// SPDX-License-Identifier: GPL-2.0 /* * Thunderbolt Time Management Unit (TMU) support * * Copyright (C) 2019, Intel Corporation * Authors: Mika Westerberg <mika.westerberg@linux.intel.com> * Rajmohan Mani <rajmohan.mani@intel.com> */ #include <linux/delay.h> #include "tb.h" static const char *tb_switch_tmu_mode_name(const struct tb_switch *sw) { bool root_switch = !tb_route(sw); switch (sw->tmu.rate) { case TB_SWITCH_TMU_RATE_OFF: return "off"; case TB_SWITCH_TMU_RATE_HIFI: /* Root switch does not have upstream directionality */ if (root_switch) return "HiFi"; if (sw->tmu.unidirectional) return "uni-directional, HiFi"; return "bi-directional, HiFi"; case TB_SWITCH_TMU_RATE_NORMAL: if (root_switch) return "normal"; return "uni-directional, normal"; default: return "unknown"; } } static bool tb_switch_tmu_ucap_supported(struct tb_switch *sw) { int ret; u32 val; ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, sw->tmu.cap + TMU_RTR_CS_0, 1); if (ret) return false; return !!(val & TMU_RTR_CS_0_UCAP); } static int tb_switch_tmu_rate_read(struct tb_switch *sw) { int ret; u32 val; ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, sw->tmu.cap + TMU_RTR_CS_3, 1); if (ret) return ret; val >>= TMU_RTR_CS_3_TS_PACKET_INTERVAL_SHIFT; return val; } static int tb_switch_tmu_rate_write(struct tb_switch *sw, int rate) { int ret; u32 val; ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, sw->tmu.cap + TMU_RTR_CS_3, 1); if (ret) return ret; val &= ~TMU_RTR_CS_3_TS_PACKET_INTERVAL_MASK; val |= rate << TMU_RTR_CS_3_TS_PACKET_INTERVAL_SHIFT; return tb_sw_write(sw, &val, TB_CFG_SWITCH, sw->tmu.cap + TMU_RTR_CS_3, 1); } static int tb_port_tmu_write(struct tb_port *port, u8 offset, u32 mask, u32 value) { u32 data; int ret; ret = tb_port_read(port, &data, TB_CFG_PORT, port->cap_tmu + offset, 1); if (ret) return ret; data &= ~mask; data |= value; return tb_port_write(port, &data, TB_CFG_PORT, port->cap_tmu + offset, 1); } static int tb_port_tmu_set_unidirectional(struct tb_port *port, bool unidirectional) { u32 val; if (!port->sw->tmu.has_ucap) return 0; val = unidirectional ? TMU_ADP_CS_3_UDM : 0; return tb_port_tmu_write(port, TMU_ADP_CS_3, TMU_ADP_CS_3_UDM, val); } static inline int tb_port_tmu_unidirectional_disable(struct tb_port *port) { return tb_port_tmu_set_unidirectional(port, false); } static bool tb_port_tmu_is_unidirectional(struct tb_port *port) { int ret; u32 val; ret = tb_port_read(port, &val, TB_CFG_PORT, port->cap_tmu + TMU_ADP_CS_3, 1); if (ret) return false; return val & TMU_ADP_CS_3_UDM; } static int tb_switch_tmu_set_time_disruption(struct tb_switch *sw, bool set) { int ret; u32 val; ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, sw->tmu.cap + TMU_RTR_CS_0, 1); if (ret) return ret; if (set) val |= TMU_RTR_CS_0_TD; else val &= ~TMU_RTR_CS_0_TD; return tb_sw_write(sw, &val, TB_CFG_SWITCH, sw->tmu.cap + TMU_RTR_CS_0, 1); } /** * tb_switch_tmu_init() - Initialize switch TMU structures * @sw: Switch to initialized * * This function must be called before other TMU related functions to * makes the internal structures are filled in correctly. Does not * change any hardware configuration. */ int tb_switch_tmu_init(struct tb_switch *sw) { struct tb_port *port; int ret; if (tb_switch_is_icm(sw)) return 0; ret = tb_switch_find_cap(sw, TB_SWITCH_CAP_TMU); if (ret > 0) sw->tmu.cap = ret; tb_switch_for_each_port(sw, port) { int cap; cap = tb_port_find_cap(port, TB_PORT_CAP_TIME1); if (cap > 0) port->cap_tmu = cap; } ret = tb_switch_tmu_rate_read(sw); if (ret < 0) return ret; sw->tmu.rate = ret; sw->tmu.has_ucap = tb_switch_tmu_ucap_supported(sw); if (sw->tmu.has_ucap) { tb_sw_dbg(sw, "TMU: supports uni-directional mode\n"); if (tb_route(sw)) { struct tb_port *up = tb_upstream_port(sw); sw->tmu.unidirectional = tb_port_tmu_is_unidirectional(up); } } else { sw->tmu.unidirectional = false; } tb_sw_dbg(sw, "TMU: current mode: %s\n", tb_switch_tmu_mode_name(sw)); return 0; } /** * tb_switch_tmu_post_time() - Update switch local time * @sw: Switch whose time to update * * Updates switch local time using time posting procedure. */ int tb_switch_tmu_post_time(struct tb_switch *sw) { unsigned int post_local_time_offset, post_time_offset; struct tb_switch *root_switch = sw->tb->root_switch; u64 hi, mid, lo, local_time, post_time; int i, ret, retries = 100; u32 gm_local_time[3]; if (!tb_route(sw)) return 0; if (!tb_switch_is_usb4(sw)) return 0; /* Need to be able to read the grand master time */ if (!root_switch->tmu.cap) return 0; ret = tb_sw_read(root_switch, gm_local_time, TB_CFG_SWITCH, root_switch->tmu.cap + TMU_RTR_CS_1, ARRAY_SIZE(gm_local_time)); if (ret) return ret; for (i = 0; i < ARRAY_SIZE(gm_local_time); i++) tb_sw_dbg(root_switch, "local_time[%d]=0x%08x\n", i, gm_local_time[i]); /* Convert to nanoseconds (drop fractional part) */ hi = gm_local_time[2] & TMU_RTR_CS_3_LOCAL_TIME_NS_MASK; mid = gm_local_time[1]; lo = (gm_local_time[0] & TMU_RTR_CS_1_LOCAL_TIME_NS_MASK) >> TMU_RTR_CS_1_LOCAL_TIME_NS_SHIFT; local_time = hi << 48 | mid << 16 | lo; /* Tell the switch that time sync is disrupted for a while */ ret = tb_switch_tmu_set_time_disruption(sw, true); if (ret) return ret; post_local_time_offset = sw->tmu.cap + TMU_RTR_CS_22; post_time_offset = sw->tmu.cap + TMU_RTR_CS_24; /* * Write the Grandmaster time to the Post Local Time registers * of the new switch. */ ret = tb_sw_write(sw, &local_time, TB_CFG_SWITCH, post_local_time_offset, 2); if (ret) goto out; /* * Have the new switch update its local time (by writing 1 to * the post_time registers) and wait for the completion of the * same (post_time register becomes 0). This means the time has * been converged properly. */ post_time = 1; ret = tb_sw_write(sw, &post_time, TB_CFG_SWITCH, post_time_offset, 2); if (ret) goto out; do { usleep_range(5, 10); ret = tb_sw_read(sw, &post_time, TB_CFG_SWITCH, post_time_offset, 2); if (ret) goto out; } while (--retries && post_time); if (!retries) { ret = -ETIMEDOUT; goto out; } tb_sw_dbg(sw, "TMU: updated local time to %#llx\n", local_time); out: tb_switch_tmu_set_time_disruption(sw, false); return ret; } /** * tb_switch_tmu_disable() - Disable TMU of a switch * @sw: Switch whose TMU to disable * * Turns off TMU of @sw if it is enabled. If not enabled does nothing. */ int tb_switch_tmu_disable(struct tb_switch *sw) { int ret; if (!tb_switch_is_usb4(sw)) return 0; /* Already disabled? */ if (sw->tmu.rate == TB_SWITCH_TMU_RATE_OFF) return 0; if (sw->tmu.unidirectional) { struct tb_switch *parent = tb_switch_parent(sw); struct tb_port *up, *down; up = tb_upstream_port(sw); down = tb_port_at(tb_route(sw), parent); /* The switch may be unplugged so ignore any errors */ tb_port_tmu_unidirectional_disable(up); ret = tb_port_tmu_unidirectional_disable(down); if (ret) return ret; } tb_switch_tmu_rate_write(sw, TB_SWITCH_TMU_RATE_OFF); sw->tmu.unidirectional = false; sw->tmu.rate = TB_SWITCH_TMU_RATE_OFF; tb_sw_dbg(sw, "TMU: disabled\n"); return 0; } /** * tb_switch_tmu_enable() - Enable TMU on a switch * @sw: Switch whose TMU to enable * * Enables TMU of a switch to be in bi-directional, HiFi mode. In this mode * all tunneling should work. */ int tb_switch_tmu_enable(struct tb_switch *sw) { int ret; if (!tb_switch_is_usb4(sw)) return 0; if (tb_switch_tmu_is_enabled(sw)) return 0; ret = tb_switch_tmu_set_time_disruption(sw, true); if (ret) return ret; /* Change mode to bi-directional */ if (tb_route(sw) && sw->tmu.unidirectional) { struct tb_switch *parent = tb_switch_parent(sw); struct tb_port *up, *down; up = tb_upstream_port(sw); down = tb_port_at(tb_route(sw), parent); ret = tb_port_tmu_unidirectional_disable(down); if (ret) return ret; ret = tb_switch_tmu_rate_write(sw, TB_SWITCH_TMU_RATE_HIFI); if (ret) return ret; ret = tb_port_tmu_unidirectional_disable(up); if (ret) return ret; } else { ret = tb_switch_tmu_rate_write(sw, TB_SWITCH_TMU_RATE_HIFI); if (ret) return ret; } sw->tmu.unidirectional = false; sw->tmu.rate = TB_SWITCH_TMU_RATE_HIFI; tb_sw_dbg(sw, "TMU: mode set to: %s\n", tb_switch_tmu_mode_name(sw)); return tb_switch_tmu_set_time_disruption(sw, false); }