width(struct tb_port *port, int width, int timeout_msec) { ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec); int ret; do { ret = tb_port_get_link_width(port); if (ret < 0) { /* * Sometimes we get port locked error when * polling the lanes so we can ignore it and * retry. */ if (ret != -EACCES) return ret; } else if (ret == width) { return 0; } usleep_range(1000, 2000); } while (ktime_before(ktime_get(), timeout)); return -ETIMEDOUT; } static int tb_port_do_update_credits(struct tb_port *port) { u32 nfc_credits; int ret; ret = tb_port_read(port, &nfc_credits, TB_CFG_PORT, ADP_CS_4, 1); if (ret) return ret; if (nfc_credits != port->config.nfc_credits) { u32 total; total = (nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >> ADP_CS_4_TOTAL_BUFFERS_SHIFT; tb_port_dbg(port, "total credits changed %u -> %u\n", port->total_credits, total); port->config.nfc_credits = nfc_credits; port->total_credits = total; } return 0; } /** * tb_port_update_credits() - Re-read port total credits * @port: Port to update * * After the link is bonded (or bonding was disabled) the port total * credits may change, so this function needs to be called to re-read * the credits. Updates also the second lane adapter. */ int tb_port_update_credits(struct tb_port *port) { int ret; ret = tb_port_do_update_credits(port); if (ret) return ret; return tb_port_do_update_credits(port->dual_link_port); } static int __tb_port_pm_secondary_set(struct tb_port *port, bool secondary) { u32 phy; int ret; ret = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy + LANE_ADP_CS_1, 1); if (ret) return ret; if (secondary) phy |= LANE_ADP_CS_1_PMS; else phy &= ~LANE_ADP_CS_1_PMS; return tb_port_write(port, &phy, TB_CFG_PORT, port->cap_phy + LANE_ADP_CS_1, 1); } static int tb_port_pm_secondary_enable(struct tb_port *port) { return __tb_port_pm_secondary_set(port, true); } static int tb_port_pm_secondary_disable(struct tb_port *port) { return __tb_port_pm_secondary_set(port, false); } /* Called for USB4 or Titan Ridge routers only */ static bool tb_port_clx_supported(struct tb_port *port, unsigned int clx_mask) { u32 val, mask = 0; bool ret; /* Don't enable CLx in case of two single-lane links */ if (!port->bonded && port->dual_link_port) return false; /* Don't enable CLx in case of inter-domain link */ if (port->xdomain) return false; if (tb_switch_is_usb4(port->sw)) { if (!usb4_port_clx_supported(port)) return false; } else if (!tb_lc_is_clx_supported(port)) { return false; } if (clx_mask & TB_CL1) { /* CL0s and CL1 are enabled and supported together */ mask |= LANE_ADP_CS_0_CL0S_SUPPORT | LANE_ADP_CS_0_CL1_SUPPORT; } if (clx_mask & TB_CL2) mask |= LANE_ADP_CS_0_CL2_SUPPORT; ret = tb_port_read(port, &val, TB_CFG_PORT, port->cap_phy + LANE_ADP_CS_0, 1); if (ret) return false; return !!(val & mask); } static int __tb_port_clx_set(struct tb_port *port, enum tb_clx clx, bool enable) { u32 phy, mask; int ret; /* CL0s and CL1 are enabled and supported together */ if (clx == TB_CL1) mask = LANE_ADP_CS_1_CL0S_ENABLE | LANE_ADP_CS_1_CL1_ENABLE; else /* For now we support only CL0s and CL1. Not CL2 */ return -EOPNOTSUPP; ret = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy + LANE_ADP_CS_1, 1); if (ret) return ret; if (enable) phy |= mask; else phy &= ~mask; return tb_port_write(port, &phy, TB_CFG_PORT, port->cap_phy + LANE_ADP_CS_1, 1); } static int tb_port_clx_disable(struct tb_port *port, enum tb_clx clx) { return __tb_port_clx_set(port, clx, false); } static int tb_port_clx_enable(struct tb_port *port, enum tb_clx clx) { return __tb_port_clx_set(port, clx, true); } /** * tb_port_is_clx_enabled() - Is given CL state enabled * @port: USB4 port to check * @clx_mask: Mask of CL states to check * * Returns true if any of the given CL states is enabled for @port. */ bool tb_port_is_clx_enabled(struct tb_port *port, unsigned int clx_mask) { u32 val, mask = 0; int ret; if (!tb_port_clx_supported(port, clx_mask)) return false; if (clx_mask & TB_CL1) mask |= LANE_ADP_CS_1_CL0S_ENABLE | LANE_ADP_CS_1_CL1_ENABLE; if (clx_mask & TB_CL2) mask |= LANE_ADP_CS_1_CL2_ENABLE; ret = tb_port_read(port, &val, TB_CFG_PORT, port->cap_phy + LANE_ADP_CS_1, 1); if (ret) return false; return !!(val & mask); } static int tb_port_start_lane_initialization(struct tb_port *port) { int ret; if (tb_switch_is_usb4(port->sw)) return 0; ret = tb_lc_start_lane_initialization(port); return ret == -EINVAL ? 0 : ret; } /* * Returns true if the port had something (router, XDomain) connected * before suspend. */ static bool tb_port_resume(struct tb_port *port) { bool has_remote = tb_port_has_remote(port); if (port->usb4) { usb4_port_device_resume(port->usb4); } else if (!has_remote) { /* * For disconnected downstream lane adapters start lane * initialization now so we detect future connects. * * For XDomain start the lane initialzation now so the * link gets re-established. * * This is only needed for non-USB4 ports. */ if (!tb_is_upstream_port(port) || port->xdomain) tb_port_start_lane_initialization(port); } return has_remote || port->xdomain; } /** * tb_port_is_enabled() - Is the adapter port enabled * @port: Port to check */ bool tb_port_is_enabled(struct tb_port *port) { switch (port->config.type) { case TB_TYPE_PCIE_UP: case TB_TYPE_PCIE_DOWN: return tb_pci_port_is_enabled(port); case TB_TYPE_DP_HDMI_IN: case TB_TYPE_DP_HDMI_OUT: return tb_dp_port_is_enabled(port); case TB_TYPE_USB3_UP: case TB_TYPE_USB3_DOWN: return tb_usb3_port_is_enabled(port); default: return false; } } /** * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled * @port: USB3 adapter port to check */ bool tb_usb3_port_is_enabled(struct tb_port *port) { u32 data; if (tb_port_read(port, &data, TB_CFG_PORT, port->cap_adap + ADP_USB3_CS_0, 1)) return false; return !!(data & ADP_USB3_CS_0_PE); } /** * tb_usb3_port_enable() - Enable USB3 adapter port * @port: USB3 adapter port to enable * @enable: Enable/disable the USB3 adapter */ int tb_usb3_port_enable(struct tb_port *port, bool enable) { u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V) : ADP_USB3_CS_0_V; if (!port->cap_adap) return -ENXIO; return tb_port_write(port, &word, TB_CFG_PORT, port->cap_adap + ADP_USB3_CS_0, 1); } /** * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled * @port: PCIe port to check */ bool tb_pci_port_is_enabled(struct tb_port *port) { u32 data; if (tb_port_read(port, &data, TB_CFG_PORT, port->cap_adap + ADP_PCIE_CS_0, 1)) return false; return !!(data & ADP_PCIE_CS_0_PE); } /** * tb_pci_port_enable() - Enable PCIe adapter port * @port: PCIe port to enable * @enable: Enable/disable the PCIe adapter */ int tb_pci_port_enable(struct tb_port *port, bool enable) { u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0; if (!port->cap_adap) return -ENXIO; return tb_port_write(port, &word, TB_CFG_PORT, port->cap_adap + ADP_PCIE_CS_0, 1); } /** * tb_dp_port_hpd_is_active() - Is HPD already active * @port: DP out port to check * * Checks if the DP OUT adapter port has HDP bit already set. */ int tb_dp_port_hpd_is_active(struct tb_port *port) { u32 data; int ret; ret = tb_port_read(port, &data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_2, 1); if (ret) return ret; return !!(data & ADP_DP_CS_2_HDP); } /** * tb_dp_port_hpd_clear() - Clear HPD from DP IN port * @port: Port to clear HPD * * If the DP IN port has HDP set, this function can be used to clear it. */ int tb_dp_port_hpd_clear(struct tb_port *port) { u32 data; int ret; ret = tb_port_read(port, &data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_3, 1); if (ret) return ret; data |= ADP_DP_CS_3_HDPC; return tb_port_write(port, &data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_3, 1); } /** * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port * @port: DP IN/OUT port to set hops * @video: Video Hop ID * @aux_tx: AUX TX Hop ID * @aux_rx: AUX RX Hop ID * * Programs specified Hop IDs for DP IN/OUT port. Can be called for USB4 * router DP adapters too but does not program the values as the fields * are read-only. */ int tb_dp_port_set_hops(struct tb_port *port, unsigned int video, unsigned int aux_tx, unsigned int aux_rx) { u32 data[2]; int ret; if (tb_switch_is_usb4(port->sw)) return 0; ret = tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data)); if (ret) return ret; data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK; data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK; data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK; data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) & ADP_DP_CS_0_VIDEO_HOPID_MASK; data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK; data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) & ADP_DP_CS_1_AUX_RX_HOPID_MASK; return tb_port_write(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data)); } /** * tb_dp_port_is_enabled() - Is DP adapter port enabled * @port: DP adapter port to check */ bool tb_dp_port_is_enabled(struct tb_port *port) { u32 data[2]; if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data))) return false; return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE)); } /** * tb_dp_port_enable() - Enables/disables DP paths of a port * @port: DP IN/OUT port * @enable: Enable/disable DP path * * Once Hop IDs are programmed DP paths can be enabled or disabled by * calling this function. */ int tb_dp_port_enable(struct tb_port *port, bool enable) { u32 data[2]; int ret; ret = tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data)); if (ret) return ret; if (enable) data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE; else data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE); return tb_port_write(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data)); } /* switch utility functions */ static const char *tb_switch_generation_name(const struct tb_switch *sw) { switch (sw->generation) { case 1: return "Thunderbolt 1"; case 2: return "Thunderbolt 2"; case 3: return "Thunderbolt 3"; case 4: return "USB4"; default: return "Unknown"; } } static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw) { const struct tb_regs_switch_header *regs = &sw->config; tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n", tb_switch_generation_name(sw), regs->vendor_id, regs->device_id, regs->revision, regs->thunderbolt_version); tb_dbg(tb, " Max Port Number: %d\n", regs->max_port_number); tb_dbg(tb, " Config:\n"); tb_dbg(tb, " Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n", regs->upstream_port_number, regs->depth, (((u64) regs->route_hi) << 32) | regs->route_lo, regs->enabled, regs->plug_events_delay); tb_dbg(tb, " unknown1: %#x unknown4: %#x\n", regs->__unknown1, regs->__unknown4); } /** * tb_switch_reset() - reconfigure route, enable and send TB_CFG_PKG_RESET * @sw: Switch to reset * * Return: Returns 0 on success or an error code on failure. */ int tb_switch_reset(struct tb_switch *sw) { struct tb_cfg_result res; if (sw->generation > 1) return 0; tb_sw_dbg(sw, "resetting switch\n"); res.err = tb_sw_write(sw, ((u32 *) &sw->config) + 2, TB_CFG_SWITCH, 2, 2); if (res.err) return res.err; res = tb_cfg_reset(sw->tb->ctl, tb_route(sw)); if (res.err > 0) return -EIO; return res.err; } /** * tb_switch_wait_for_bit() - Wait for specified value of bits in offset * @sw: Router to read the offset value from * @offset: Offset in the router config space to read from * @bit: Bit mask in the offset to wait for * @value: Value of the bits to wait for * @timeout_msec: Timeout in ms how long to wait * * Wait till the specified bits in specified offset reach specified value. * Returns %0 in case of success, %-ETIMEDOUT if the @value was not reached * within the given timeout or a negative errno in case of failure. */ int tb_switch_wait_for_bit(struct tb_switch *sw, u32 offset, u32 bit, u32 value, int timeout_msec) { ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec); do { u32 val; int ret; ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1); if (ret) return ret; if ((val & bit) == value) return 0; usleep_range(50, 100); } while (ktime_before(ktime_get(), timeout)); return -ETIMEDOUT; } /* * tb_plug_events_active() - enable/disable plug events on a switch * * Also configures a sane plug_events_delay of 255ms. * * Return: Returns 0 on success or an error code on failure. */ static int tb_plug_events_active(struct tb_switch *sw, bool active) { u32 data; int res; if (tb_switch_is_icm(sw) || tb_switch_is_usb4(sw)) return 0; sw->config.plug_events_delay = 0xff; res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1); if (res) return res; res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1); if (res) return res; if (active) { data = data & 0xFFFFFF83; switch (sw->config.device_id) { case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE: case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE: case PCI_DEVICE_ID_INTEL_PORT_RIDGE: break; default: /* * Skip Alpine Ridge, it needs to have vendor * specific USB hotplug event enabled for the * internal xHCI to work. */ if (!tb_switch_is_alpine_ridge(sw)) data |= TB_PLUG_EVENTS_USB_DISABLE; } } else { data = data | 0x7c; } return tb_sw_write(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1); } static ssize_t authorized_show(struct device *dev, struct device_attribute *attr, char *buf) { struct tb_switch *sw = tb_to_switch(dev); return sprintf(buf, "%u\n", sw->authorized); } static int disapprove_switch(struct device *dev, void *not_used) { char *envp[] = { "AUTHORIZED=0", NULL }; struct tb_switch *sw; sw = tb_to_switch(dev); if (sw && sw->authorized) { int ret; /* First children */ ret = device_for_each_child_reverse(&sw->dev, NULL, disapprove_switch); if (ret) return ret; ret = tb_domain_disapprove_switch(sw->tb, sw); if (ret) return ret; sw->authorized = 0; kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp); } return 0; } static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val) { char envp_string[13]; int ret = -EINVAL; char *envp[] = { envp_string, NULL }; if (!mutex_trylock(&sw->tb->lock)) return restart_syscall(); if (!!sw->authorized == !!val) goto unlock; switch (val) { /* Disapprove switch */ case 0: if (tb_route(sw)) { ret = disapprove_switch(&sw->dev, NULL); goto unlock; } break; /* Approve switch */ case 1: if (sw->key) ret = tb_domain_approve_switch_key(sw->tb, sw); else ret = tb_domain_approve_switch(sw->tb, sw); break; /* Challenge switch */ case 2: if (sw->key) ret = tb_domain_challenge_switch_key(sw->tb, sw); break; default: break; } if (!ret) { sw->authorized = val; /* * Notify status change to the userspace, informing the new * value of /sys/bus/thunderbolt/devices/.../authorized. */ sprintf(envp_string, "AUTHORIZED=%u", sw->authorized); kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp); } unlock: mutex_unlock(&sw->tb->lock); return ret; } static ssize_t authorized_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct tb_switch *sw = tb_to_switch(dev); unsigned int val; ssize_t ret; ret = kstrtouint(buf, 0, &val); if (ret) return ret; if (val > 2) return -EINVAL; pm_runtime_get_sync(&sw->dev); ret = tb_switch_set_authorized(sw, val); pm_runtime_mark_last_busy(&sw->dev); pm_runtime_put_autosuspend(&sw->dev); return ret ? ret : count; } static DEVICE_ATTR_RW(authorized); static ssize_t boot_show(struct device *dev, struct device_attribute *attr, char *buf) { struct tb_switch *sw = tb_to_switch(dev); return sprintf(buf, "%u\n", sw->boot); } static DEVICE_ATTR_RO(boot); static ssize_t device_show(struct device *dev, struct device_attribute *attr, char *buf) { struct tb_switch *sw = tb_to_switch(dev); return sprintf(buf, "%#x\n", sw->device); } static DEVICE_ATTR_RO(device); static ssize_t device_name_show(struct device *dev, struct device_attribute *attr, char *buf) { struct tb_switch *sw = tb_to_switch(dev); return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : ""); } static DEVICE_ATTR_RO(device_name); static ssize_t generation_show(struct device *dev, struct device_attribute *attr, char *buf) { struct tb_switch *sw = tb_to_switch(dev); return sprintf(buf, "%u\n", sw->generation); } static DEVICE_ATTR_RO(generation); static ssize_t key_show(struct device *dev, struct device_attribute *attr, char *buf) { struct tb_switch *sw = tb_to_switch(dev); ssize_t ret; if (!mutex_trylock(&sw->tb->lock)) return restart_syscall(); if (sw->key) ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key); else ret = sprintf(buf, "\n"); mutex_unlock(&sw->tb->lock); return ret; } static ssize_t key_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct tb_switch *sw = tb_to_switch(dev); u8 key[TB_SWITCH_KEY_SIZE]; ssize_t ret = count; bool clear = false; if (!strcmp(buf, "\n")) clear = true; else if (hex2bin(key, buf, sizeof(key))) return -EINVAL; if (!mutex_trylock(&sw->tb->lock)) return restart_syscall(); if (sw->authorized) { ret = -EBUSY; } else { kfree(sw->key); if (clear) { sw->key = NULL; } else { sw->key = kmemdup(key, sizeof(key), GFP_KERNEL); if (!sw->key) ret = -ENOMEM; } } mutex_unlock(&sw->tb->lock); return ret; } static DEVICE_ATTR(key, 0600, key_show, key_store); static ssize_t speed_show(struct device *dev, struct device_attribute *attr, char *buf) { struct tb_switch *sw = tb_to_switch(dev); return sprintf(buf, "%u.0 Gb/s\n", sw->link_speed); } /* * Currently all lanes must run at the same speed but we expose here * both directions to allow possible asymmetric links in the future. */ static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL); static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL); static ssize_t lanes_show(struct device *dev, struct device_attribute *attr, char *buf) { struct tb_switch *sw = tb_to_switch(dev); return sprintf(buf, "%u\n", sw->link_width); } /* * Currently link has same amount of lanes both directions (1 or 2) but * expose them separately to allow possible asymmetric links in the future. */ static DEVICE_ATTR(rx_lanes, 0444, lanes_show, NULL); static DEVICE_ATTR(tx_lanes, 0444, lanes_show, NULL); static ssize_t nvm_authenticate_show(struct device *dev, struct device_attribute *attr, char *buf) { struct tb_switch *sw = tb_to_switch(dev); u32 status; nvm_get_auth_status(sw, &status); return sprintf(buf, "%#x\n", status); } static ssize_t nvm_authenticate_sysfs(struct device *dev, const char *buf, bool disconnect) { struct tb_switch *sw = tb_to_switch(dev); int val, ret; pm_runtime_get_sync(&sw->dev); if (!mutex_trylock(&sw->tb->lock)) { ret = restart_syscall(); goto exit_rpm; } /* If NVMem devices are not yet added */ if (!sw->nvm) { ret = -EAGAIN; goto exit_unlock; } ret = kstrtoint(buf, 10, &val); if (ret) goto exit_unlock; /* Always clear the authentication status */ nvm_clear_auth_status(sw); if (val > 0) { if (val == AUTHENTICATE_ONLY) { if (disconnect) ret = -EINVAL; else ret = nvm_authenticate(sw, true); } else { if (!sw->nvm->flushed) { if (!sw->nvm->buf) { ret = -EINVAL; goto exit_unlock; } ret = nvm_validate_and_write(sw); if (ret || val == WRITE_ONLY) goto exit_unlock; } if (val == WRITE_AND_AUTHENTICATE) { if (disconnect) ret = tb_lc_force_power(sw); else ret = nvm_authenticate(sw, false); } } } exit_unlock: mutex_unlock(&sw->tb->lock); exit_rpm: pm_runtime_mark_last_busy(&sw->dev); pm_runtime_put_autosuspend(&sw->dev); return ret; } static ssize_t nvm_authenticate_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int ret = nvm_authenticate_sysfs(dev, buf, false); if (ret) return ret; return count; } static DEVICE_ATTR_RW(nvm_authenticate); static ssize_t nvm_authenticate_on_disconnect_show(struct device *dev, struct device_attribute *attr, char *buf) { return nvm_authenticate_show(dev, attr, buf); } static ssize_t nvm_authenticate_on_disconnect_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int ret; ret = nvm_authenticate_sysfs(dev, buf, true); return ret ? ret : count; } static DEVICE_ATTR_RW(nvm_authenticate_on_disconnect); static ssize_t nvm_version_show(struct device *dev, struct device_attribute *attr, char *buf) { struct tb_switch *sw = tb_to_switch(dev); int ret; if (!mutex_trylock(&sw->tb->lock)) return restart_syscall(); if (sw->safe_mode) ret = -ENODATA; else if (!sw->nvm) ret = -EAGAIN; else ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor); mutex_unlock(&sw->tb->lock); return ret; } static DEVICE_ATTR_RO(nvm_version); static ssize_t vendor_show(struct device *dev, struct device_attribute *attr, char *buf) { struct tb_switch *sw = tb_to_switch(dev); return sprintf(buf, "%#x\n", sw->vendor); } static DEVICE_ATTR_RO(vendor); static ssize_t vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf) { struct tb_switch *sw = tb_to_switch(dev); return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : ""); } static DEVICE_ATTR_RO(vendor_name); static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr, char *buf) { struct tb_switch *sw = tb_to_switch(dev); return sprintf(buf, "%pUb\n", sw->uuid); } static DEVICE_ATTR_RO(unique_id); static struct attribute *switch_attrs[] = { &dev_attr_authorized.attr, &dev_attr_boot.attr, &dev_attr_device.attr, &dev_attr_device_name.attr, &dev_attr_generation.attr, &dev_attr_key.attr, &dev_attr_nvm_authenticate.attr, &dev_attr_nvm_authenticate_on_disconnect.attr, &dev_attr_nvm_version.attr, &dev_attr_rx_speed.attr, &dev_attr_rx_lanes.attr, &dev_attr_tx_speed.attr, &dev_attr_tx_lanes.attr, &dev_attr_vendor.attr, &dev_attr_vendor_name.attr, &dev_attr_unique_id.attr, NULL, }; static umode_t switch_attr_is_visible(struct kobject *kobj, struct attribute *attr, int n) { struct device *dev = kobj_to_dev(kobj); struct tb_switch *sw = tb_to_switch(dev); if (attr == &dev_attr_authorized.attr) { if (sw->tb->security_level == TB_SECURITY_NOPCIE || sw->tb->security_level == TB_SECURITY_DPONLY) return 0; } else if (attr == &dev_attr_device.attr) { if (!sw->device) return 0; } else if (attr == &dev_attr_device_name.attr) { if (!sw->device_name) return 0; } else if (attr == &dev_attr_vendor.attr) { if (!sw->vendor) return 0; } else if (attr == &dev_attr_vendor_name.attr) { if (!sw->vendor_name) return 0; } else if (attr == &dev_attr_key.attr) { if (tb_route(sw) && sw->tb->security_level == TB_SECURITY_SECURE && sw->security_level == TB_SECURITY_SECURE) return attr->mode; return 0; } else if (attr == &dev_attr_rx_speed.attr || attr == &dev_attr_rx_lanes.attr || attr == &dev_attr_tx_speed.attr || attr == &dev_attr_tx_lanes.attr) { if (tb_route(sw)) return attr->mode; return 0; } else if (attr == &dev_attr_nvm_authenticate.attr) { if (nvm_upgradeable(sw)) return attr->mode; return 0; } else if (attr == &dev_attr_nvm_version.attr) { if (nvm_readable(sw)) return attr->mode; return 0; } else if (attr == &dev_attr_boot.attr) { if (tb_route(sw)) return attr->mode; return 0; } else if (attr == &dev_attr_nvm_authenticate_on_disconnect.attr) { if (sw->quirks & QUIRK_FORCE_POWER_LINK_CONTROLLER) return attr->mode; return 0; } return sw->safe_mode ? 0 : attr->mode; } static const struct attribute_group switch_group = { .is_visible = switch_attr_is_visible, .attrs = switch_attrs, }; static const struct attribute_group *switch_groups[] = { &switch_group, NULL, }; static void tb_switch_release(struct device *dev) { struct tb_switch *sw = tb_to_switch(dev); struct tb_port *port; dma_port_free(sw->dma_port); tb_switch_for_each_port(sw, port) { ida_destroy(&port->in_hopids); ida_destroy(&port->out_hopids); } kfree(sw->uuid); kfree(sw->device_name); kfree(sw->vendor_name); kfree(sw->ports); kfree(sw->drom); kfree(sw->key); kfree(sw); } static int tb_switch_uevent(struct device *dev, struct kobj_uevent_env *env) { struct tb_switch *sw = tb_to_switch(dev); const char *type; if (sw->config.thunderbolt_version == USB4_VERSION_1_0) { if (add_uevent_var(env, "USB4_VERSION=1.0")) return -ENOMEM; } if (!tb_route(sw)) { type = "host"; } else { const struct tb_port *port; bool hub = false; /* Device is hub if it has any downstream ports */ tb_switch_for_each_port(sw, port) { if (!port->disabled && !tb_is_upstream_port(port) && tb_port_is_null(port)) { hub = true; break; } } type = hub ? "hub" : "device"; } if (add_uevent_var(env, "USB4_TYPE=%s", type)) return -ENOMEM; return 0; } /* * Currently only need to provide the callbacks. Everything else is handled * in the connection manager. */ static int __maybe_unused tb_switch_runtime_suspend(struct device *dev) { struct tb_switch *sw = tb_to_switch(dev); const struct tb_cm_ops *cm_ops = sw->tb->cm_ops; if (cm_ops->runtime_suspend_switch) return cm_ops->runtime_suspend_switch(sw); return 0; } static int __maybe_unused tb_switch_runtime_resume(struct device *dev) { struct tb_switch *sw = tb_to_switch(dev); const struct tb_cm_ops *cm_ops = sw->tb->cm_ops; if (cm_ops->runtime_resume_switch) return cm_ops->runtime_resume_switch(sw); return 0; } static const struct dev_pm_ops tb_switch_pm_ops = { SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume, NULL) }; struct device_type tb_switch_type = { .name = "thunderbolt_device", .release = tb_switch_release, .uevent = tb_switch_uevent, .pm = &tb_switch_pm_ops, }; static int tb_switch_get_generation(struct tb_switch *sw) { switch (sw->config.device_id) { case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE: case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE: case PCI_DEVICE_ID_INTEL_LIGHT_PEAK: case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C: case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C: case PCI_DEVICE_ID_INTEL_PORT_RIDGE: case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE: case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE: return 1; case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE: case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE: case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE: return 2; case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE: case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE: case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE: case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE: case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE: case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE: case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE: case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE: case PCI_DEVICE_ID_INTEL_ICL_NHI0: case PCI_DEVICE_ID_INTEL_ICL_NHI1: return 3; default: if (tb_switch_is_usb4(sw)) return 4; /* * For unknown switches assume generation to be 1 to be * on the safe side. */ tb_sw_warn(sw, "unsupported switch device id %#x\n", sw->config.device_id); return 1; } } static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth) { int max_depth; if (tb_switch_is_usb4(sw) || (sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch))) max_depth = USB4_SWITCH_MAX_DEPTH; else max_depth = TB_SWITCH_MAX_DEPTH; return depth > max_depth; } /** * tb_switch_alloc() - allocate a switch * @tb: Pointer to the owning domain * @parent: Parent device for this switch * @route: Route string for this switch * * Allocates and initializes a switch. Will not upload configuration to * the switch. For that you need to call tb_switch_configure() * separately. The returned switch should be released by calling * tb_switch_put(). * * Return: Pointer to the allocated switch or ERR_PTR() in case of * failure. */ struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent, u64 route) { struct tb_switch *sw; int upstream_port; int i, ret, depth; /* Unlock the downstream port so we can access the switch below */ if (route) { struct tb_switch *parent_sw = tb_to_switch(parent); struct tb_port *down; down = tb_port_at(route, parent_sw); tb_port_unlock(down); } depth = tb_route_length(route); upstream_port = tb_cfg_get_upstream_port(tb->ctl, route); if (upstream_port < 0) return ERR_PTR(upstream_port); sw = kzalloc(sizeof(*sw), GFP_KERNEL); if (!sw) return ERR_PTR(-ENOMEM); sw->tb = tb; ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5); if (ret) goto err_free_sw_ports; sw->generation = tb_switch_get_generation(sw); tb_dbg(tb, "current switch config:\n"); tb_dump_switch(tb, sw); /* configure switch */ sw->config.upstream_port_number = upstream_port; sw->config.depth = depth; sw->config.route_hi = upper_32_bits(route); sw->config.route_lo = lower_32_bits(route); sw->config.enabled = 0; /* Make sure we do not exceed maximum topology limit */ if (tb_switch_exceeds_max_depth(sw, depth)) { ret = -EADDRNOTAVAIL; goto err_free_sw_ports; } /* initialize ports */ sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports), GFP_KERNEL); if (!sw->ports) { ret = -ENOMEM; goto err_free_sw_ports; } for (i = 0; i <= sw->config.max_port_number; i++) { /* minimum setup for tb_find_cap and tb_drom_read to work */ sw->ports[i].sw = sw; sw->ports[i].port = i; /* Control port does not need HopID allocation */ if (i) { ida_init(&sw->ports[i].in_hopids); ida_init(&sw->ports[i].out_hopids); } } ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS); if (ret > 0) sw->cap_plug_events = ret; ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_TIME2); if (ret > 0) sw->cap_vsec_tmu = ret; ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER); if (ret > 0) sw->cap_lc = ret; ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_CP_LP); if (ret > 0) sw->cap_lp = ret; /* Root switch is always authorized */ if (!route) sw->authorized = true; device_initialize(&sw->dev); sw->dev.parent = parent; sw->dev.bus = &tb_bus_type; sw->dev.type = &tb_switch_type; sw->dev.groups = switch_groups; dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw)); return sw; err_free_sw_ports: kfree(sw->ports); kfree(sw); return ERR_PTR(ret); } /** * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode * @tb: Pointer to the owning domain * @parent: Parent device for this switch * @route: Route string for this switch * * This creates a switch in safe mode. This means the switch pretty much * lacks all capabilities except DMA configuration port before it is * flashed with a valid NVM firmware. * * The returned switch must be released by calling tb_switch_put(). * * Return: Pointer to the allocated switch or ERR_PTR() in case of failure */ struct tb_switch * tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route) { struct tb_switch *sw; sw = kzalloc(sizeof(*sw), GFP_KERNEL); if (!sw) return ERR_PTR(-ENOMEM); sw->tb = tb; sw->config.depth = tb_route_length(route); sw->config.route_hi = upper_32_bits(route); sw->config.route_lo = lower_32_bits(route); sw->safe_mode = true; device_initialize(&sw->dev); sw->dev.parent = parent; sw->dev.bus = &tb_bus_type; sw->dev.type = &tb_switch_type; sw->dev.groups = switch_groups; dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw)); return sw; } /** * tb_switch_configure() - Uploads configuration to the switch * @sw: Switch to configure * * Call this function before the switch is added to the system. It will * upload configuration to the switch and makes it available for the * connection manager to use. Can be called to the switch again after * resume from low power states to re-initialize it. * * Return: %0 in case of success and negative errno in case of failure */ int tb_switch_configure(struct tb_switch *sw) { struct tb *tb = sw->tb; u64 route; int ret; route = tb_route(sw); tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n", sw->config.enabled ? "restoring" : "initializing", route, tb_route_length(route), sw->config.upstream_port_number); sw->config.enabled = 1; if (tb_switch_is_usb4(sw)) { /* * For USB4 devices, we need to program the CM version * accordingly so that it knows to expose all the * additional capabilities. */ sw->config.cmuv = USB4_VERSION_1_0; /* Enumerate the switch */ ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH, ROUTER_CS_1, 4); if (ret) return ret; ret = usb4_switch_setup(sw); } else { if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL) tb_sw_warn(sw, "unknown switch vendor id %#x\n", sw->config.vendor_id); if (!sw->cap_plug_events) { tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n"); return -ENODEV; } /* Enumerate the switch */ ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH, ROUTER_CS_1, 3); } if (ret) return ret; return tb_plug_events_active(sw, true); } static int tb_switch_set_uuid(struct tb_switch *sw) { bool uid = false; u32 uuid[4]; int ret; if (sw->uuid) return 0; if (tb_switch_is_usb4(sw)) { ret = usb4_switch_read_uid(sw, &sw->uid); if (ret) return ret; uid = true; } else { /* * The newer controllers include fused UUID as part of * link controller specific registers */ ret = tb_lc_read_uuid(sw, uuid); if (ret) { if (ret != -EINVAL) return ret; uid = true; } } if (uid) { /* * ICM generates UUID based on UID and fills the upper * two words with ones. This is not strictly following * UUID format but we want to be compatible with it so * we do the same here. */ uuid[0] = sw->uid & 0xffffffff; uuid[1] = (sw->uid >> 32) & 0xffffffff; uuid[2] = 0xffffffff; uuid[3] = 0xffffffff; } sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL); if (!sw->uuid) return -ENOMEM; return 0; } static int tb_switch_add_dma_port(struct tb_switch *sw) { u32 status; int ret; switch (sw->generation) { case 2: /* Only root switch can be upgraded */ if (tb_route(sw)) return 0; fallthrough; case 3: case 4: ret = tb_switch_set_uuid(sw); if (ret) return ret; break; default: /* * DMA port is the only thing available when the switch * is in safe mode. */ if (!sw->safe_mode) return 0; break; } if (sw->no_nvm_upgrade) return 0; if (tb_switch_is_usb4(sw)) { ret = usb4_switch_nvm_authenticate_status(sw, &status); if (ret) return ret; if (status) { tb_sw_info(sw, "switch flash authentication failed\n"); nvm_set_auth_status(sw, status); } return 0; } /* Root switch DMA port requires running firmware */ if (!tb_route(sw) && !tb_switch_is_icm(sw)) return 0; sw->dma_port = dma_port_alloc(sw); if (!sw->dma_port) return 0; /* * If there is status already set then authentication failed * when the dma_port_flash_update_auth() returned. Power cycling * is not needed (it was done already) so only thing we do here * is to unblock runtime PM of the root port. */ nvm_get_auth_status(sw, &status); if (status) { if (!tb_route(sw)) nvm_authenticate_complete_dma_port(sw); return 0; } /* * Check status of the previous flash authentication. If there * is one we need to power cycle the switch in any case to make * it functional again. */ ret = dma_port_flash_update_auth_status(sw->dma_port, &status); if (ret <= 0) return ret; /* Now we can allow root port to suspend again */ if (!tb_route(sw)) nvm_authenticate_complete_dma_port(sw); if (status) { tb_sw_info(sw, "switch flash authentication failed\n"); nvm_set_auth_status(sw, status); } tb_sw_info(sw, "power cycling the switch now\n"); dma_port_power_cycle(sw->dma_port); /* * We return error here which causes the switch adding failure. * It should appear back after power cycle is complete. */ return -ESHUTDOWN; } static void tb_switch_default_link_ports(struct tb_switch *sw) { int i; for (i = 1; i <= sw->config.max_port_number; i++) { struct tb_port *port = &sw->ports[i]; struct tb_port *subordinate; if (!tb_port_is_null(port)) continue; /* Check for the subordinate port */ if (i == sw->config.max_port_number || !tb_port_is_null(&sw->ports[i + 1])) continue; /* Link them if not already done so (by DROM) */ subordinate = &sw->ports[i + 1]; if (!port->dual_link_port && !subordinate->dual_link_port) { port->link_nr = 0; port->dual_link_port = subordinate; subordinate->link_nr = 1; subordinate->dual_link_port = port; tb_sw_dbg(sw, "linked ports %d <-> %d\n", port->port, subordinate->port); } } } static bool tb_switch_lane_bonding_possible(struct tb_switch *sw) { const struct tb_port *up = tb_upstream_port(sw); if (!up->dual_link_port || !up->dual_link_port->remote) return false; if (tb_switch_is_usb4(sw)) return usb4_switch_lane_bonding_possible(sw); return tb_lc_lane_bonding_possible(sw); } static int tb_switch_update_link_attributes(struct tb_switch *sw) { struct tb_port *up; bool change = false; int ret; if (!tb_route(sw) || tb_switch_is_icm(sw)) return 0; up = tb_upstream_port(sw); ret = tb_port_get_link_speed(up); if (ret < 0) return ret; if (sw->link_speed != ret) change = true; sw->link_speed = ret; ret = tb_port_get_link_width(up); if (ret < 0) return ret; if (sw->link_width != ret) change = true; sw->link_width = ret; /* Notify userspace that there is possible link attribute change */ if (device_is_registered(&sw->dev) && change) kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE); return 0; } /** * tb_switch_lane_bonding_enable() - Enable lane bonding * @sw: Switch to enable lane bonding * * Connection manager can call this function to enable lane bonding of a * switch. If conditions are correct and both switches support the feature, * lanes are bonded. It is safe to call this to any switch. */ int tb_switch_lane_bonding_enable(struct tb_switch *sw) { struct tb_switch *parent = tb_to_switch(sw->dev.parent); struct tb_port *up, *down; u64 route = tb_route(sw); int ret; if (!route) return 0; if (!tb_switch_lane_bonding_possible(sw)) return 0; up = tb_upstream_port(sw); down = tb_port_at(route, parent); if (!tb_port_is_width_supported(up, 2) || !tb_port_is_width_supported(down, 2)) return 0; ret = tb_port_lane_bonding_enable(up); if (ret) { tb_port_warn(up, "failed to enable lane bonding\n"); return ret; } ret = tb_port_lane_bonding_enable(down); if (ret) { tb_port_warn(down, "failed to enable lane bonding\n"); tb_port_lane_bonding_disable(up); return ret; } ret = tb_port_wait_for_link_width(down, 2, 100); if (ret) { tb_port_warn(down, "timeout enabling lane bonding\n"); return ret; } tb_port_update_credits(down); tb_port_update_credits(up); tb_switch_update_link_attributes(sw); tb_sw_dbg(sw, "lane bonding enabled\n"); return ret; } /** * tb_switch_lane_bonding_disable() - Disable lane bonding * @sw: Switch whose lane bonding to disable * * Disables lane bonding between @sw and parent. This can be called even * if lanes were not bonded originally. */ void tb_switch_lane_bonding_disable(struct tb_switch *sw) { struct tb_switch *parent = tb_to_switch(sw->dev.parent); struct tb_port *up, *down; if (!tb_route(sw)) return; up = tb_upstream_port(sw); if (!up->bonded) return; down = tb_port_at(tb_route(sw), parent); tb_port_lane_bonding_disable(up); tb_port_lane_bonding_disable(down); /* * It is fine if we get other errors as the router might have * been unplugged. */ if (tb_port_wait_for_link_width(down, 1, 100) == -ETIMEDOUT) tb_sw_warn(sw, "timeout disabling lane bonding\n"); tb_port_update_credits(down); tb_port_update_credits(up); tb_switch_update_link_attributes(sw); tb_sw_dbg(sw, "lane bonding disabled\n"); } /** * tb_switch_configure_link() - Set link configured * @sw: Switch whose link is configured * * Sets the link upstream from @sw configured (from both ends) so that * it will not be disconnected when the domain exits sleep. Can be * called for any switch. * * It is recommended that this is called after lane bonding is enabled. * * Returns %0 on success and negative errno in case of error. */ int tb_switch_configure_link(struct tb_switch *sw) { struct tb_port *up, *down; int ret; if (!tb_route(sw) || tb_switch_is_icm(sw)) return 0; up = tb_upstream_port(sw); if (tb_switch_is_usb4(up->sw)) ret = usb4_port_configure(up); else ret = tb_lc_configure_port(up); if (ret) return ret; down = up->remote; if (tb_switch_is_usb4(down->sw)) return usb4_port_configure(down); return tb_lc_configure_port(down); } /** * tb_switch_unconfigure_link() - Unconfigure link * @sw: Switch whose link is unconfigured * * Sets the link unconfigured so the @sw will be disconnected if the * domain exists sleep. */ void tb_switch_unconfigure_link(struct tb_switch *sw) { struct tb_port *up, *down; if (sw->is_unplugged) return; if (!tb_route(sw) || tb_switch_is_icm(sw)) return; up = tb_upstream_port(sw); if (tb_switch_is_usb4(up->sw)) usb4_port_unconfigure(up); else tb_lc_unconfigure_port(up); down = up->remote; if (tb_switch_is_usb4(down->sw)) usb4_port_unconfigure(down); else tb_lc_unconfigure_port(down); } static void tb_switch_credits_init(struct tb_switch *sw) { if (tb_switch_is_icm(sw)) return; if (!tb_switch_is_usb4(sw)) return; if (usb4_switch_credits_init(sw)) tb_sw_info(sw, "failed to determine preferred buffer allocation, using defaults\n"); } /** * tb_switch_add() - Add a switch to the domain * @sw: Switch to add * * This is the last step in adding switch to the domain. It will read * identification information from DROM and initializes ports so that * they can be used to connect other switches. The switch will be * exposed to the userspace when this function successfully returns. To * remove and release the switch, call tb_switch_remove(). * * Return: %0 in case of success and negative errno in case of failure */ int tb_switch_add(struct tb_switch *sw) { int i, ret; /* * Initialize DMA control port now before we read DROM. Recent * host controllers have more complete DROM on NVM that includes * vendor and model identification strings which we then expose * to the userspace. NVM can be accessed through DMA * configuration based mailbox. */ ret = tb_switch_add_dma_port(sw); if (ret) { dev_err(&sw->dev, "failed to add DMA port\n"); return ret; } if (!sw->safe_mode) { tb_switch_credits_init(sw); /* read drom */ ret = tb_drom_read(sw); if (ret) dev_warn(&sw->dev, "reading DROM failed: %d\n", ret); tb_sw_dbg(sw, "uid: %#llx\n", sw->uid); tb_check_quirks(sw); ret = tb_switch_set_uuid(sw); if (ret) { dev_err(&sw->dev, "failed to set UUID\n"); return ret; } for (i = 0; i <= sw->config.max_port_number; i++) { if (sw->ports[i].disabled) { tb_port_dbg(&sw->ports[i], "disabled by eeprom\n"); continue; } ret = tb_init_port(&sw->ports[i]); if (ret) { dev_err(&sw->dev, "failed to initialize port %d\n", i); return ret; } } tb_switch_default_link_ports(sw); ret = tb_switch_update_link_attributes(sw); if (ret) return ret; ret = tb_switch_tmu_init(sw); if (ret) return ret; } ret = device_add(&sw->dev); if (ret) { dev_err(&sw->dev, "failed to add device: %d\n", ret); return ret; } if (tb_route(sw)) { dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n", sw->vendor, sw->device); if (sw->vendor_name && sw->device_name) dev_info(&sw->dev, "%s %s\n", sw->vendor_name, sw->device_name); } ret = usb4_switch_add_ports(sw); if (ret) { dev_err(&sw->dev, "failed to add USB4 ports\n"); goto err_del; } ret = tb_switch_nvm_add(sw); if (ret) { dev_err(&sw->dev, "failed to add NVM devices\n"); goto err_ports; } /* * Thunderbolt routers do not generate wakeups themselves but * they forward wakeups from tunneled protocols, so enable it * here. */ device_init_wakeup(&sw->dev, true); pm_runtime_set_active(&sw->dev); if (sw->rpm) { pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY); pm_runtime_use_autosuspend(&sw->dev); pm_runtime_mark_last_busy(&sw->dev); pm_runtime_enable(&sw->dev); pm_request_autosuspend(&sw->dev); } tb_switch_debugfs_init(sw); return 0; err_ports: usb4_switch_remove_ports(sw); err_del: device_del(&sw->dev); return ret; } /** * tb_switch_remove() - Remove and release a switch * @sw: Switch to remove * * This will remove the switch from the domain and release it after last * reference count drops to zero. If there are switches connected below * this switch, they will be removed as well. */ void tb_switch_remove(struct tb_switch *sw) { struct tb_port *port; tb_switch_debugfs_remove(sw); if (sw->rpm) { pm_runtime_get_sync(&sw->dev); pm_runtime_disable(&sw->dev); } /* port 0 is the switch itself and never has a remote */ tb_switch_for_each_port(sw, port) { if (tb_port_has_remote(port)) { tb_switch_remove(port->remote->sw); port->remote = NULL; } else if (port->xdomain) { tb_xdomain_remove(port->xdomain); port->xdomain = NULL; } /* Remove any downstream retimers */ tb_retimer_remove_all(port); } if (!sw->is_unplugged) tb_plug_events_active(sw, false); tb_switch_nvm_remove(sw); usb4_switch_remove_ports(sw); if (tb_route(sw)) dev_info(&sw->dev, "device disconnected\n"); device_unregister(&sw->dev); } /** * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches * @sw: Router to mark unplugged */ void tb_sw_set_unplugged(struct tb_switch *sw) { struct tb_port *port; if (sw == sw->tb->root_switch) { tb_sw_WARN(sw, "cannot unplug root switch\n"); return; } if (sw->is_unplugged) { tb_sw_WARN(sw, "is_unplugged already set\n"); return; } sw->is_unplugged = true; tb_switch_for_each_port(sw, port) { if (tb_port_has_remote(port)) tb_sw_set_unplugged(port->remote->sw); else if (port->xdomain) port->xdomain->is_unplugged = true; } } static int tb_switch_set_wake(struct tb_switch *sw, unsigned int flags) { if (flags) tb_sw_dbg(sw, "enabling wakeup: %#x\n", flags); else tb_sw_dbg(sw, "disabling wakeup\n"); if (tb_switch_is_usb4(sw)) return usb4_switch_set_wake(sw, flags); return tb_lc_set_wake(sw, flags); } int tb_switch_resume(struct tb_switch *sw) { struct tb_port *port; int err; tb_sw_dbg(sw, "resuming switch\n"); /* * Check for UID of the connected switches except for root * switch which we assume cannot be removed. */ if (tb_route(sw)) { u64 uid; /* * Check first that we can still read the switch config * space. It may be that there is now another domain * connected. */ err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw)); if (err < 0) { tb_sw_info(sw, "switch not present anymore\n"); return err; } /* We don't have any way to confirm this was the same device */ if (!sw->uid) return -ENODEV; if (tb_switch_is_usb4(sw)) err = usb4_switch_read_uid(sw, &uid); else err = tb_drom_read_uid_only(sw, &uid); if (err) { tb_sw_warn(sw, "uid read failed\n"); return err; } if (sw->uid != uid) { tb_sw_info(sw, "changed while suspended (uid %#llx -> %#llx)\n", sw->uid, uid); return -ENODEV; } } err = tb_switch_configure(sw); if (err) return err; /* Disable wakes */ tb_switch_set_wake(sw, 0); err = tb_switch_tmu_init(sw); if (err) return err; /* check for surviving downstream switches */ tb_switch_for_each_port(sw, port) { if (!tb_port_is_null(port)) continue; if (!tb_port_resume(port)) continue; if (tb_wait_for_port(port, true) <= 0) { tb_port_warn(port, "lost during suspend, disconnecting\n"); if (tb_port_has_remote(port)) tb_sw_set_unplugged(port->remote->sw); else if (port->xdomain) port->xdomain->is_unplugged = true; } else { /* * Always unlock the port so the downstream * switch/domain is accessible. */ if (tb_port_unlock(port)) tb_port_warn(port, "failed to unlock port\n"); if (port->remote && tb_switch_resume(port->remote->sw)) { tb_port_warn(port, "lost during suspend, disconnecting\n"); tb_sw_set_unplugged(port->remote->sw); } } } return 0; } /** * tb_switch_suspend() - Put a switch to sleep * @sw: Switch to suspend * @runtime: Is this runtime suspend or system sleep * * Suspends router and all its children. Enables wakes according to * value of @runtime and then sets sleep bit for the router. If @sw is * host router the domain is ready to go to sleep once this function * returns. */ void tb_switch_suspend(struct tb_switch *sw, bool runtime) { unsigned int flags = 0; struct tb_port *port; int err; tb_sw_dbg(sw, "suspending switch\n"); /* * Actually only needed for Titan Ridge but for simplicity can be * done for USB4 device too as CLx is re-enabled at resume. * CL0s and CL1 are enabled and supported together. */ if (tb_switch_is_clx_enabled(sw, TB_CL1)) { if (tb_switch_disable_clx(sw, TB_CL1)) tb_sw_warn(sw, "failed to disable %s on upstream port\n", tb_switch_clx_name(TB_CL1)); } err = tb_plug_events_active(sw, false); if (err) return; tb_switch_for_each_port(sw, port) { if (tb_port_has_remote(port)) tb_switch_suspend(port->remote->sw, runtime); } if (runtime) { /* Trigger wake when something is plugged in/out */ flags |= TB_WAKE_ON_CONNECT | TB_WAKE_ON_DISCONNECT; flags |= TB_WAKE_ON_USB4; flags |= TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE | TB_WAKE_ON_DP; } else if (device_may_wakeup(&sw->dev)) { flags |= TB_WAKE_ON_USB4 | TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE; } tb_switch_set_wake(sw, flags); if (tb_switch_is_usb4(sw)) usb4_switch_set_sleep(sw); else tb_lc_set_sleep(sw); } /** * tb_switch_query_dp_resource() - Query availability of DP resource * @sw: Switch whose DP resource is queried * @in: DP IN port * * Queries availability of DP resource for DP tunneling using switch * specific means. Returns %true if resource is available. */ bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in) { if (tb_switch_is_usb4(sw)) return usb4_switch_query_dp_resource(sw, in); return tb_lc_dp_sink_query(sw, in); } /** * tb_switch_alloc_dp_resource() - Allocate available DP resource * @sw: Switch whose DP resource is allocated * @in: DP IN port * * Allocates DP resource for DP tunneling. The resource must be * available for this to succeed (see tb_switch_query_dp_resource()). * Returns %0 in success and negative errno otherwise. */ int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in) { int ret; if (tb_switch_is_usb4(sw)) ret = usb4_switch_alloc_dp_resource(sw, in); else ret = tb_lc_dp_sink_alloc(sw, in); if (ret) tb_sw_warn(sw, "failed to allocate DP resource for port %d\n", in->port); else tb_sw_dbg(sw, "allocated DP resource for port %d\n", in->port); return ret; } /** * tb_switch_dealloc_dp_resource() - De-allocate DP resource * @sw: Switch whose DP resource is de-allocated * @in: DP IN port * * De-allocates DP resource that was previously allocated for DP * tunneling. */ void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in) { int ret; if (tb_switch_is_usb4(sw)) ret = usb4_switch_dealloc_dp_resource(sw, in); else ret = tb_lc_dp_sink_dealloc(sw, in); if (ret) tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n", in->port); else tb_sw_dbg(sw, "released DP resource for port %d\n", in->port); } struct tb_sw_lookup { struct tb *tb; u8 link; u8 depth; const uuid_t *uuid; u64 route; }; static int tb_switch_match(struct device *dev, const void *data) { struct tb_switch *sw = tb_to_switch(dev); const struct tb_sw_lookup *lookup = data; if (!sw) return 0; if (sw->tb != lookup->tb) return 0; if (lookup->uuid) return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid)); if (lookup->route) { return sw->config.route_lo == lower_32_bits(lookup->route) && sw->config.route_hi == upper_32_bits(lookup->route); } /* Root switch is matched only by depth */ if (!lookup->depth) return !sw->depth; return sw->link == lookup->link && sw->depth == lookup->depth; } /** * tb_switch_find_by_link_depth() - Find switch by link and depth * @tb: Domain the switch belongs * @link: Link number the switch is connected * @depth: Depth of the switch in link * * Returned switch has reference count increased so the caller needs to * call tb_switch_put() when done with the switch. */ struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth) { struct tb_sw_lookup lookup; struct device *dev; memset(&lookup, 0, sizeof(lookup)); lookup.tb = tb; lookup.link = link; lookup.depth = depth; dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match); if (dev) return tb_to_switch(dev); return NULL; } /** * tb_switch_find_by_uuid() - Find switch by UUID * @tb: Domain the switch belongs * @uuid: UUID to look for * * Returned switch has reference count increased so the caller needs to * call tb_switch_put() when done with the switch. */ struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid) { struct tb_sw_lookup lookup; struct device *dev; memset(&lookup, 0, sizeof(lookup)); lookup.tb = tb; lookup.uuid = uuid; dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match); if (dev) return tb_to_switch(dev); return NULL; } /** * tb_switch_find_by_route() - Find switch by route string * @tb: Domain the switch belongs * @route: Route string to look for * * Returned switch has reference count increased so the caller needs to * call tb_switch_put() when done with the switch. */ struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route) { struct tb_sw_lookup lookup; struct device *dev; if (!route) return tb_switch_get(tb->root_switch); memset(&lookup, 0, sizeof(lookup)); lookup.tb = tb; lookup.route = route; dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match); if (dev) return tb_to_switch(dev); return NULL; } /** * tb_switch_find_port() - return the first port of @type on @sw or NULL * @sw: Switch to find the port from * @type: Port type to look for */ struct tb_port *tb_switch_find_port(struct tb_switch *sw, enum tb_port_type type) { struct tb_port *port; tb_switch_for_each_port(sw, port) { if (port->config.type == type) return port; } return NULL; } static int tb_switch_pm_secondary_resolve(struct tb_switch *sw) { struct tb_switch *parent = tb_switch_parent(sw); struct tb_port *up, *down; int ret; if (!tb_route(sw)) return 0; up = tb_upstream_port(sw); down = tb_port_at(tb_route(sw), parent); ret = tb_port_pm_secondary_enable(up); if (ret) return ret; return tb_port_pm_secondary_disable(down); } static int __tb_switch_enable_clx(struct tb_switch *sw, enum tb_clx clx) { struct tb_switch *parent = tb_switch_parent(sw); bool up_clx_support, down_clx_support; struct tb_port *up, *down; int ret; if (!tb_switch_is_clx_supported(sw)) return 0; /* * Enable CLx for host router's downstream port as part of the * downstream router enabling procedure. */ if (!tb_route(sw)) return 0; /* Enable CLx only for first hop router (depth = 1) */ if (tb_route(parent)) return 0; ret = tb_switch_pm_secondary_resolve(sw); if (ret) return ret; up = tb_upstream_port(sw); down = tb_port_at(tb_route(sw), parent); up_clx_support = tb_port_clx_supported(up, clx); down_clx_support = tb_port_clx_supported(down, clx); tb_port_dbg(up, "%s %ssupported\n", tb_switch_clx_name(clx), up_clx_support ? "" : "not "); tb_port_dbg(down, "%s %ssupported\n", tb_switch_clx_name(clx), down_clx_support ? "" : "not "); if (!up_clx_support || !down_clx_support) return -EOPNOTSUPP; ret = tb_port_clx_enable(up, clx); if (ret) return ret; ret = tb_port_clx_enable(down, clx); if (ret) { tb_port_clx_disable(up, clx); return ret; } ret = tb_switch_mask_clx_objections(sw); if (ret) { tb_port_clx_disable(up, clx); tb_port_clx_disable(down, clx); return ret; } sw->clx = clx; tb_port_dbg(up, "%s enabled\n", tb_switch_clx_name(clx)); return 0; } /** * tb_switch_enable_clx() - Enable CLx on upstream port of specified router * @sw: Router to enable CLx for * @clx: The CLx state to enable * * Enable CLx state only for first hop router. That is the most common * use-case, that is intended for better thermal management, and so helps * to improve performance. CLx is enabled only if both sides of the link * support CLx, and if both sides of the link are not configured as two * single lane links and only if the link is not inter-domain link. The * complete set of conditions is described in CM Guide 1.0 section 8.1. * * Return: Returns 0 on success or an error code on failure. */ int tb_switch_enable_clx(struct tb_switch *sw, enum tb_clx clx) { struct tb_switch *root_sw = sw->tb->root_switch; if (!clx_enabled) return 0; /* * CLx is not enabled and validated on Intel USB4 platforms before * Alder Lake. */ if (root_sw->generation < 4 || tb_switch_is_tiger_lake(root_sw)) return 0; switch (clx) { case TB_CL1: /* CL0s and CL1 are enabled and supported together */ return __tb_switch_enable_clx(sw, clx); default: return -EOPNOTSUPP; } } static int __tb_switch_disable_clx(struct tb_switch *sw, enum tb_clx clx) { struct tb_switch *parent = tb_switch_parent(sw); struct tb_port *up, *down; int ret; if (!tb_switch_is_clx_supported(sw)) return 0; /* * Disable CLx for host router's downstream port as part of the * downstream router enabling procedure. */ if (!tb_route(sw)) return 0; /* Disable CLx only for first hop router (depth = 1) */ if (tb_route(parent)) return 0; up = tb_upstream_port(sw); down = tb_port_at(tb_route(sw), parent); ret = tb_port_clx_disable(up, clx); if (ret) return ret; ret = tb_port_clx_disable(down, clx); if (ret) return ret; sw->clx = TB_CLX_DISABLE; tb_port_dbg(up, "%s disabled\n", tb_switch_clx_name(clx)); return 0; } /** * tb_switch_disable_clx() - Disable CLx on upstream port of specified router * @sw: Router to disable CLx for * @clx: The CLx state to disable * * Return: Returns 0 on success or an error code on failure. */ int tb_switch_disable_clx(struct tb_switch *sw, enum tb_clx clx) { if (!clx_enabled) return 0; switch (clx) { case TB_CL1: /* CL0s and CL1 are enabled and supported together */ return __tb_switch_disable_clx(sw, clx); default: return -EOPNOTSUPP; } } /** * tb_switch_mask_clx_objections() - Mask CLx objections for a router * @sw: Router to mask objections for * * Mask the objections coming from the second depth routers in order to * stop these objections from interfering with the CLx states of the first * depth link. */ int tb_switch_mask_clx_objections(struct tb_switch *sw) { int up_port = sw->config.upstream_port_number; u32 offset, val[2], mask_obj, unmask_obj; int ret, i; /* Only Titan Ridge of pre-USB4 devices support CLx states */ if (!tb_switch_is_titan_ridge(sw)) return 0; if (!tb_route(sw)) return 0; /* * In Titan Ridge there are only 2 dual-lane Thunderbolt ports: * Port A consists of lane adapters 1,2 and * Port B consists of lane adapters 3,4 * If upstream port is A, (lanes are 1,2), we mask objections from * port B (lanes 3,4) and unmask objections from Port A and vice-versa. */ if (up_port == 1) { mask_obj = TB_LOW_PWR_C0_PORT_B_MASK; unmask_obj = TB_LOW_PWR_C1_PORT_A_MASK; offset = TB_LOW_PWR_C1_CL1; } else { mask_obj = TB_LOW_PWR_C1_PORT_A_MASK; unmask_obj = TB_LOW_PWR_C0_PORT_B_MASK; offset = TB_LOW_PWR_C3_CL1; } ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, sw->cap_lp + offset, ARRAY_SIZE(val)); if (ret) return ret; for (i = 0; i < ARRAY_SIZE(val); i++) { val[i] |= mask_obj; val[i] &= ~unmask_obj; } return tb_sw_write(sw, &val, TB_CFG_SWITCH, sw->cap_lp + offset, ARRAY_SIZE(val)); } /* * Can be used for read/write a specified PCIe bridge for any Thunderbolt 3 * device. For now used only for Titan Ridge. */ static int tb_switch_pcie_bridge_write(struct tb_switch *sw, unsigned int bridge, unsigned int pcie_offset, u32 value) { u32 offset, command, val; int ret; if (sw->generation != 3) return -EOPNOTSUPP; offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_WR_DATA; ret = tb_sw_write(sw, &value, TB_CFG_SWITCH, offset, 1); if (ret) return ret; command = pcie_offset & TB_PLUG_EVENTS_PCIE_CMD_DW_OFFSET_MASK; command |= BIT(bridge + TB_PLUG_EVENTS_PCIE_CMD_BR_SHIFT); command |= TB_PLUG_EVENTS_PCIE_CMD_RD_WR_MASK; command |= TB_PLUG_EVENTS_PCIE_CMD_COMMAND_VAL << TB_PLUG_EVENTS_PCIE_CMD_COMMAND_SHIFT; command |= TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK; offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_CMD; ret = tb_sw_write(sw, &command, TB_CFG_SWITCH, offset, 1); if (ret) return ret; ret = tb_switch_wait_for_bit(sw, offset, TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK, 0, 100); if (ret) return ret; ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1); if (ret) return ret; if (val & TB_PLUG_EVENTS_PCIE_CMD_TIMEOUT_MASK) return -ETIMEDOUT; return 0; } /** * tb_switch_pcie_l1_enable() - Enable PCIe link to enter L1 state * @sw: Router to enable PCIe L1 * * For Titan Ridge switch to enter CLx state, its PCIe bridges shall enable * entry to PCIe L1 state. Shall be called after the upstream PCIe tunnel * was configured. Due to Intel platforms limitation, shall be called only * for first hop switch. */ int tb_switch_pcie_l1_enable(struct tb_switch *sw) { struct tb_switch *parent = tb_switch_parent(sw); int ret; if (!tb_route(sw)) return 0; if (!tb_switch_is_titan_ridge(sw)) return 0; /* Enable PCIe L1 enable only for first hop router (depth = 1) */ if (tb_route(parent)) return 0; /* Write to downstream PCIe bridge #5 aka Dn4 */ ret = tb_switch_pcie_bridge_write(sw, 5, 0x143, 0x0c7806b1); if (ret) return ret; /* Write to Upstream PCIe bridge #0 aka Up0 */ return tb_switch_pcie_bridge_write(sw, 0, 0x143, 0x0c5806b1); } /** * tb_switch_xhci_connect() - Connect internal xHCI * @sw: Router whose xHCI to connect * * Can be called to any router. For Alpine Ridge and Titan Ridge * performs special flows that bring the xHCI functional for any device * connected to the type-C port. Call only after PCIe tunnel has been * established. The function only does the connect if not done already * so can be called several times for the same router. */ int tb_switch_xhci_connect(struct tb_switch *sw) { bool usb_port1, usb_port3, xhci_port1, xhci_port3; struct tb_port *port1, *port3; int ret; port1 = &sw->ports[1]; port3 = &sw->ports[3]; if (tb_switch_is_alpine_ridge(sw)) { usb_port1 = tb_lc_is_usb_plugged(port1); usb_port3 = tb_lc_is_usb_plugged(port3); xhci_port1 = tb_lc_is_xhci_connected(port1); xhci_port3 = tb_lc_is_xhci_connected(port3); /* Figure out correct USB port to connect */ if (usb_port1 && !xhci_port1) { ret = tb_lc_xhci_connect(port1); if (ret) return ret; } if (usb_port3 && !xhci_port3) return tb_lc_xhci_connect(port3); } else if (tb_switch_is_titan_ridge(sw)) { ret = tb_lc_xhci_connect(port1); if (ret) return ret; return tb_lc_xhci_connect(port3); } return 0; } /** * tb_switch_xhci_disconnect() - Disconnect internal xHCI * @sw: Router whose xHCI to disconnect * * The opposite of tb_switch_xhci_connect(). Disconnects xHCI on both * ports. */ void tb_switch_xhci_disconnect(struct tb_switch *sw) { if (sw->generation == 3) { struct tb_port *port1 = &sw->ports[1]; struct tb_port *port3 = &sw->ports[3]; tb_lc_xhci_disconnect(port1); tb_port_dbg(port1, "disconnected xHCI\n"); tb_lc_xhci_disconnect(port3); tb_port_dbg(port3, "disconnected xHCI\n"); } }