// SPDX-License-Identifier: GPL-2.0 /* * udc.c - ChipIdea UDC driver * * Copyright (C) 2008 Chipidea - MIPS Technologies, Inc. All rights reserved. * * Author: David Lopo */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ci.h" #include "udc.h" #include "bits.h" #include "otg.h" #include "otg_fsm.h" #include "trace.h" /* control endpoint description */ static const struct usb_endpoint_descriptor ctrl_endpt_out_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_OUT, .bmAttributes = USB_ENDPOINT_XFER_CONTROL, .wMaxPacketSize = cpu_to_le16(CTRL_PAYLOAD_MAX), }; static const struct usb_endpoint_descriptor ctrl_endpt_in_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_IN, .bmAttributes = USB_ENDPOINT_XFER_CONTROL, .wMaxPacketSize = cpu_to_le16(CTRL_PAYLOAD_MAX), }; static int reprime_dtd(struct ci_hdrc *ci, struct ci_hw_ep *hwep, struct td_node *node); /** * hw_ep_bit: calculates the bit number * @num: endpoint number * @dir: endpoint direction * * This function returns bit number */ static inline int hw_ep_bit(int num, int dir) { return num + ((dir == TX) ? 16 : 0); } static inline int ep_to_bit(struct ci_hdrc *ci, int n) { int fill = 16 - ci->hw_ep_max / 2; if (n >= ci->hw_ep_max / 2) n += fill; return n; } /** * hw_device_state: enables/disables interrupts (execute without interruption) * @ci: the controller * @dma: 0 => disable, !0 => enable and set dma engine * * This function returns an error code */ static int hw_device_state(struct ci_hdrc *ci, u32 dma) { if (dma) { hw_write(ci, OP_ENDPTLISTADDR, ~0, dma); /* interrupt, error, port change, reset, sleep/suspend */ hw_write(ci, OP_USBINTR, ~0, USBi_UI|USBi_UEI|USBi_PCI|USBi_URI|USBi_SLI); } else { hw_write(ci, OP_USBINTR, ~0, 0); } return 0; } /** * hw_ep_flush: flush endpoint fifo (execute without interruption) * @ci: the controller * @num: endpoint number * @dir: endpoint direction * * This function returns an error code */ static int hw_ep_flush(struct ci_hdrc *ci, int num, int dir) { int n = hw_ep_bit(num, dir); do { /* flush any pending transfer */ hw_write(ci, OP_ENDPTFLUSH, ~0, BIT(n)); while (hw_read(ci, OP_ENDPTFLUSH, BIT(n))) cpu_relax(); } while (hw_read(ci, OP_ENDPTSTAT, BIT(n))); return 0; } /** * hw_ep_disable: disables endpoint (execute without interruption) * @ci: the controller * @num: endpoint number * @dir: endpoint direction * * This function returns an error code */ static int hw_ep_disable(struct ci_hdrc *ci, int num, int dir) { hw_write(ci, OP_ENDPTCTRL + num, (dir == TX) ? ENDPTCTRL_TXE : ENDPTCTRL_RXE, 0); return 0; } /** * hw_ep_enable: enables endpoint (execute without interruption) * @ci: the controller * @num: endpoint number * @dir: endpoint direction * @type: endpoint type * * This function returns an error code */ static int hw_ep_enable(struct ci_hdrc *ci, int num, int dir, int type) { u32 mask, data; if (dir == TX) { mask = ENDPTCTRL_TXT; /* type */ data = type << __ffs(mask); mask |= ENDPTCTRL_TXS; /* unstall */ mask |= ENDPTCTRL_TXR; /* reset data toggle */ data |= ENDPTCTRL_TXR; mask |= ENDPTCTRL_TXE; /* enable */ data |= ENDPTCTRL_TXE; } else { mask = ENDPTCTRL_RXT; /* type */ data = type << __ffs(mask); mask |= ENDPTCTRL_RXS; /* unstall */ mask |= ENDPTCTRL_RXR; /* reset data toggle */ data |= ENDPTCTRL_RXR; mask |= ENDPTCTRL_RXE; /* enable */ data |= ENDPTCTRL_RXE; } hw_write(ci, OP_ENDPTCTRL + num, mask, data); return 0; } /** * hw_ep_get_halt: return endpoint halt status * @ci: the controller * @num: endpoint number * @dir: endpoint direction * * This function returns 1 if endpoint halted */ static int hw_ep_get_halt(struct ci_hdrc *ci, int num, int dir) { u32 mask = (dir == TX) ? ENDPTCTRL_TXS : ENDPTCTRL_RXS; return hw_read(ci, OP_ENDPTCTRL + num, mask) ? 1 : 0; } /** * hw_ep_prime: primes endpoint (execute without interruption) * @ci: the controller * @num: endpoint number * @dir: endpoint direction * @is_ctrl: true if control endpoint * * This function returns an error code */ static int hw_ep_prime(struct ci_hdrc *ci, int num, int dir, int is_ctrl) { int n = hw_ep_bit(num, dir); /* Synchronize before ep prime */ wmb(); if (is_ctrl && dir == RX && hw_read(ci, OP_ENDPTSETUPSTAT, BIT(num))) return -EAGAIN; hw_write(ci, OP_ENDPTPRIME, ~0, BIT(n)); while (hw_read(ci, OP_ENDPTPRIME, BIT(n))) cpu_relax(); if (is_ctrl && dir == RX && hw_read(ci, OP_ENDPTSETUPSTAT, BIT(num))) return -EAGAIN; /* status shoult be tested according with manual but it doesn't work */ return 0; } /** * hw_ep_set_halt: configures ep halt & resets data toggle after clear (execute * without interruption) * @ci: the controller * @num: endpoint number * @dir: endpoint direction * @value: true => stall, false => unstall * * This function returns an error code */ static int hw_ep_set_halt(struct ci_hdrc *ci, int num, int dir, int value) { if (value != 0 && value != 1) return -EINVAL; do { enum ci_hw_regs reg = OP_ENDPTCTRL + num; u32 mask_xs = (dir == TX) ? ENDPTCTRL_TXS : ENDPTCTRL_RXS; u32 mask_xr = (dir == TX) ? ENDPTCTRL_TXR : ENDPTCTRL_RXR; /* data toggle - reserved for EP0 but it's in ESS */ hw_write(ci, reg, mask_xs|mask_xr, value ? mask_xs : mask_xr); } while (value != hw_ep_get_halt(ci, num, dir)); return 0; } /** * hw_port_is_high_speed: test if port is high speed * @ci: the controller * * This function returns true if high speed port */ static int hw_port_is_high_speed(struct ci_hdrc *ci) { return ci->hw_bank.lpm ? hw_read(ci, OP_DEVLC, DEVLC_PSPD) : hw_read(ci, OP_PORTSC, PORTSC_HSP); } /** * hw_test_and_clear_complete: test & clear complete status (execute without * interruption) * @ci: the controller * @n: endpoint number * * This function returns complete status */ static int hw_test_and_clear_complete(struct ci_hdrc *ci, int n) { n = ep_to_bit(ci, n); return hw_test_and_clear(ci, OP_ENDPTCOMPLETE, BIT(n)); } /** * hw_test_and_clear_intr_active: test & clear active interrupts (execute * without interruption) * @ci: the controller * * This function returns active interrutps */ static u32 hw_test_and_clear_intr_active(struct ci_hdrc *ci) { u32 reg = hw_read_intr_status(ci) & hw_read_intr_enable(ci); hw_write(ci, OP_USBSTS, ~0, reg); return reg; } /** * hw_test_and_clear_setup_guard: test & clear setup guard (execute without * interruption) * @ci: the controller * * This function returns guard value */ static int hw_test_and_clear_setup_guard(struct ci_hdrc *ci) { return hw_test_and_write(ci, OP_USBCMD, USBCMD_SUTW, 0); } /** * hw_test_and_set_setup_guard: test & set setup guard (execute without * interruption) * @ci: the controller * * This function returns guard value */ static int hw_test_and_set_setup_guard(struct ci_hdrc *ci) { return hw_test_and_write(ci, OP_USBCMD, USBCMD_SUTW, USBCMD_SUTW); } /** * hw_usb_set_address: configures USB address (execute without interruption) * @ci: the controller * @value: new USB address * * This function explicitly sets the address, without the "USBADRA" (advance) * feature, which is not supported by older versions of the controller. */ static void hw_usb_set_address(struct ci_hdrc *ci, u8 value) { hw_write(ci, OP_DEVICEADDR, DEVICEADDR_USBADR, value << __ffs(DEVICEADDR_USBADR)); } /** * hw_usb_reset: restart device after a bus reset (execute without * interruption) * @ci: the controller * * This function returns an error code */ static int hw_usb_reset(struct ci_hdrc *ci) { hw_usb_set_address(ci, 0); /* ESS flushes only at end?!? */ hw_write(ci, OP_ENDPTFLUSH, ~0, ~0); /* clear setup token semaphores */ hw_write(ci, OP_ENDPTSETUPSTAT, 0, 0); /* clear complete status */ hw_write(ci, OP_ENDPTCOMPLETE, 0, 0); /* wait until all bits cleared */ while (hw_read(ci, OP_ENDPTPRIME, ~0)) udelay(10); /* not RTOS friendly */ /* reset all endpoints ? */ /* reset internal status and wait for further instructions no need to verify the port reset status (ESS does it) */ return 0; } /****************************************************************************** * UTIL block *****************************************************************************/ static int add_td_to_list(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq, unsigned int length, struct scatterlist *s) { int i; u32 temp; struct td_node *lastnode, *node = kzalloc(sizeof(struct td_node), GFP_ATOMIC); if (node == NULL) return -ENOMEM; node->ptr = dma_pool_zalloc(hwep->td_pool, GFP_ATOMIC, &node->dma); if (node->ptr == NULL) { kfree(node); return -ENOMEM; } node->ptr->token = cpu_to_le32(length << __ffs(TD_TOTAL_BYTES)); node->ptr->token &= cpu_to_le32(TD_TOTAL_BYTES); node->ptr->token |= cpu_to_le32(TD_STATUS_ACTIVE); if (hwep->type == USB_ENDPOINT_XFER_ISOC && hwep->dir == TX) { u32 mul = hwreq->req.length / hwep->ep.maxpacket; if (hwreq->req.length == 0 || hwreq->req.length % hwep->ep.maxpacket) mul++; node->ptr->token |= cpu_to_le32(mul << __ffs(TD_MULTO)); } if (s) { temp = (u32) (sg_dma_address(s) + hwreq->req.actual); node->td_remaining_size = CI_MAX_BUF_SIZE - length; } else { temp = (u32) (hwreq->req.dma + hwreq->req.actual); } if (length) { node->ptr->page[0] = cpu_to_le32(temp); for (i = 1; i < TD_PAGE_COUNT; i++) { u32 page = temp + i * CI_HDRC_PAGE_SIZE; page &= ~TD_RESERVED_MASK; node->ptr->page[i] = cpu_to_le32(page); } } hwreq->req.actual += length; if (!list_empty(&hwreq->tds)) { /* get the last entry */ lastnode = list_entry(hwreq->tds.prev, struct td_node, td); lastnode->ptr->next = cpu_to_le32(node->dma); } INIT_LIST_HEAD(&node->td); list_add_tail(&node->td, &hwreq->tds); return 0; } /** * _usb_addr: calculates endpoint address from direction & number * @ep: endpoint */ static inline u8 _usb_addr(struct ci_hw_ep *ep) { return ((ep->dir == TX) ? USB_ENDPOINT_DIR_MASK : 0) | ep->num; } static int prepare_td_for_non_sg(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq) { unsigned int rest = hwreq->req.length; int pages = TD_PAGE_COUNT; int ret = 0; if (rest == 0) { ret = add_td_to_list(hwep, hwreq, 0, NULL); if (ret < 0) return ret; } /* * The first buffer could be not page aligned. * In that case we have to span into one extra td. */ if (hwreq->req.dma % PAGE_SIZE) pages--; while (rest > 0) { unsigned int count = min(hwreq->req.length - hwreq->req.actual, (unsigned int)(pages * CI_HDRC_PAGE_SIZE)); ret = add_td_to_list(hwep, hwreq, count, NULL); if (ret < 0) return ret; rest -= count; } if (hwreq->req.zero && hwreq->req.length && hwep->dir == TX && (hwreq->req.length % hwep->ep.maxpacket == 0)) { ret = add_td_to_list(hwep, hwreq, 0, NULL); if (ret < 0) return ret; } return ret; } static int prepare_td_per_sg(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq, struct scatterlist *s) { unsigned int rest = sg_dma_len(s); int ret = 0; hwreq->req.actual = 0; while (rest > 0) { unsigned int count = min_t(unsigned int, rest, CI_MAX_BUF_SIZE); ret = add_td_to_list(hwep, hwreq, count, s); if (ret < 0) return ret; rest -= count; } return ret; } static void ci_add_buffer_entry(struct td_node *node, struct scatterlist *s) { int empty_td_slot_index = (CI_MAX_BUF_SIZE - node->td_remaining_size) / CI_HDRC_PAGE_SIZE; int i; u32 token; token = le32_to_cpu(node->ptr->token) + (sg_dma_len(s) << __ffs(TD_TOTAL_BYTES)); node->ptr->token = cpu_to_le32(token); for (i = empty_td_slot_index; i < TD_PAGE_COUNT; i++) { u32 page = (u32) sg_dma_address(s) + (i - empty_td_slot_index) * CI_HDRC_PAGE_SIZE; page &= ~TD_RESERVED_MASK; node->ptr->page[i] = cpu_to_le32(page); } } static int prepare_td_for_sg(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq) { struct usb_request *req = &hwreq->req; struct scatterlist *s = req->sg; int ret = 0, i = 0; struct td_node *node = NULL; if (!s || req->zero || req->length == 0) { dev_err(hwep->ci->dev, "not supported operation for sg\n"); return -EINVAL; } while (i++ < req->num_mapped_sgs) { if (sg_dma_address(s) % PAGE_SIZE) { dev_err(hwep->ci->dev, "not page aligned sg buffer\n"); return -EINVAL; } if (node && (node->td_remaining_size >= sg_dma_len(s))) { ci_add_buffer_entry(node, s); node->td_remaining_size -= sg_dma_len(s); } else { ret = prepare_td_per_sg(hwep, hwreq, s); if (ret) return ret; node = list_entry(hwreq->tds.prev, struct td_node, td); } s = sg_next(s); } return ret; } /** * _hardware_enqueue: configures a request at hardware level * @hwep: endpoint * @hwreq: request * * This function returns an error code */ static int _hardware_enqueue(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq) { struct ci_hdrc *ci = hwep->ci; int ret = 0; struct td_node *firstnode, *lastnode; /* don't queue twice */ if (hwreq->req.status == -EALREADY) return -EALREADY; hwreq->req.status = -EALREADY; ret = usb_gadget_map_request_by_dev(ci->dev->parent, &hwreq->req, hwep->dir); if (ret) return ret; if (hwreq->req.num_mapped_sgs) ret = prepare_td_for_sg(hwep, hwreq); else ret = prepare_td_for_non_sg(hwep, hwreq); if (ret) return ret; lastnode = list_entry(hwreq->tds.prev, struct td_node, td); lastnode->ptr->next = cpu_to_le32(TD_TERMINATE); if (!hwreq->req.no_interrupt) lastnode->ptr->token |= cpu_to_le32(TD_IOC); list_for_each_entry_safe(firstnode, lastnode, &hwreq->tds, td) trace_ci_prepare_td(hwep, hwreq, firstnode); firstnode = list_first_entry(&hwreq->tds, struct td_node, td); wmb(); hwreq->req.actual = 0; if (!list_empty(&hwep->qh.queue)) { struct ci_hw_req *hwreqprev; int n = hw_ep_bit(hwep->num, hwep->dir); int tmp_stat; struct td_node *prevlastnode; u32 next = firstnode->dma & TD_ADDR_MASK; hwreqprev = list_entry(hwep->qh.queue.prev, struct ci_hw_req, queue); prevlastnode = list_entry(hwreqprev->tds.prev, struct td_node, td); prevlastnode->ptr->next = cpu_to_le32(next); wmb(); if (ci->rev == CI_REVISION_22) { if (!hw_read(ci, OP_ENDPTSTAT, BIT(n))) reprime_dtd(ci, hwep, prevlastnode); } if (hw_read(ci, OP_ENDPTPRIME, BIT(n))) goto done; do { hw_write(ci, OP_USBCMD, USBCMD_ATDTW, USBCMD_ATDTW); tmp_stat = hw_read(ci, OP_ENDPTSTAT, BIT(n)); } while (!hw_read(ci, OP_USBCMD, USBCMD_ATDTW)); hw_write(ci, OP_USBCMD, USBCMD_ATDTW, 0); if (tmp_stat) goto done; } /* QH configuration */ hwep->qh.ptr->td.next = cpu_to_le32(firstnode->dma); hwep->qh.ptr->td.token &= cpu_to_le32(~(TD_STATUS_HALTED|TD_STATUS_ACTIVE)); if (hwep->type == USB_ENDPOINT_XFER_ISOC && hwep->dir == RX) { u32 mul = hwreq->req.length / hwep->ep.maxpacket; if (hwreq->req.length == 0 || hwreq->req.length % hwep->ep.maxpacket) mul++; hwep->qh.ptr->cap |= cpu_to_le32(mul << __ffs(QH_MULT)); } ret = hw_ep_prime(ci, hwep->num, hwep->dir, hwep->type == USB_ENDPOINT_XFER_CONTROL); done: return ret; } /** * free_pending_td: remove a pending request for the endpoint * @hwep: endpoint */ static void free_pending_td(struct ci_hw_ep *hwep) { struct td_node *pending = hwep->pending_td; dma_pool_free(hwep->td_pool, pending->ptr, pending->dma); hwep->pending_td = NULL; kfree(pending); } static int reprime_dtd(struct ci_hdrc *ci, struct ci_hw_ep *hwep, struct td_node *node) { hwep->qh.ptr->td.next = cpu_to_le32(node->dma); hwep->qh.ptr->td.token &= cpu_to_le32(~(TD_STATUS_HALTED | TD_STATUS_ACTIVE)); return hw_ep_prime(ci, hwep->num, hwep->dir, hwep->type == USB_ENDPOINT_XFER_CONTROL); } /** * _hardware_dequeue: handles a request at hardware level * @hwep: endpoint * @hwreq: request * * This function returns an error code */ static int _hardware_dequeue(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq) { u32 tmptoken; struct td_node *node, *tmpnode; unsigned remaining_length; unsigned actual = hwreq->req.length; struct ci_hdrc *ci = hwep->ci; if (hwreq->req.status != -EALREADY) return -EINVAL; hwreq->req.status = 0; list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) { tmptoken = le32_to_cpu(node->ptr->token); trace_ci_complete_td(hwep, hwreq, node); if ((TD_STATUS_ACTIVE & tmptoken) != 0) { int n = hw_ep_bit(hwep->num, hwep->dir); if (ci->rev == CI_REVISION_24) if (!hw_read(ci, OP_ENDPTSTAT, BIT(n))) reprime_dtd(ci, hwep, node); hwreq->req.status = -EALREADY; return -EBUSY; } remaining_length = (tmptoken & TD_TOTAL_BYTES); remaining_length >>= __ffs(TD_TOTAL_BYTES); actual -= remaining_length; hwreq->req.status = tmptoken & TD_STATUS; if ((TD_STATUS_HALTED & hwreq->req.status)) { hwreq->req.status = -EPIPE; break; } else if ((TD_STATUS_DT_ERR & hwreq->req.status)) { hwreq->req.status = -EPROTO; break; } else if ((TD_STATUS_TR_ERR & hwreq->req.status)) { hwreq->req.status = -EILSEQ; break; } if (remaining_length) { if (hwep->dir == TX) { hwreq->req.status = -EPROTO; break; } } /* * As the hardware could still address the freed td * which will run the udc unusable, the cleanup of the * td has to be delayed by one. */ if (hwep->pending_td) free_pending_td(hwep); hwep->pending_td = node; list_del_init(&node->td); } usb_gadget_unmap_request_by_dev(hwep->ci->dev->parent, &hwreq->req, hwep->dir); hwreq->req.actual += actual; if (hwreq->req.status) return hwreq->req.status; return hwreq->req.actual; } /** * _ep_nuke: dequeues all endpoint requests * @hwep: endpoint * * This function returns an error code * Caller must hold lock */ static int _ep_nuke(struct ci_hw_ep *hwep) __releases(hwep->lock) __acquires(hwep->lock) { struct td_node *node, *tmpnode; if (hwep == NULL) return -EINVAL; hw_ep_flush(hwep->ci, hwep->num, hwep->dir); while (!list_empty(&hwep->qh.queue)) { /* pop oldest request */ struct ci_hw_req *hwreq = list_entry(hwep->qh.queue.next, struct ci_hw_req, queue); list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) { dma_pool_free(hwep->td_pool, node->ptr, node->dma); list_del_init(&node->td); node->ptr = NULL; kfree(node); } list_del_init(&hwreq->queue); hwreq->req.status = -ESHUTDOWN; if (hwreq->req.complete != NULL) { spin_unlock(hwep->lock); usb_gadget_giveback_request(&hwep->ep, &hwreq->req); spin_lock(hwep->lock); } } if (hwep->pending_td) free_pending_td(hwep); return 0; } static int _ep_set_halt(struct usb_ep *ep, int value, bool check_transfer) { struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep); int direction, retval = 0; unsigned long flags; if (ep == NULL || hwep->ep.desc == NULL) return -EINVAL; if (usb_endpoint_xfer_isoc(hwep->ep.desc)) return -EOPNOTSUPP; spin_lock_irqsave(hwep->lock, flags); if (value && hwep->dir == TX && check_transfer && !list_empty(&hwep->qh.queue) && !usb_endpoint_xfer_control(hwep->ep.desc)) { spin_unlock_irqrestore(hwep->lock, flags); return -EAGAIN; } direction = hwep->dir; do { retval |= hw_ep_set_halt(hwep->ci, hwep->num, hwep->dir, value); if (!value) hwep->wedge = 0; if (hwep->type == USB_ENDPOINT_XFER_CONTROL) hwep->dir = (hwep->dir == TX) ? RX : TX; } while (hwep->dir != direction); spin_unlock_irqrestore(hwep->lock, flags); return retval; } /** * _gadget_stop_activity: stops all USB activity, flushes & disables all endpts * @gadget: gadget * * This function returns an error code */ static int _gadget_stop_activity(struct usb_gadget *gadget) { struct usb_ep *ep; struct ci_hdrc *ci = container_of(gadget, struct ci_hdrc, gadget); unsigned long flags; /* flush all endpoints */ gadget_for_each_ep(ep, gadget) { usb_ep_fifo_flush(ep); } usb_ep_fifo_flush(&ci->ep0out->ep); usb_ep_fifo_flush(&ci->ep0in->ep); /* make sure to disable all endpoints */ gadget_for_each_ep(ep, gadget) { usb_ep_disable(ep); } if (ci->status != NULL) { usb_ep_free_request(&ci->ep0in->ep, ci->status); ci->status = NULL; } spin_lock_irqsave(&ci->lock, flags); ci->gadget.speed = USB_SPEED_UNKNOWN; ci->remote_wakeup = 0; ci->suspended = 0; spin_unlock_irqrestore(&ci->lock, flags); return 0; } /****************************************************************************** * ISR block *****************************************************************************/ /** * isr_reset_handler: USB reset interrupt handler * @ci: UDC device * * This function resets USB engine after a bus reset occurred */ static void isr_reset_handler(struct ci_hdrc *ci) __releases(ci->lock) __acquires(ci->lock) { int retval; spin_unlock(&ci->lock); if (ci->gadget.speed != USB_SPEED_UNKNOWN) usb_gadget_udc_reset(&ci->gadget, ci->driver); retval = _gadget_stop_activity(&ci->gadget); if (retval) goto done; retval = hw_usb_reset(ci); if (retval) goto done; ci->status = usb_ep_alloc_request(&ci->ep0in->ep, GFP_ATOMIC); if (ci->status == NULL) retval = -ENOMEM; done: spin_lock(&ci->lock); if (retval) dev_err(ci->dev, "error: %i\n", retval); } /** * isr_get_status_complete: get_status request complete function * @ep: endpoint * @req: request handled * * Caller must release lock */ static void isr_get_status_complete(struct usb_ep *ep, struct usb_request *req) { if (ep == NULL || req == NULL) return; kfree(req->buf); usb_ep_free_request(ep, req); } /** * _ep_queue: queues (submits) an I/O request to an endpoint * @ep: endpoint * @req: request * @gfp_flags: GFP flags (not used) * * Caller must hold lock * This function returns an error code */ static int _ep_queue(struct usb_ep *ep, struct usb_request *req, gfp_t __maybe_unused gfp_flags) { struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep); struct ci_hw_req *hwreq = container_of(req, struct ci_hw_req, req); struct ci_hdrc *ci = hwep->ci; int retval = 0; if (ep == NULL || req == NULL || hwep->ep.desc == NULL) return -EINVAL; if (hwep->type == USB_ENDPOINT_XFER_CONTROL) { if (req->length) hwep = (ci->ep0_dir == RX) ? ci->ep0out : ci->ep0in; if (!list_empty(&hwep->qh.queue)) { _ep_nuke(hwep); dev_warn(hwep->ci->dev, "endpoint ctrl %X nuked\n", _usb_addr(hwep)); } } if (usb_endpoint_xfer_isoc(hwep->ep.desc) && hwreq->req.length > hwep->ep.mult * hwep->ep.maxpacket) { dev_err(hwep->ci->dev, "request length too big for isochronous\n"); return -EMSGSIZE; } /* first nuke then test link, e.g. previous status has not sent */ if (!list_empty(&hwreq->queue)) { dev_err(hwep->ci->dev, "request already in queue\n"); return -EBUSY; } /* push request */ hwreq->req.status = -EINPROGRESS; hwreq->req.actual = 0; retval = _hardware_enqueue(hwep, hwreq); if (retval == -EALREADY) retval = 0; if (!retval) list_add_tail(&hwreq->queue, &hwep->qh.queue); return retval; } /** * isr_get_status_response: get_status request response * @ci: ci struct * @setup: setup request packet * * This function returns an error code */ static int isr_get_status_response(struct ci_hdrc *ci, struct usb_ctrlrequest *setup) __releases(hwep->lock) __acquires(hwep->lock) { struct ci_hw_ep *hwep = ci->ep0in; struct usb_request *req = NULL; gfp_t gfp_flags = GFP_ATOMIC; int dir, num, retval; if (hwep == NULL || setup == NULL) return -EINVAL; spin_unlock(hwep->lock); req = usb_ep_alloc_request(&hwep->ep, gfp_flags); spin_lock(hwep->lock); if (req == NULL) return -ENOMEM; req->complete = isr_get_status_complete; req->length = 2; req->buf = kzalloc(req->length, gfp_flags); if (req->buf == NULL) { retval = -ENOMEM; goto err_free_req; } if ((setup->bRequestType & USB_RECIP_MASK) == USB_RECIP_DEVICE) { *(u16 *)req->buf = (ci->remote_wakeup << 1) | ci->gadget.is_selfpowered; } else if ((setup->bRequestType & USB_RECIP_MASK) \ == USB_RECIP_ENDPOINT) { dir = (le16_to_cpu(setup->wIndex) & USB_ENDPOINT_DIR_MASK) ? TX : RX; num = le16_to_cpu(setup->wIndex) & USB_ENDPOINT_NUMBER_MASK; *(u16 *)req->buf = hw_ep_get_halt(ci, num, dir); } /* else do nothing; reserved for future use */ retval = _ep_queue(&hwep->ep, req, gfp_flags); if (retval) goto err_free_buf; return 0; err_free_buf: kfree(req->buf); err_free_req: spin_unlock(hwep->lock); usb_ep_free_request(&hwep->ep, req); spin_lock(hwep->lock); return retval; } /** * isr_setup_status_complete: setup_status request complete function * @ep: endpoint * @req: request handled * * Caller must release lock. Put the port in test mode if test mode * feature is selected. */ static void isr_setup_status_complete(struct usb_ep *ep, struct usb_request *req) { struct ci_hdrc *ci = req->context; unsigned long flags; if (req->status < 0) return; if (ci->setaddr) { hw_usb_set_address(ci, ci->address); ci->setaddr = false; if (ci->address) usb_gadget_set_state(&ci->gadget, USB_STATE_ADDRESS); } spin_lock_irqsave(&ci->lock, flags); if (ci->test_mode) hw_port_test_set(ci, ci->test_mode); spin_unlock_irqrestore(&ci->lock, flags); } /** * isr_setup_status_phase: queues the status phase of a setup transation * @ci: ci struct * * This function returns an error code */ static int isr_setup_status_phase(struct ci_hdrc *ci) { struct ci_hw_ep *hwep; /* * Unexpected USB controller behavior, caused by bad signal integrity * or ground reference problems, can lead to isr_setup_status_phase * being called with ci->status equal to NULL. * If this situation occurs, you should review your USB hardware design. */ if (WARN_ON_ONCE(!ci->status)) return -EPIPE; hwep = (ci->ep0_dir == TX) ? ci->ep0out : ci->ep0in; ci->status->context = ci; ci->status->complete = isr_setup_status_complete; return _ep_queue(&hwep->ep, ci->status, GFP_ATOMIC); } /** * isr_tr_complete_low: transaction complete low level handler * @hwep: endpoint * * This function returns an error code * Caller must hold lock */ static int isr_tr_complete_low(struct ci_hw_ep *hwep) __releases(hwep->lock) __acquires(hwep->lock) { struct ci_hw_req *hwreq, *hwreqtemp; struct ci_hw_ep *hweptemp = hwep; int retval = 0; list_for_each_entry_safe(hwreq, hwreqtemp, &hwep->qh.queue, queue) { retval = _hardware_dequeue(hwep, hwreq); if (retval < 0) break; list_del_init(&hwreq->queue); if (hwreq->req.complete != NULL) { spin_unlock(hwep->lock); if ((hwep->type == USB_ENDPOINT_XFER_CONTROL) && hwreq->req.length) hweptemp = hwep->ci->ep0in; usb_gadget_giveback_request(&hweptemp->ep, &hwreq->req); spin_lock(hwep->lock); } } if (retval == -EBUSY) retval = 0; return retval; } static int otg_a_alt_hnp_support(struct ci_hdrc *ci) { dev_warn(&ci->gadget.dev, "connect the device to an alternate port if you want HNP\n"); return isr_setup_status_phase(ci); } /** * isr_setup_packet_handler: setup packet handler * @ci: UDC descriptor * * This function handles setup packet */ static void isr_setup_packet_handler(struct ci_hdrc *ci) __releases(ci->lock) __acquires(ci->lock) { struct ci_hw_ep *hwep = &ci->ci_hw_ep[0]; struct usb_ctrlrequest req; int type, num, dir, err = -EINVAL; u8 tmode = 0; /* * Flush data and handshake transactions of previous * setup packet. */ _ep_nuke(ci->ep0out); _ep_nuke(ci->ep0in); /* read_setup_packet */ do { hw_test_and_set_setup_guard(ci); memcpy(&req, &hwep->qh.ptr->setup, sizeof(req)); } while (!hw_test_and_clear_setup_guard(ci)); type = req.bRequestType; ci->ep0_dir = (type & USB_DIR_IN) ? TX : RX; switch (req.bRequest) { case USB_REQ_CLEAR_FEATURE: if (type == (USB_DIR_OUT|USB_RECIP_ENDPOINT) && le16_to_cpu(req.wValue) == USB_ENDPOINT_HALT) { if (req.wLength != 0) break; num = le16_to_cpu(req.wIndex); dir = (num & USB_ENDPOINT_DIR_MASK) ? TX : RX; num &= USB_ENDPOINT_NUMBER_MASK; if (dir == TX) num += ci->hw_ep_max / 2; if (!ci->ci_hw_ep[num].wedge) { spin_unlock(&ci->lock); err = usb_ep_clear_halt( &ci->ci_hw_ep[num].ep); spin_lock(&ci->lock); if (err) break; } err = isr_setup_status_phase(ci); } else if (type == (USB_DIR_OUT|USB_RECIP_DEVICE) && le16_to_cpu(req.wValue) == USB_DEVICE_REMOTE_WAKEUP) { if (req.wLength != 0) break; ci->remote_wakeup = 0; err = isr_setup_status_phase(ci); } else { goto delegate; } break; case USB_REQ_GET_STATUS: if ((type != (USB_DIR_IN|USB_RECIP_DEVICE) || le16_to_cpu(req.wIndex) == OTG_STS_SELECTOR) && type != (USB_DIR_IN|USB_RECIP_ENDPOINT) && type != (USB_DIR_IN|USB_RECIP_INTERFACE)) goto delegate; if (le16_to_cpu(req.wLength) != 2 || le16_to_cpu(req.wValue) != 0) break; err = isr_get_status_response(ci, &req); break; case USB_REQ_SET_ADDRESS: if (type != (USB_DIR_OUT|USB_RECIP_DEVICE)) goto delegate; if (le16_to_cpu(req.wLength) != 0 || le16_to_cpu(req.wIndex) != 0) break; ci->address = (u8)le16_to_cpu(req.wValue); ci->setaddr = true; err = isr_setup_status_phase(ci); break; case USB_REQ_SET_FEATURE: if (type == (USB_DIR_OUT|USB_RECIP_ENDPOINT) && le16_to_cpu(req.wValue) == USB_ENDPOINT_HALT) { if (req.wLength != 0) break; num = le16_to_cpu(req.wIndex); dir = (num & USB_ENDPOINT_DIR_MASK) ? TX : RX; num &= USB_ENDPOINT_NUMBER_MASK; if (dir == TX) num += ci->hw_ep_max / 2; spin_unlock(&ci->lock); err = _ep_set_halt(&ci->ci_hw_ep[num].ep, 1, false); spin_lock(&ci->lock); if (!err) isr_setup_status_phase(ci); } else if (type == (USB_DIR_OUT|USB_RECIP_DEVICE)) { if (req.wLength != 0) break; switch (le16_to_cpu(req.wValue)) { case USB_DEVICE_REMOTE_WAKEUP: ci->remote_wakeup = 1; err = isr_setup_status_phase(ci); break; case USB_DEVICE_TEST_MODE: tmode = le16_to_cpu(req.wIndex) >> 8; switch (tmode) { case USB_TEST_J: case USB_TEST_K: case USB_TEST_SE0_NAK: case USB_TEST_PACKET: case USB_TEST_FORCE_ENABLE: ci->test_mode = tmode; err = isr_setup_status_phase( ci); break; default: break; } break; case USB_DEVICE_B_HNP_ENABLE: if (ci_otg_is_fsm_mode(ci)) { ci->gadget.b_hnp_enable = 1; err = isr_setup_status_phase( ci); } break; case USB_DEVICE_A_ALT_HNP_SUPPORT: if (ci_otg_is_fsm_mode(ci)) err = otg_a_alt_hnp_support(ci); break; case USB_DEVICE_A_HNP_SUPPORT: if (ci_otg_is_fsm_mode(ci)) { ci->gadget.a_hnp_support = 1; err = isr_setup_status_phase( ci); } break; default: goto delegate; } } else { goto delegate; } break; default: delegate: if (req.wLength == 0) /* no data phase */ ci->ep0_dir = TX; spin_unlock(&ci->lock); err = ci->driver->setup(&ci->gadget, &req); spin_lock(&ci->lock); break; } if (err < 0) { spin_unlock(&ci->lock); if (_ep_set_halt(&hwep->ep, 1, false)) dev_err(ci->dev, "error: _ep_set_halt\n"); spin_lock(&ci->lock); } } /** * isr_tr_complete_handler: transaction complete interrupt handler * @ci: UDC descriptor * * This function handles traffic events */ static void isr_tr_complete_handler(struct ci_hdrc *ci) __releases(ci->lock) __acquires(ci->lock) { unsigned i; int err; for (i = 0; i < ci->hw_ep_max; i++) { struct ci_hw_ep *hwep = &ci->ci_hw_ep[i]; if (hwep->ep.desc == NULL) continue; /* not configured */ if (hw_test_and_clear_complete(ci, i)) { err = isr_tr_complete_low(hwep); if (hwep->type == USB_ENDPOINT_XFER_CONTROL) { if (err > 0) /* needs status phase */ err = isr_setup_status_phase(ci); if (err < 0) { spin_unlock(&ci->lock); if (_ep_set_halt(&hwep->ep, 1, false)) dev_err(ci->dev, "error: _ep_set_halt\n"); spin_lock(&ci->lock); } } } /* Only handle setup packet below */ if (i == 0 && hw_test_and_clear(ci, OP_ENDPTSETUPSTAT, BIT(0))) isr_setup_packet_handler(ci); } } /****************************************************************************** * ENDPT block *****************************************************************************/ /* * ep_enable: configure endpoint, making it usable * * Check usb_ep_enable() at "usb_gadget.h" for details */ static int ep_enable(struct usb_ep *ep, const struct usb_endpoint_descriptor *desc) { struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep); int retval = 0; unsigned long flags; u32 cap = 0; if (ep == NULL || desc == NULL) return -EINVAL; spin_lock_irqsave(hwep->lock, flags); /* only internal SW should enable ctrl endpts */ if (!list_empty(&hwep->qh.queue)) { dev_warn(hwep->ci->dev, "enabling a non-empty endpoint!\n"); spin_unlock_irqrestore(hwep->lock, flags); return -EBUSY; } hwep->ep.desc = desc; hwep->dir = usb_endpoint_dir_in(desc) ? TX : RX; hwep->num = usb_endpoint_num(desc); hwep->type = usb_endpoint_type(desc); hwep->ep.maxpacket = usb_endpoint_maxp(desc); hwep->ep.mult = usb_endpoint_maxp_mult(desc); if (hwep->type == USB_ENDPOINT_XFER_CONTROL) cap |= QH_IOS; cap |= QH_ZLT; cap |= (hwep->ep.maxpacket << __ffs(QH_MAX_PKT)) & QH_MAX_PKT; /* * For ISO-TX, we set mult at QH as the largest value, and use * MultO at TD as real mult value. */ if (hwep->type == USB_ENDPOINT_XFER_ISOC && hwep->dir == TX) cap |= 3 << __ffs(QH_MULT); hwep->qh.ptr->cap = cpu_to_le32(cap); hwep->qh.ptr->td.next |= cpu_to_le32(TD_TERMINATE); /* needed? */ if (hwep->num != 0 && hwep->type == USB_ENDPOINT_XFER_CONTROL) { dev_err(hwep->ci->dev, "Set control xfer at non-ep0\n"); retval = -EINVAL; } /* * Enable endpoints in the HW other than ep0 as ep0 * is always enabled */ if (hwep->num) retval |= hw_ep_enable(hwep->ci, hwep->num, hwep->dir, hwep->type); spin_unlock_irqrestore(hwep->lock, flags); return retval; } /* * ep_disable: endpoint is no longer usable * * Check usb_ep_disable() at "usb_gadget.h" for details */ static int ep_disable(struct usb_ep *ep) { struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep); int direction, retval = 0; unsigned long flags; if (ep == NULL) return -EINVAL; else if (hwep->ep.desc == NULL) return -EBUSY; spin_lock_irqsave(hwep->lock, flags); if (hwep->ci->gadget.speed == USB_SPEED_UNKNOWN) { spin_unlock_irqrestore(hwep->lock, flags); return 0; } /* only internal SW should disable ctrl endpts */ direction = hwep->dir; do { retval |= _ep_nuke(hwep); retval |= hw_ep_disable(hwep->ci, hwep->num, hwep->dir); if (hwep->type == USB_ENDPOINT_XFER_CONTROL) hwep->dir = (hwep->dir == TX) ? RX : TX; } while (hwep->dir != direction); hwep->ep.desc = NULL; spin_unlock_irqrestore(hwep->lock, flags); return retval; } /* * ep_alloc_request: allocate a request object to use with this endpoint * * Check usb_ep_alloc_request() at "usb_gadget.h" for details */ static struct usb_request *ep_alloc_request(struct usb_ep *ep, gfp_t gfp_flags) { struct ci_hw_req *hwreq = NULL; if (ep == NULL) return NULL; hwreq = kzalloc(sizeof(struct ci_hw_req), gfp_flags); if (hwreq != NULL) { INIT_LIST_HEAD(&hwreq->queue); INIT_LIST_HEAD(&hwreq->tds); } return (hwreq == NULL) ? NULL : &hwreq->req; } /* * ep_free_request: frees a request object * * Check usb_ep_free_request() at "usb_gadget.h" for details */ static void ep_free_request(struct usb_ep *ep, struct usb_request *req) { struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep); struct ci_hw_req *hwreq = container_of(req, struct ci_hw_req, req); struct td_node *node, *tmpnode; unsigned long flags; if (ep == NULL || req == NULL) { return; } else if (!list_empty(&hwreq->queue)) { dev_err(hwep->ci->dev, "freeing queued request\n"); return; } spin_lock_irqsave(hwep->lock, flags); list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) { dma_pool_free(hwep->td_pool, node->ptr, node->dma); list_del_init(&node->td); node->ptr = NULL; kfree(node); } kfree(hwreq); spin_unlock_irqrestore(hwep->lock, flags); } /* * ep_queue: queues (submits) an I/O request to an endpoint * * Check usb_ep_queue()* at usb_gadget.h" for details */ static int ep_queue(struct usb_ep *ep, struct usb_request *req, gfp_t __maybe_unused gfp_flags) { struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep); int retval = 0; unsigned long flags; if (ep == NULL || req == NULL || hwep->ep.desc == NULL) return -EINVAL; spin_lock_irqsave(hwep->lock, flags); if (hwep->ci->gadget.speed == USB_SPEED_UNKNOWN) { spin_unlock_irqrestore(hwep->lock, flags); return 0; } retval = _ep_queue(ep, req, gfp_flags); spin_unlock_irqrestore(hwep->lock, flags); return retval; } /* * ep_dequeue: dequeues (cancels, unlinks) an I/O request from an endpoint * * Check usb_ep_dequeue() at "usb_gadget.h" for details */ static int ep_dequeue(struct usb_ep *ep, struct usb_request *req) { struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep); struct ci_hw_req *hwreq = container_of(req, struct ci_hw_req, req); unsigned long flags; struct td_node *node, *tmpnode; if (ep == NULL || req == NULL || hwreq->req.status != -EALREADY || hwep->ep.desc == NULL || list_empty(&hwreq->queue) || list_empty(&hwep->qh.queue)) return -EINVAL; spin_lock_irqsave(hwep->lock, flags); if (hwep->ci->gadget.speed != USB_SPEED_UNKNOWN) hw_ep_flush(hwep->ci, hwep->num, hwep->dir); list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) { dma_pool_free(hwep->td_pool, node->ptr, node->dma); list_del(&node->td); kfree(node); } /* pop request */ list_del_init(&hwreq->queue); usb_gadget_unmap_request(&hwep->ci->gadget, req, hwep->dir); req->status = -ECONNRESET; if (hwreq->req.complete != NULL) { spin_unlock(hwep->lock); usb_gadget_giveback_request(&hwep->ep, &hwreq->req); spin_lock(hwep->lock); } spin_unlock_irqrestore(hwep->lock, flags); return 0; } /* * ep_set_halt: sets the endpoint halt feature * * Check usb_ep_set_halt() at "usb_gadget.h" for details */ static int ep_set_halt(struct usb_ep *ep, int value) { return _ep_set_halt(ep, value, true); } /* * ep_set_wedge: sets the halt feature and ignores clear requests * * Check usb_ep_set_wedge() at "usb_gadget.h" for details */ static int ep_set_wedge(struct usb_ep *ep) { struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep); unsigned long flags; if (ep == NULL || hwep->ep.desc == NULL) return -EINVAL; spin_lock_irqsave(hwep->lock, flags); hwep->wedge = 1; spin_unlock_irqrestore(hwep->lock, flags); return usb_ep_set_halt(ep); } /* * ep_fifo_flush: flushes contents of a fifo * * Check usb_ep_fifo_flush() at "usb_gadget.h" for details */ static void ep_fifo_flush(struct usb_ep *ep) { struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep); unsigned long flags; if (ep == NULL) { dev_err(hwep->ci->dev, "%02X: -EINVAL\n", _usb_addr(hwep)); return; } spin_lock_irqsave(hwep->lock, flags); if (hwep->ci->gadget.speed == USB_SPEED_UNKNOWN) { spin_unlock_irqrestore(hwep->lock, flags); return; } hw_ep_flush(hwep->ci, hwep->num, hwep->dir); spin_unlock_irqrestore(hwep->lock, flags); } /* * Endpoint-specific part of the API to the USB controller hardware * Check "usb_gadget.h" for details */ static const struct usb_ep_ops usb_ep_ops = { .enable = ep_enable, .disable = ep_disable, .alloc_request = ep_alloc_request, .free_request = ep_free_request, .queue = ep_queue, .dequeue = ep_dequeue, .set_halt = ep_set_halt, .set_wedge = ep_set_wedge, .fifo_flush = ep_fifo_flush, }; /****************************************************************************** * GADGET block *****************************************************************************/ static int ci_udc_get_frame(struct usb_gadget *_gadget) { struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget); unsigned long flags; int ret; spin_lock_irqsave(&ci->lock, flags); ret = hw_read(ci, OP_FRINDEX, 0x3fff); spin_unlock_irqrestore(&ci->lock, flags); return ret >> 3; } /* * ci_hdrc_gadget_connect: caller makes sure gadget driver is binded */ static void ci_hdrc_gadget_connect(struct usb_gadget *_gadget, int is_active) { struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget); if (is_active) { pm_runtime_get_sync(ci->dev); hw_device_reset(ci); spin_lock_irq(&ci->lock); if (ci->driver) { hw_device_state(ci, ci->ep0out->qh.dma); usb_gadget_set_state(_gadget, USB_STATE_POWERED); spin_unlock_irq(&ci->lock); usb_udc_vbus_handler(_gadget, true); } else { spin_unlock_irq(&ci->lock); } } else { usb_udc_vbus_handler(_gadget, false); if (ci->driver) ci->driver->disconnect(&ci->gadget); hw_device_state(ci, 0); if (ci->platdata->notify_event) ci->platdata->notify_event(ci, CI_HDRC_CONTROLLER_STOPPED_EVENT); _gadget_stop_activity(&ci->gadget); pm_runtime_put_sync(ci->dev); usb_gadget_set_state(_gadget, USB_STATE_NOTATTACHED); } } static int ci_udc_vbus_session(struct usb_gadget *_gadget, int is_active) { struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget); unsigned long flags; int ret = 0; spin_lock_irqsave(&ci->lock, flags); ci->vbus_active = is_active; spin_unlock_irqrestore(&ci->lock, flags); if (ci->usb_phy) usb_phy_set_charger_state(ci->usb_phy, is_active ? USB_CHARGER_PRESENT : USB_CHARGER_ABSENT); if (ci->platdata->notify_event) ret = ci->platdata->notify_event(ci, CI_HDRC_CONTROLLER_VBUS_EVENT); if (ci->usb_phy) { if (is_active) usb_phy_set_event(ci->usb_phy, USB_EVENT_VBUS); else usb_phy_set_event(ci->usb_phy, USB_EVENT_NONE); } if (ci->driver) ci_hdrc_gadget_connect(_gadget, is_active); return ret; } static int ci_udc_wakeup(struct usb_gadget *_gadget) { struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget); unsigned long flags; int ret = 0; spin_lock_irqsave(&ci->lock, flags); if (ci->gadget.speed == USB_SPEED_UNKNOWN) { spin_unlock_irqrestore(&ci->lock, flags); return 0; } if (!ci->remote_wakeup) { ret = -EOPNOTSUPP; goto out; } if (!hw_read(ci, OP_PORTSC, PORTSC_SUSP)) { ret = -EINVAL; goto out; } hw_write(ci, OP_PORTSC, PORTSC_FPR, PORTSC_FPR); out: spin_unlock_irqrestore(&ci->lock, flags); return ret; } static int ci_udc_vbus_draw(struct usb_gadget *_gadget, unsigned ma) { struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget); if (ci->usb_phy) return usb_phy_set_power(ci->usb_phy, ma); return -ENOTSUPP; } static int ci_udc_selfpowered(struct usb_gadget *_gadget, int is_on) { struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget); struct ci_hw_ep *hwep = ci->ep0in; unsigned long flags; spin_lock_irqsave(hwep->lock, flags); _gadget->is_selfpowered = (is_on != 0); spin_unlock_irqrestore(hwep->lock, flags); return 0; } /* Change Data+ pullup status * this func is used by usb_gadget_connect/disconnect */ static int ci_udc_pullup(struct usb_gadget *_gadget, int is_on) { struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget); /* * Data+ pullup controlled by OTG state machine in OTG fsm mode; * and don't touch Data+ in host mode for dual role config. */ if (ci_otg_is_fsm_mode(ci) || ci->role == CI_ROLE_HOST) return 0; pm_runtime_get_sync(ci->dev); if (is_on) hw_write(ci, OP_USBCMD, USBCMD_RS, USBCMD_RS); else hw_write(ci, OP_USBCMD, USBCMD_RS, 0); pm_runtime_put_sync(ci->dev); return 0; } static int ci_udc_start(struct usb_gadget *gadget, struct usb_gadget_driver *driver); static int ci_udc_stop(struct usb_gadget *gadget); /* Match ISOC IN from the highest endpoint */ static struct usb_ep *ci_udc_match_ep(struct usb_gadget *gadget, struct usb_endpoint_descriptor *desc, struct usb_ss_ep_comp_descriptor *comp_desc) { struct ci_hdrc *ci = container_of(gadget, struct ci_hdrc, gadget); struct usb_ep *ep; if (usb_endpoint_xfer_isoc(desc) && usb_endpoint_dir_in(desc)) { list_for_each_entry_reverse(ep, &ci->gadget.ep_list, ep_list) { if (ep->caps.dir_in && !ep->claimed) return ep; } } return NULL; } /* * Device operations part of the API to the USB controller hardware, * which don't involve endpoints (or i/o) * Check "usb_gadget.h" for details */ static const struct usb_gadget_ops usb_gadget_ops = { .get_frame = ci_udc_get_frame, .vbus_session = ci_udc_vbus_session, .wakeup = ci_udc_wakeup, .set_selfpowered = ci_udc_selfpowered, .pullup = ci_udc_pullup, .vbus_draw = ci_udc_vbus_draw, .udc_start = ci_udc_start, .udc_stop = ci_udc_stop, .match_ep = ci_udc_match_ep, }; static int init_eps(struct ci_hdrc *ci) { int retval = 0, i, j; for (i = 0; i < ci->hw_ep_max/2; i++) for (j = RX; j <= TX; j++) { int k = i + j * ci->hw_ep_max/2; struct ci_hw_ep *hwep = &ci->ci_hw_ep[k]; scnprintf(hwep->name, sizeof(hwep->name), "ep%i%s", i, (j == TX) ? "in" : "out"); hwep->ci = ci; hwep->lock = &ci->lock; hwep->td_pool = ci->td_pool; hwep->ep.name = hwep->name; hwep->ep.ops = &usb_ep_ops; if (i == 0) { hwep->ep.caps.type_control = true; } else { hwep->ep.caps.type_iso = true; hwep->ep.caps.type_bulk = true; hwep->ep.caps.type_int = true; } if (j == TX) hwep->ep.caps.dir_in = true; else hwep->ep.caps.dir_out = true; /* * for ep0: maxP defined in desc, for other * eps, maxP is set by epautoconfig() called * by gadget layer */ usb_ep_set_maxpacket_limit(&hwep->ep, (unsigned short)~0); INIT_LIST_HEAD(&hwep->qh.queue); hwep->qh.ptr = dma_pool_zalloc(ci->qh_pool, GFP_KERNEL, &hwep->qh.dma); if (hwep->qh.ptr == NULL) retval = -ENOMEM; /* * set up shorthands for ep0 out and in endpoints, * don't add to gadget's ep_list */ if (i == 0) { if (j == RX) ci->ep0out = hwep; else ci->ep0in = hwep; usb_ep_set_maxpacket_limit(&hwep->ep, CTRL_PAYLOAD_MAX); continue; } list_add_tail(&hwep->ep.ep_list, &ci->gadget.ep_list); } return retval; } static void destroy_eps(struct ci_hdrc *ci) { int i; for (i = 0; i < ci->hw_ep_max; i++) { struct ci_hw_ep *hwep = &ci->ci_hw_ep[i]; if (hwep->pending_td) free_pending_td(hwep); dma_pool_free(ci->qh_pool, hwep->qh.ptr, hwep->qh.dma); } } /** * ci_udc_start: register a gadget driver * @gadget: our gadget * @driver: the driver being registered * * Interrupts are enabled here. */ static int ci_udc_start(struct usb_gadget *gadget, struct usb_gadget_driver *driver) { struct ci_hdrc *ci = container_of(gadget, struct ci_hdrc, gadget); int retval; if (driver->disconnect == NULL) return -EINVAL; ci->ep0out->ep.desc = &ctrl_endpt_out_desc; retval = usb_ep_enable(&ci->ep0out->ep); if (retval) return retval; ci->ep0in->ep.desc = &ctrl_endpt_in_desc; retval = usb_ep_enable(&ci->ep0in->ep); if (retval) return retval; ci->driver = driver; /* Start otg fsm for B-device */ if (ci_otg_is_fsm_mode(ci) && ci->fsm.id) { ci_hdrc_otg_fsm_start(ci); return retval; } if (ci->vbus_active) ci_hdrc_gadget_connect(gadget, 1); else usb_udc_vbus_handler(&ci->gadget, false); return retval; } static void ci_udc_stop_for_otg_fsm(struct ci_hdrc *ci) { if (!ci_otg_is_fsm_mode(ci)) return; mutex_lock(&ci->fsm.lock); if (ci->fsm.otg->state == OTG_STATE_A_PERIPHERAL) { ci->fsm.a_bidl_adis_tmout = 1; ci_hdrc_otg_fsm_start(ci); } else if (ci->fsm.otg->state == OTG_STATE_B_PERIPHERAL) { ci->fsm.protocol = PROTO_UNDEF; ci->fsm.otg->state = OTG_STATE_UNDEFINED; } mutex_unlock(&ci->fsm.lock); } /* * ci_udc_stop: unregister a gadget driver */ static int ci_udc_stop(struct usb_gadget *gadget) { struct ci_hdrc *ci = container_of(gadget, struct ci_hdrc, gadget); unsigned long flags; spin_lock_irqsave(&ci->lock, flags); ci->driver = NULL; if (ci->vbus_active) { hw_device_state(ci, 0); spin_unlock_irqrestore(&ci->lock, flags); if (ci->platdata->notify_event) ci->platdata->notify_event(ci, CI_HDRC_CONTROLLER_STOPPED_EVENT); _gadget_stop_activity(&ci->gadget); spin_lock_irqsave(&ci->lock, flags); pm_runtime_put(ci->dev); } spin_unlock_irqrestore(&ci->lock, flags); ci_udc_stop_for_otg_fsm(ci); return 0; } /****************************************************************************** * BUS block *****************************************************************************/ /* * udc_irq: ci interrupt handler * * This function returns IRQ_HANDLED if the IRQ has been handled * It locks access to registers */ static irqreturn_t udc_irq(struct ci_hdrc *ci) { irqreturn_t retval; u32 intr; if (ci == NULL) return IRQ_HANDLED; spin_lock(&ci->lock); if (ci->platdata->flags & CI_HDRC_REGS_SHARED) { if (hw_read(ci, OP_USBMODE, USBMODE_CM) != USBMODE_CM_DC) { spin_unlock(&ci->lock); return IRQ_NONE; } } intr = hw_test_and_clear_intr_active(ci); if (intr) { /* order defines priority - do NOT change it */ if (USBi_URI & intr) isr_reset_handler(ci); if (USBi_PCI & intr) { ci->gadget.speed = hw_port_is_high_speed(ci) ? USB_SPEED_HIGH : USB_SPEED_FULL; if (ci->usb_phy) usb_phy_set_event(ci->usb_phy, USB_EVENT_ENUMERATED); if (ci->suspended) { if (ci->driver->resume) { spin_unlock(&ci->lock); ci->driver->resume(&ci->gadget); spin_lock(&ci->lock); } ci->suspended = 0; usb_gadget_set_state(&ci->gadget, ci->resume_state); } } if (USBi_UI & intr) isr_tr_complete_handler(ci); if ((USBi_SLI & intr) && !(ci->suspended)) { ci->suspended = 1; ci->resume_state = ci->gadget.state; if (ci->gadget.speed != USB_SPEED_UNKNOWN && ci->driver->suspend) { spin_unlock(&ci->lock); ci->driver->suspend(&ci->gadget); spin_lock(&ci->lock); } usb_gadget_set_state(&ci->gadget, USB_STATE_SUSPENDED); } retval = IRQ_HANDLED; } else { retval = IRQ_NONE; } spin_unlock(&ci->lock); return retval; } /** * udc_start: initialize gadget role * @ci: chipidea controller */ static int udc_start(struct ci_hdrc *ci) { struct device *dev = ci->dev; struct usb_otg_caps *otg_caps = &ci->platdata->ci_otg_caps; int retval = 0; ci->gadget.ops = &usb_gadget_ops; ci->gadget.speed = USB_SPEED_UNKNOWN; ci->gadget.max_speed = USB_SPEED_HIGH; ci->gadget.name = ci->platdata->name; ci->gadget.otg_caps = otg_caps; ci->gadget.sg_supported = 1; ci->gadget.irq = ci->irq; if (ci->platdata->flags & CI_HDRC_REQUIRES_ALIGNED_DMA) ci->gadget.quirk_avoids_skb_reserve = 1; if (ci->is_otg && (otg_caps->hnp_support || otg_caps->srp_support || otg_caps->adp_support)) ci->gadget.is_otg = 1; INIT_LIST_HEAD(&ci->gadget.ep_list); /* alloc resources */ ci->qh_pool = dma_pool_create("ci_hw_qh", dev->parent, sizeof(struct ci_hw_qh), 64, CI_HDRC_PAGE_SIZE); if (ci->qh_pool == NULL) return -ENOMEM; ci->td_pool = dma_pool_create("ci_hw_td", dev->parent, sizeof(struct ci_hw_td), 64, CI_HDRC_PAGE_SIZE); if (ci->td_pool == NULL) { retval = -ENOMEM; goto free_qh_pool; } retval = init_eps(ci); if (retval) goto free_pools; ci->gadget.ep0 = &ci->ep0in->ep; retval = usb_add_gadget_udc(dev, &ci->gadget); if (retval) goto destroy_eps; return retval; destroy_eps: destroy_eps(ci); free_pools: dma_pool_destroy(ci->td_pool); free_qh_pool: dma_pool_destroy(ci->qh_pool); return retval; } /* * ci_hdrc_gadget_destroy: parent remove must call this to remove UDC * * No interrupts active, the IRQ has been released */ void ci_hdrc_gadget_destroy(struct ci_hdrc *ci) { if (!ci->roles[CI_ROLE_GADGET]) return; usb_del_gadget_udc(&ci->gadget); destroy_eps(ci); dma_pool_destroy(ci->td_pool); dma_pool_destroy(ci->qh_pool); } static int udc_id_switch_for_device(struct ci_hdrc *ci) { if (ci->platdata->pins_device) pinctrl_select_state(ci->platdata->pctl, ci->platdata->pins_device); if (ci->is_otg) /* Clear and enable BSV irq */ hw_write_otgsc(ci, OTGSC_BSVIS | OTGSC_BSVIE, OTGSC_BSVIS | OTGSC_BSVIE); return 0; } static void udc_id_switch_for_host(struct ci_hdrc *ci) { /* * host doesn't care B_SESSION_VALID event * so clear and disable BSV irq */ if (ci->is_otg) hw_write_otgsc(ci, OTGSC_BSVIE | OTGSC_BSVIS, OTGSC_BSVIS); ci->vbus_active = 0; if (ci->platdata->pins_device && ci->platdata->pins_default) pinctrl_select_state(ci->platdata->pctl, ci->platdata->pins_default); } #ifdef CONFIG_PM_SLEEP static void udc_suspend(struct ci_hdrc *ci) { /* * Set OP_ENDPTLISTADDR to be non-zero for * checking if controller resume from power lost * in non-host mode. */ if (hw_read(ci, OP_ENDPTLISTADDR, ~0) == 0) hw_write(ci, OP_ENDPTLISTADDR, ~0, ~0); } static void udc_resume(struct ci_hdrc *ci, bool power_lost) { if (power_lost) { if (ci->is_otg) hw_write_otgsc(ci, OTGSC_BSVIS | OTGSC_BSVIE, OTGSC_BSVIS | OTGSC_BSVIE); if (ci->vbus_active) usb_gadget_vbus_disconnect(&ci->gadget); } /* Restore value 0 if it was set for power lost check */ if (hw_read(ci, OP_ENDPTLISTADDR, ~0) == 0xFFFFFFFF) hw_write(ci, OP_ENDPTLISTADDR, ~0, 0); } #endif /** * ci_hdrc_gadget_init - initialize device related bits * @ci: the controller * * This function initializes the gadget, if the device is "device capable". */ int ci_hdrc_gadget_init(struct ci_hdrc *ci) { struct ci_role_driver *rdrv; int ret; if (!hw_read(ci, CAP_DCCPARAMS, DCCPARAMS_DC)) return -ENXIO; rdrv = devm_kzalloc(ci->dev, sizeof(*rdrv), GFP_KERNEL); if (!rdrv) return -ENOMEM; rdrv->start = udc_id_switch_for_device; rdrv->stop = udc_id_switch_for_host; #ifdef CONFIG_PM_SLEEP rdrv->suspend = udc_suspend; rdrv->resume = udc_resume; #endif rdrv->irq = udc_irq; rdrv->name = "gadget"; ret = udc_start(ci); if (!ret) ci->roles[CI_ROLE_GADGET] = rdrv; return ret; }