/* * ci13xxx_udc.c - MIPS USB IP core family device controller * * Copyright (C) 2008 Chipidea - MIPS Technologies, Inc. All rights reserved. * * Author: David Lopo * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ /* * Description: MIPS USB IP core family device controller * Currently it only supports IP part number CI13412 * * This driver is composed of several blocks: * - HW: hardware interface * - DBG: debug facilities (optional) * - UTIL: utilities * - ISR: interrupts handling * - ENDPT: endpoint operations (Gadget API) * - GADGET: gadget operations (Gadget API) * - BUS: bus glue code, bus abstraction layer * * Compile Options * - CONFIG_USB_GADGET_DEBUG_FILES: enable debug facilities * - STALL_IN: non-empty bulk-in pipes cannot be halted * if defined mass storage compliance succeeds but with warnings * => case 4: Hi > Dn * => case 5: Hi > Di * => case 8: Hi <> Do * if undefined usbtest 13 fails * - TRACE: enable function tracing (depends on DEBUG) * * Main Features * - Chapter 9 & Mass Storage Compliance with Gadget File Storage * - Chapter 9 Compliance with Gadget Zero (STALL_IN undefined) * - Normal & LPM support * * USBTEST Report * - OK: 0-12, 13 (STALL_IN defined) & 14 * - Not Supported: 15 & 16 (ISO) * * TODO List * - OTG * - Isochronous & Interrupt Traffic * - Handle requests which spawns into several TDs * - GET_STATUS(device) - always reports 0 * - Gadget API (majority of optional features) * - Suspend & Remote Wakeup */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ci13xxx_udc.h" /****************************************************************************** * DEFINE *****************************************************************************/ /* ctrl register bank access */ static DEFINE_SPINLOCK(udc_lock); /* control endpoint description */ static const struct usb_endpoint_descriptor ctrl_endpt_out_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_OUT, .bmAttributes = USB_ENDPOINT_XFER_CONTROL, .wMaxPacketSize = cpu_to_le16(CTRL_PAYLOAD_MAX), }; static const struct usb_endpoint_descriptor ctrl_endpt_in_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_IN, .bmAttributes = USB_ENDPOINT_XFER_CONTROL, .wMaxPacketSize = cpu_to_le16(CTRL_PAYLOAD_MAX), }; /* UDC descriptor */ static struct ci13xxx *_udc; /* Interrupt statistics */ #define ISR_MASK 0x1F static struct { u32 test; u32 ui; u32 uei; u32 pci; u32 uri; u32 sli; u32 none; struct { u32 cnt; u32 buf[ISR_MASK+1]; u32 idx; } hndl; } isr_statistics; /** * ffs_nr: find first (least significant) bit set * @x: the word to search * * This function returns bit number (instead of position) */ static int ffs_nr(u32 x) { int n = ffs(x); return n ? n-1 : 32; } /****************************************************************************** * HW block *****************************************************************************/ /* register bank descriptor */ static struct { unsigned lpm; /* is LPM? */ void __iomem *abs; /* bus map offset */ void __iomem *cap; /* bus map offset + CAP offset + CAP data */ size_t size; /* bank size */ } hw_bank; /* MSM specific */ #define ABS_AHBBURST (0x0090UL) #define ABS_AHBMODE (0x0098UL) /* UDC register map */ #define ABS_CAPLENGTH (0x100UL) #define ABS_HCCPARAMS (0x108UL) #define ABS_DCCPARAMS (0x124UL) #define ABS_TESTMODE (hw_bank.lpm ? 0x0FCUL : 0x138UL) /* offset to CAPLENTGH (addr + data) */ #define CAP_USBCMD (0x000UL) #define CAP_USBSTS (0x004UL) #define CAP_USBINTR (0x008UL) #define CAP_DEVICEADDR (0x014UL) #define CAP_ENDPTLISTADDR (0x018UL) #define CAP_PORTSC (0x044UL) #define CAP_DEVLC (0x084UL) #define CAP_USBMODE (hw_bank.lpm ? 0x0C8UL : 0x068UL) #define CAP_ENDPTSETUPSTAT (hw_bank.lpm ? 0x0D8UL : 0x06CUL) #define CAP_ENDPTPRIME (hw_bank.lpm ? 0x0DCUL : 0x070UL) #define CAP_ENDPTFLUSH (hw_bank.lpm ? 0x0E0UL : 0x074UL) #define CAP_ENDPTSTAT (hw_bank.lpm ? 0x0E4UL : 0x078UL) #define CAP_ENDPTCOMPLETE (hw_bank.lpm ? 0x0E8UL : 0x07CUL) #define CAP_ENDPTCTRL (hw_bank.lpm ? 0x0ECUL : 0x080UL) #define CAP_LAST (hw_bank.lpm ? 0x12CUL : 0x0C0UL) /* maximum number of enpoints: valid only after hw_device_reset() */ static unsigned hw_ep_max; /** * hw_ep_bit: calculates the bit number * @num: endpoint number * @dir: endpoint direction * * This function returns bit number */ static inline int hw_ep_bit(int num, int dir) { return num + (dir ? 16 : 0); } /** * hw_aread: reads from register bitfield * @addr: address relative to bus map * @mask: bitfield mask * * This function returns register bitfield data */ static u32 hw_aread(u32 addr, u32 mask) { return ioread32(addr + hw_bank.abs) & mask; } /** * hw_awrite: writes to register bitfield * @addr: address relative to bus map * @mask: bitfield mask * @data: new data */ static void hw_awrite(u32 addr, u32 mask, u32 data) { iowrite32(hw_aread(addr, ~mask) | (data & mask), addr + hw_bank.abs); } /** * hw_cread: reads from register bitfield * @addr: address relative to CAP offset plus content * @mask: bitfield mask * * This function returns register bitfield data */ static u32 hw_cread(u32 addr, u32 mask) { return ioread32(addr + hw_bank.cap) & mask; } /** * hw_cwrite: writes to register bitfield * @addr: address relative to CAP offset plus content * @mask: bitfield mask * @data: new data */ static void hw_cwrite(u32 addr, u32 mask, u32 data) { iowrite32(hw_cread(addr, ~mask) | (data & mask), addr + hw_bank.cap); } /** * hw_ctest_and_clear: tests & clears register bitfield * @addr: address relative to CAP offset plus content * @mask: bitfield mask * * This function returns register bitfield data */ static u32 hw_ctest_and_clear(u32 addr, u32 mask) { u32 reg = hw_cread(addr, mask); iowrite32(reg, addr + hw_bank.cap); return reg; } /** * hw_ctest_and_write: tests & writes register bitfield * @addr: address relative to CAP offset plus content * @mask: bitfield mask * @data: new data * * This function returns register bitfield data */ static u32 hw_ctest_and_write(u32 addr, u32 mask, u32 data) { u32 reg = hw_cread(addr, ~0); iowrite32((reg & ~mask) | (data & mask), addr + hw_bank.cap); return (reg & mask) >> ffs_nr(mask); } static int hw_device_init(void __iomem *base) { u32 reg; /* bank is a module variable */ hw_bank.abs = base; hw_bank.cap = hw_bank.abs; hw_bank.cap += ABS_CAPLENGTH; hw_bank.cap += ioread8(hw_bank.cap); reg = hw_aread(ABS_HCCPARAMS, HCCPARAMS_LEN) >> ffs_nr(HCCPARAMS_LEN); hw_bank.lpm = reg; hw_bank.size = hw_bank.cap - hw_bank.abs; hw_bank.size += CAP_LAST; hw_bank.size /= sizeof(u32); reg = hw_aread(ABS_DCCPARAMS, DCCPARAMS_DEN) >> ffs_nr(DCCPARAMS_DEN); hw_ep_max = reg * 2; /* cache hw ENDPT_MAX */ if (hw_ep_max == 0 || hw_ep_max > ENDPT_MAX) return -ENODEV; /* setup lock mode ? */ /* ENDPTSETUPSTAT is '0' by default */ /* HCSPARAMS.bf.ppc SHOULD BE zero for device */ return 0; } /** * hw_device_reset: resets chip (execute without interruption) * @base: register base address * * This function returns an error code */ static int hw_device_reset(struct ci13xxx *udc) { /* should flush & stop before reset */ hw_cwrite(CAP_ENDPTFLUSH, ~0, ~0); hw_cwrite(CAP_USBCMD, USBCMD_RS, 0); hw_cwrite(CAP_USBCMD, USBCMD_RST, USBCMD_RST); while (hw_cread(CAP_USBCMD, USBCMD_RST)) udelay(10); /* not RTOS friendly */ if (udc->udc_driver->notify_event) udc->udc_driver->notify_event(udc, CI13XXX_CONTROLLER_RESET_EVENT); if (udc->udc_driver->flags & CI13XXX_DISABLE_STREAMING) hw_cwrite(CAP_USBMODE, USBMODE_SDIS, USBMODE_SDIS); /* USBMODE should be configured step by step */ hw_cwrite(CAP_USBMODE, USBMODE_CM, USBMODE_CM_IDLE); hw_cwrite(CAP_USBMODE, USBMODE_CM, USBMODE_CM_DEVICE); hw_cwrite(CAP_USBMODE, USBMODE_SLOM, USBMODE_SLOM); /* HW >= 2.3 */ if (hw_cread(CAP_USBMODE, USBMODE_CM) != USBMODE_CM_DEVICE) { pr_err("cannot enter in device mode"); pr_err("lpm = %i", hw_bank.lpm); return -ENODEV; } return 0; } /** * hw_device_state: enables/disables interrupts & starts/stops device (execute * without interruption) * @dma: 0 => disable, !0 => enable and set dma engine * * This function returns an error code */ static int hw_device_state(u32 dma) { if (dma) { hw_cwrite(CAP_ENDPTLISTADDR, ~0, dma); /* interrupt, error, port change, reset, sleep/suspend */ hw_cwrite(CAP_USBINTR, ~0, USBi_UI|USBi_UEI|USBi_PCI|USBi_URI|USBi_SLI); hw_cwrite(CAP_USBCMD, USBCMD_RS, USBCMD_RS); } else { hw_cwrite(CAP_USBCMD, USBCMD_RS, 0); hw_cwrite(CAP_USBINTR, ~0, 0); } return 0; } /** * hw_ep_flush: flush endpoint fifo (execute without interruption) * @num: endpoint number * @dir: endpoint direction * * This function returns an error code */ static int hw_ep_flush(int num, int dir) { int n = hw_ep_bit(num, dir); do { /* flush any pending transfer */ hw_cwrite(CAP_ENDPTFLUSH, BIT(n), BIT(n)); while (hw_cread(CAP_ENDPTFLUSH, BIT(n))) cpu_relax(); } while (hw_cread(CAP_ENDPTSTAT, BIT(n))); return 0; } /** * hw_ep_disable: disables endpoint (execute without interruption) * @num: endpoint number * @dir: endpoint direction * * This function returns an error code */ static int hw_ep_disable(int num, int dir) { hw_ep_flush(num, dir); hw_cwrite(CAP_ENDPTCTRL + num * sizeof(u32), dir ? ENDPTCTRL_TXE : ENDPTCTRL_RXE, 0); return 0; } /** * hw_ep_enable: enables endpoint (execute without interruption) * @num: endpoint number * @dir: endpoint direction * @type: endpoint type * * This function returns an error code */ static int hw_ep_enable(int num, int dir, int type) { u32 mask, data; if (dir) { mask = ENDPTCTRL_TXT; /* type */ data = type << ffs_nr(mask); mask |= ENDPTCTRL_TXS; /* unstall */ mask |= ENDPTCTRL_TXR; /* reset data toggle */ data |= ENDPTCTRL_TXR; mask |= ENDPTCTRL_TXE; /* enable */ data |= ENDPTCTRL_TXE; } else { mask = ENDPTCTRL_RXT; /* type */ data = type << ffs_nr(mask); mask |= ENDPTCTRL_RXS; /* unstall */ mask |= ENDPTCTRL_RXR; /* reset data toggle */ data |= ENDPTCTRL_RXR; mask |= ENDPTCTRL_RXE; /* enable */ data |= ENDPTCTRL_RXE; } hw_cwrite(CAP_ENDPTCTRL + num * sizeof(u32), mask, data); return 0; } /** * hw_ep_get_halt: return endpoint halt status * @num: endpoint number * @dir: endpoint direction * * This function returns 1 if endpoint halted */ static int hw_ep_get_halt(int num, int dir) { u32 mask = dir ? ENDPTCTRL_TXS : ENDPTCTRL_RXS; return hw_cread(CAP_ENDPTCTRL + num * sizeof(u32), mask) ? 1 : 0; } /** * hw_test_and_clear_setup_status: test & clear setup status (execute without * interruption) * @n: bit number (endpoint) * * This function returns setup status */ static int hw_test_and_clear_setup_status(int n) { return hw_ctest_and_clear(CAP_ENDPTSETUPSTAT, BIT(n)); } /** * hw_ep_prime: primes endpoint (execute without interruption) * @num: endpoint number * @dir: endpoint direction * @is_ctrl: true if control endpoint * * This function returns an error code */ static int hw_ep_prime(int num, int dir, int is_ctrl) { int n = hw_ep_bit(num, dir); if (is_ctrl && dir == RX && hw_cread(CAP_ENDPTSETUPSTAT, BIT(num))) return -EAGAIN; hw_cwrite(CAP_ENDPTPRIME, BIT(n), BIT(n)); while (hw_cread(CAP_ENDPTPRIME, BIT(n))) cpu_relax(); if (is_ctrl && dir == RX && hw_cread(CAP_ENDPTSETUPSTAT, BIT(num))) return -EAGAIN; /* status shoult be tested according with manual but it doesn't work */ return 0; } /** * hw_ep_set_halt: configures ep halt & resets data toggle after clear (execute * without interruption) * @num: endpoint number * @dir: endpoint direction * @value: true => stall, false => unstall * * This function returns an error code */ static int hw_ep_set_halt(int num, int dir, int value) { if (value != 0 && value != 1) return -EINVAL; do { u32 addr = CAP_ENDPTCTRL + num * sizeof(u32); u32 mask_xs = dir ? ENDPTCTRL_TXS : ENDPTCTRL_RXS; u32 mask_xr = dir ? ENDPTCTRL_TXR : ENDPTCTRL_RXR; /* data toggle - reserved for EP0 but it's in ESS */ hw_cwrite(addr, mask_xs|mask_xr, value ? mask_xs : mask_xr); } while (value != hw_ep_get_halt(num, dir)); return 0; } /** * hw_intr_clear: disables interrupt & clears interrupt status (execute without * interruption) * @n: interrupt bit * * This function returns an error code */ static int hw_intr_clear(int n) { if (n >= REG_BITS) return -EINVAL; hw_cwrite(CAP_USBINTR, BIT(n), 0); hw_cwrite(CAP_USBSTS, BIT(n), BIT(n)); return 0; } /** * hw_intr_force: enables interrupt & forces interrupt status (execute without * interruption) * @n: interrupt bit * * This function returns an error code */ static int hw_intr_force(int n) { if (n >= REG_BITS) return -EINVAL; hw_awrite(ABS_TESTMODE, TESTMODE_FORCE, TESTMODE_FORCE); hw_cwrite(CAP_USBINTR, BIT(n), BIT(n)); hw_cwrite(CAP_USBSTS, BIT(n), BIT(n)); hw_awrite(ABS_TESTMODE, TESTMODE_FORCE, 0); return 0; } /** * hw_is_port_high_speed: test if port is high speed * * This function returns true if high speed port */ static int hw_port_is_high_speed(void) { return hw_bank.lpm ? hw_cread(CAP_DEVLC, DEVLC_PSPD) : hw_cread(CAP_PORTSC, PORTSC_HSP); } /** * hw_port_test_get: reads port test mode value * * This function returns port test mode value */ static u8 hw_port_test_get(void) { return hw_cread(CAP_PORTSC, PORTSC_PTC) >> ffs_nr(PORTSC_PTC); } /** * hw_port_test_set: writes port test mode (execute without interruption) * @mode: new value * * This function returns an error code */ static int hw_port_test_set(u8 mode) { const u8 TEST_MODE_MAX = 7; if (mode > TEST_MODE_MAX) return -EINVAL; hw_cwrite(CAP_PORTSC, PORTSC_PTC, mode << ffs_nr(PORTSC_PTC)); return 0; } /** * hw_read_intr_enable: returns interrupt enable register * * This function returns register data */ static u32 hw_read_intr_enable(void) { return hw_cread(CAP_USBINTR, ~0); } /** * hw_read_intr_status: returns interrupt status register * * This function returns register data */ static u32 hw_read_intr_status(void) { return hw_cread(CAP_USBSTS, ~0); } /** * hw_register_read: reads all device registers (execute without interruption) * @buf: destination buffer * @size: buffer size * * This function returns number of registers read */ static size_t hw_register_read(u32 *buf, size_t size) { unsigned i; if (size > hw_bank.size) size = hw_bank.size; for (i = 0; i < size; i++) buf[i] = hw_aread(i * sizeof(u32), ~0); return size; } /** * hw_register_write: writes to register * @addr: register address * @data: register value * * This function returns an error code */ static int hw_register_write(u16 addr, u32 data) { /* align */ addr /= sizeof(u32); if (addr >= hw_bank.size) return -EINVAL; /* align */ addr *= sizeof(u32); hw_awrite(addr, ~0, data); return 0; } /** * hw_test_and_clear_complete: test & clear complete status (execute without * interruption) * @n: bit number (endpoint) * * This function returns complete status */ static int hw_test_and_clear_complete(int n) { return hw_ctest_and_clear(CAP_ENDPTCOMPLETE, BIT(n)); } /** * hw_test_and_clear_intr_active: test & clear active interrupts (execute * without interruption) * * This function returns active interrutps */ static u32 hw_test_and_clear_intr_active(void) { u32 reg = hw_read_intr_status() & hw_read_intr_enable(); hw_cwrite(CAP_USBSTS, ~0, reg); return reg; } /** * hw_test_and_clear_setup_guard: test & clear setup guard (execute without * interruption) * * This function returns guard value */ static int hw_test_and_clear_setup_guard(void) { return hw_ctest_and_write(CAP_USBCMD, USBCMD_SUTW, 0); } /** * hw_test_and_set_setup_guard: test & set setup guard (execute without * interruption) * * This function returns guard value */ static int hw_test_and_set_setup_guard(void) { return hw_ctest_and_write(CAP_USBCMD, USBCMD_SUTW, USBCMD_SUTW); } /** * hw_usb_set_address: configures USB address (execute without interruption) * @value: new USB address * * This function returns an error code */ static int hw_usb_set_address(u8 value) { /* advance */ hw_cwrite(CAP_DEVICEADDR, DEVICEADDR_USBADR | DEVICEADDR_USBADRA, value << ffs_nr(DEVICEADDR_USBADR) | DEVICEADDR_USBADRA); return 0; } /** * hw_usb_reset: restart device after a bus reset (execute without * interruption) * * This function returns an error code */ static int hw_usb_reset(void) { hw_usb_set_address(0); /* ESS flushes only at end?!? */ hw_cwrite(CAP_ENDPTFLUSH, ~0, ~0); /* flush all EPs */ /* clear setup token semaphores */ hw_cwrite(CAP_ENDPTSETUPSTAT, 0, 0); /* writes its content */ /* clear complete status */ hw_cwrite(CAP_ENDPTCOMPLETE, 0, 0); /* writes its content */ /* wait until all bits cleared */ while (hw_cread(CAP_ENDPTPRIME, ~0)) udelay(10); /* not RTOS friendly */ /* reset all endpoints ? */ /* reset internal status and wait for further instructions no need to verify the port reset status (ESS does it) */ return 0; } /****************************************************************************** * DBG block *****************************************************************************/ /** * show_device: prints information about device capabilities and status * * Check "device.h" for details */ static ssize_t show_device(struct device *dev, struct device_attribute *attr, char *buf) { struct ci13xxx *udc = container_of(dev, struct ci13xxx, gadget.dev); struct usb_gadget *gadget = &udc->gadget; int n = 0; dbg_trace("[%s] %p\n", __func__, buf); if (attr == NULL || buf == NULL) { dev_err(dev, "[%s] EINVAL\n", __func__); return 0; } n += scnprintf(buf + n, PAGE_SIZE - n, "speed = %d\n", gadget->speed); n += scnprintf(buf + n, PAGE_SIZE - n, "is_dualspeed = %d\n", gadget->is_dualspeed); n += scnprintf(buf + n, PAGE_SIZE - n, "is_otg = %d\n", gadget->is_otg); n += scnprintf(buf + n, PAGE_SIZE - n, "is_a_peripheral = %d\n", gadget->is_a_peripheral); n += scnprintf(buf + n, PAGE_SIZE - n, "b_hnp_enable = %d\n", gadget->b_hnp_enable); n += scnprintf(buf + n, PAGE_SIZE - n, "a_hnp_support = %d\n", gadget->a_hnp_support); n += scnprintf(buf + n, PAGE_SIZE - n, "a_alt_hnp_support = %d\n", gadget->a_alt_hnp_support); n += scnprintf(buf + n, PAGE_SIZE - n, "name = %s\n", (gadget->name ? gadget->name : "")); return n; } static DEVICE_ATTR(device, S_IRUSR, show_device, NULL); /** * show_driver: prints information about attached gadget (if any) * * Check "device.h" for details */ static ssize_t show_driver(struct device *dev, struct device_attribute *attr, char *buf) { struct ci13xxx *udc = container_of(dev, struct ci13xxx, gadget.dev); struct usb_gadget_driver *driver = udc->driver; int n = 0; dbg_trace("[%s] %p\n", __func__, buf); if (attr == NULL || buf == NULL) { dev_err(dev, "[%s] EINVAL\n", __func__); return 0; } if (driver == NULL) return scnprintf(buf, PAGE_SIZE, "There is no gadget attached!\n"); n += scnprintf(buf + n, PAGE_SIZE - n, "function = %s\n", (driver->function ? driver->function : "")); n += scnprintf(buf + n, PAGE_SIZE - n, "max speed = %d\n", driver->speed); return n; } static DEVICE_ATTR(driver, S_IRUSR, show_driver, NULL); /* Maximum event message length */ #define DBG_DATA_MSG 64UL /* Maximum event messages */ #define DBG_DATA_MAX 128UL /* Event buffer descriptor */ static struct { char (buf[DBG_DATA_MAX])[DBG_DATA_MSG]; /* buffer */ unsigned idx; /* index */ unsigned tty; /* print to console? */ rwlock_t lck; /* lock */ } dbg_data = { .idx = 0, .tty = 0, .lck = __RW_LOCK_UNLOCKED(lck) }; /** * dbg_dec: decrements debug event index * @idx: buffer index */ static void dbg_dec(unsigned *idx) { *idx = (*idx - 1) & (DBG_DATA_MAX-1); } /** * dbg_inc: increments debug event index * @idx: buffer index */ static void dbg_inc(unsigned *idx) { *idx = (*idx + 1) & (DBG_DATA_MAX-1); } /** * dbg_print: prints the common part of the event * @addr: endpoint address * @name: event name * @status: status * @extra: extra information */ static void dbg_print(u8 addr, const char *name, int status, const char *extra) { struct timeval tval; unsigned int stamp; unsigned long flags; write_lock_irqsave(&dbg_data.lck, flags); do_gettimeofday(&tval); stamp = tval.tv_sec & 0xFFFF; /* 2^32 = 4294967296. Limit to 4096s */ stamp = stamp * 1000000 + tval.tv_usec; scnprintf(dbg_data.buf[dbg_data.idx], DBG_DATA_MSG, "%04X\t? %02X %-7.7s %4i ?\t%s\n", stamp, addr, name, status, extra); dbg_inc(&dbg_data.idx); write_unlock_irqrestore(&dbg_data.lck, flags); if (dbg_data.tty != 0) pr_notice("%04X\t? %02X %-7.7s %4i ?\t%s\n", stamp, addr, name, status, extra); } /** * dbg_done: prints a DONE event * @addr: endpoint address * @td: transfer descriptor * @status: status */ static void dbg_done(u8 addr, const u32 token, int status) { char msg[DBG_DATA_MSG]; scnprintf(msg, sizeof(msg), "%d %02X", (int)(token & TD_TOTAL_BYTES) >> ffs_nr(TD_TOTAL_BYTES), (int)(token & TD_STATUS) >> ffs_nr(TD_STATUS)); dbg_print(addr, "DONE", status, msg); } /** * dbg_event: prints a generic event * @addr: endpoint address * @name: event name * @status: status */ static void dbg_event(u8 addr, const char *name, int status) { if (name != NULL) dbg_print(addr, name, status, ""); } /* * dbg_queue: prints a QUEUE event * @addr: endpoint address * @req: USB request * @status: status */ static void dbg_queue(u8 addr, const struct usb_request *req, int status) { char msg[DBG_DATA_MSG]; if (req != NULL) { scnprintf(msg, sizeof(msg), "%d %d", !req->no_interrupt, req->length); dbg_print(addr, "QUEUE", status, msg); } } /** * dbg_setup: prints a SETUP event * @addr: endpoint address * @req: setup request */ static void dbg_setup(u8 addr, const struct usb_ctrlrequest *req) { char msg[DBG_DATA_MSG]; if (req != NULL) { scnprintf(msg, sizeof(msg), "%02X %02X %04X %04X %d", req->bRequestType, req->bRequest, le16_to_cpu(req->wValue), le16_to_cpu(req->wIndex), le16_to_cpu(req->wLength)); dbg_print(addr, "SETUP", 0, msg); } } /** * show_events: displays the event buffer * * Check "device.h" for details */ static ssize_t show_events(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long flags; unsigned i, j, n = 0; dbg_trace("[%s] %p\n", __func__, buf); if (attr == NULL || buf == NULL) { dev_err(dev, "[%s] EINVAL\n", __func__); return 0; } read_lock_irqsave(&dbg_data.lck, flags); i = dbg_data.idx; for (dbg_dec(&i); i != dbg_data.idx; dbg_dec(&i)) { n += strlen(dbg_data.buf[i]); if (n >= PAGE_SIZE) { n -= strlen(dbg_data.buf[i]); break; } } for (j = 0, dbg_inc(&i); j < n; dbg_inc(&i)) j += scnprintf(buf + j, PAGE_SIZE - j, "%s", dbg_data.buf[i]); read_unlock_irqrestore(&dbg_data.lck, flags); return n; } /** * store_events: configure if events are going to be also printed to console * * Check "device.h" for details */ static ssize_t store_events(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { unsigned tty; dbg_trace("[%s] %p, %d\n", __func__, buf, count); if (attr == NULL || buf == NULL) { dev_err(dev, "[%s] EINVAL\n", __func__); goto done; } if (sscanf(buf, "%u", &tty) != 1 || tty > 1) { dev_err(dev, "<1|0>: enable|disable console log\n"); goto done; } dbg_data.tty = tty; dev_info(dev, "tty = %u", dbg_data.tty); done: return count; } static DEVICE_ATTR(events, S_IRUSR | S_IWUSR, show_events, store_events); /** * show_inters: interrupt status, enable status and historic * * Check "device.h" for details */ static ssize_t show_inters(struct device *dev, struct device_attribute *attr, char *buf) { struct ci13xxx *udc = container_of(dev, struct ci13xxx, gadget.dev); unsigned long flags; u32 intr; unsigned i, j, n = 0; dbg_trace("[%s] %p\n", __func__, buf); if (attr == NULL || buf == NULL) { dev_err(dev, "[%s] EINVAL\n", __func__); return 0; } spin_lock_irqsave(udc->lock, flags); n += scnprintf(buf + n, PAGE_SIZE - n, "status = %08x\n", hw_read_intr_status()); n += scnprintf(buf + n, PAGE_SIZE - n, "enable = %08x\n", hw_read_intr_enable()); n += scnprintf(buf + n, PAGE_SIZE - n, "*test = %d\n", isr_statistics.test); n += scnprintf(buf + n, PAGE_SIZE - n, "? ui = %d\n", isr_statistics.ui); n += scnprintf(buf + n, PAGE_SIZE - n, "? uei = %d\n", isr_statistics.uei); n += scnprintf(buf + n, PAGE_SIZE - n, "? pci = %d\n", isr_statistics.pci); n += scnprintf(buf + n, PAGE_SIZE - n, "? uri = %d\n", isr_statistics.uri); n += scnprintf(buf + n, PAGE_SIZE - n, "? sli = %d\n", isr_statistics.sli); n += scnprintf(buf + n, PAGE_SIZE - n, "*none = %d\n", isr_statistics.none); n += scnprintf(buf + n, PAGE_SIZE - n, "*hndl = %d\n", isr_statistics.hndl.cnt); for (i = isr_statistics.hndl.idx, j = 0; j <= ISR_MASK; j++, i++) { i &= ISR_MASK; intr = isr_statistics.hndl.buf[i]; if (USBi_UI & intr) n += scnprintf(buf + n, PAGE_SIZE - n, "ui "); intr &= ~USBi_UI; if (USBi_UEI & intr) n += scnprintf(buf + n, PAGE_SIZE - n, "uei "); intr &= ~USBi_UEI; if (USBi_PCI & intr) n += scnprintf(buf + n, PAGE_SIZE - n, "pci "); intr &= ~USBi_PCI; if (USBi_URI & intr) n += scnprintf(buf + n, PAGE_SIZE - n, "uri "); intr &= ~USBi_URI; if (USBi_SLI & intr) n += scnprintf(buf + n, PAGE_SIZE - n, "sli "); intr &= ~USBi_SLI; if (intr) n += scnprintf(buf + n, PAGE_SIZE - n, "??? "); if (isr_statistics.hndl.buf[i]) n += scnprintf(buf + n, PAGE_SIZE - n, "\n"); } spin_unlock_irqrestore(udc->lock, flags); return n; } /** * store_inters: enable & force or disable an individual interrutps * (to be used for test purposes only) * * Check "device.h" for details */ static ssize_t store_inters(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ci13xxx *udc = container_of(dev, struct ci13xxx, gadget.dev); unsigned long flags; unsigned en, bit; dbg_trace("[%s] %p, %d\n", __func__, buf, count); if (attr == NULL || buf == NULL) { dev_err(dev, "[%s] EINVAL\n", __func__); goto done; } if (sscanf(buf, "%u %u", &en, &bit) != 2 || en > 1) { dev_err(dev, "<1|0> : enable|disable interrupt"); goto done; } spin_lock_irqsave(udc->lock, flags); if (en) { if (hw_intr_force(bit)) dev_err(dev, "invalid bit number\n"); else isr_statistics.test++; } else { if (hw_intr_clear(bit)) dev_err(dev, "invalid bit number\n"); } spin_unlock_irqrestore(udc->lock, flags); done: return count; } static DEVICE_ATTR(inters, S_IRUSR | S_IWUSR, show_inters, store_inters); /** * show_port_test: reads port test mode * * Check "device.h" for details */ static ssize_t show_port_test(struct device *dev, struct device_attribute *attr, char *buf) { struct ci13xxx *udc = container_of(dev, struct ci13xxx, gadget.dev); unsigned long flags; unsigned mode; dbg_trace("[%s] %p\n", __func__, buf); if (attr == NULL || buf == NULL) { dev_err(dev, "[%s] EINVAL\n", __func__); return 0; } spin_lock_irqsave(udc->lock, flags); mode = hw_port_test_get(); spin_unlock_irqrestore(udc->lock, flags); return scnprintf(buf, PAGE_SIZE, "mode = %u\n", mode); } /** * store_port_test: writes port test mode * * Check "device.h" for details */ static ssize_t store_port_test(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ci13xxx *udc = container_of(dev, struct ci13xxx, gadget.dev); unsigned long flags; unsigned mode; dbg_trace("[%s] %p, %d\n", __func__, buf, count); if (attr == NULL || buf == NULL) { dev_err(dev, "[%s] EINVAL\n", __func__); goto done; } if (sscanf(buf, "%u", &mode) != 1) { dev_err(dev, ": set port test mode"); goto done; } spin_lock_irqsave(udc->lock, flags); if (hw_port_test_set(mode)) dev_err(dev, "invalid mode\n"); spin_unlock_irqrestore(udc->lock, flags); done: return count; } static DEVICE_ATTR(port_test, S_IRUSR | S_IWUSR, show_port_test, store_port_test); /** * show_qheads: DMA contents of all queue heads * * Check "device.h" for details */ static ssize_t show_qheads(struct device *dev, struct device_attribute *attr, char *buf) { struct ci13xxx *udc = container_of(dev, struct ci13xxx, gadget.dev); unsigned long flags; unsigned i, j, n = 0; dbg_trace("[%s] %p\n", __func__, buf); if (attr == NULL || buf == NULL) { dev_err(dev, "[%s] EINVAL\n", __func__); return 0; } spin_lock_irqsave(udc->lock, flags); for (i = 0; i < hw_ep_max/2; i++) { struct ci13xxx_ep *mEpRx = &udc->ci13xxx_ep[i]; struct ci13xxx_ep *mEpTx = &udc->ci13xxx_ep[i + hw_ep_max/2]; n += scnprintf(buf + n, PAGE_SIZE - n, "EP=%02i: RX=%08X TX=%08X\n", i, (u32)mEpRx->qh.dma, (u32)mEpTx->qh.dma); for (j = 0; j < (sizeof(struct ci13xxx_qh)/sizeof(u32)); j++) { n += scnprintf(buf + n, PAGE_SIZE - n, " %04X: %08X %08X\n", j, *((u32 *)mEpRx->qh.ptr + j), *((u32 *)mEpTx->qh.ptr + j)); } } spin_unlock_irqrestore(udc->lock, flags); return n; } static DEVICE_ATTR(qheads, S_IRUSR, show_qheads, NULL); /** * show_registers: dumps all registers * * Check "device.h" for details */ static ssize_t show_registers(struct device *dev, struct device_attribute *attr, char *buf) { struct ci13xxx *udc = container_of(dev, struct ci13xxx, gadget.dev); unsigned long flags; u32 dump[512]; unsigned i, k, n = 0; dbg_trace("[%s] %p\n", __func__, buf); if (attr == NULL || buf == NULL) { dev_err(dev, "[%s] EINVAL\n", __func__); return 0; } spin_lock_irqsave(udc->lock, flags); k = hw_register_read(dump, sizeof(dump)/sizeof(u32)); spin_unlock_irqrestore(udc->lock, flags); for (i = 0; i < k; i++) { n += scnprintf(buf + n, PAGE_SIZE - n, "reg[0x%04X] = 0x%08X\n", i * (unsigned)sizeof(u32), dump[i]); } return n; } /** * store_registers: writes value to register address * * Check "device.h" for details */ static ssize_t store_registers(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ci13xxx *udc = container_of(dev, struct ci13xxx, gadget.dev); unsigned long addr, data, flags; dbg_trace("[%s] %p, %d\n", __func__, buf, count); if (attr == NULL || buf == NULL) { dev_err(dev, "[%s] EINVAL\n", __func__); goto done; } if (sscanf(buf, "%li %li", &addr, &data) != 2) { dev_err(dev, " : write data to register address"); goto done; } spin_lock_irqsave(udc->lock, flags); if (hw_register_write(addr, data)) dev_err(dev, "invalid address range\n"); spin_unlock_irqrestore(udc->lock, flags); done: return count; } static DEVICE_ATTR(registers, S_IRUSR | S_IWUSR, show_registers, store_registers); /** * show_requests: DMA contents of all requests currently queued (all endpts) * * Check "device.h" for details */ static ssize_t show_requests(struct device *dev, struct device_attribute *attr, char *buf) { struct ci13xxx *udc = container_of(dev, struct ci13xxx, gadget.dev); unsigned long flags; struct list_head *ptr = NULL; struct ci13xxx_req *req = NULL; unsigned i, j, n = 0, qSize = sizeof(struct ci13xxx_td)/sizeof(u32); dbg_trace("[%s] %p\n", __func__, buf); if (attr == NULL || buf == NULL) { dev_err(dev, "[%s] EINVAL\n", __func__); return 0; } spin_lock_irqsave(udc->lock, flags); for (i = 0; i < hw_ep_max; i++) list_for_each(ptr, &udc->ci13xxx_ep[i].qh.queue) { req = list_entry(ptr, struct ci13xxx_req, queue); n += scnprintf(buf + n, PAGE_SIZE - n, "EP=%02i: TD=%08X %s\n", i % hw_ep_max/2, (u32)req->dma, ((i < hw_ep_max/2) ? "RX" : "TX")); for (j = 0; j < qSize; j++) n += scnprintf(buf + n, PAGE_SIZE - n, " %04X: %08X\n", j, *((u32 *)req->ptr + j)); } spin_unlock_irqrestore(udc->lock, flags); return n; } static DEVICE_ATTR(requests, S_IRUSR, show_requests, NULL); /** * dbg_create_files: initializes the attribute interface * @dev: device * * This function returns an error code */ __maybe_unused static int dbg_create_files(struct device *dev) { int retval = 0; if (dev == NULL) return -EINVAL; retval = device_create_file(dev, &dev_attr_device); if (retval) goto done; retval = device_create_file(dev, &dev_attr_driver); if (retval) goto rm_device; retval = device_create_file(dev, &dev_attr_events); if (retval) goto rm_driver; retval = device_create_file(dev, &dev_attr_inters); if (retval) goto rm_events; retval = device_create_file(dev, &dev_attr_port_test); if (retval) goto rm_inters; retval = device_create_file(dev, &dev_attr_qheads); if (retval) goto rm_port_test; retval = device_create_file(dev, &dev_attr_registers); if (retval) goto rm_qheads; retval = device_create_file(dev, &dev_attr_requests); if (retval) goto rm_registers; return 0; rm_registers: device_remove_file(dev, &dev_attr_registers); rm_qheads: device_remove_file(dev, &dev_attr_qheads); rm_port_test: device_remove_file(dev, &dev_attr_port_test); rm_inters: device_remove_file(dev, &dev_attr_inters); rm_events: device_remove_file(dev, &dev_attr_events); rm_driver: device_remove_file(dev, &dev_attr_driver); rm_device: device_remove_file(dev, &dev_attr_device); done: return retval; } /** * dbg_remove_files: destroys the attribute interface * @dev: device * * This function returns an error code */ __maybe_unused static int dbg_remove_files(struct device *dev) { if (dev == NULL) return -EINVAL; device_remove_file(dev, &dev_attr_requests); device_remove_file(dev, &dev_attr_registers); device_remove_file(dev, &dev_attr_qheads); device_remove_file(dev, &dev_attr_port_test); device_remove_file(dev, &dev_attr_inters); device_remove_file(dev, &dev_attr_events); device_remove_file(dev, &dev_attr_driver); device_remove_file(dev, &dev_attr_device); return 0; } /****************************************************************************** * UTIL block *****************************************************************************/ /** * _usb_addr: calculates endpoint address from direction & number * @ep: endpoint */ static inline u8 _usb_addr(struct ci13xxx_ep *ep) { return ((ep->dir == TX) ? USB_ENDPOINT_DIR_MASK : 0) | ep->num; } /** * _hardware_queue: configures a request at hardware level * @gadget: gadget * @mEp: endpoint * * This function returns an error code */ static int _hardware_enqueue(struct ci13xxx_ep *mEp, struct ci13xxx_req *mReq) { unsigned i; int ret = 0; unsigned length = mReq->req.length; trace("%p, %p", mEp, mReq); /* don't queue twice */ if (mReq->req.status == -EALREADY) return -EALREADY; mReq->req.status = -EALREADY; if (length && !mReq->req.dma) { mReq->req.dma = \ dma_map_single(mEp->device, mReq->req.buf, length, mEp->dir ? DMA_TO_DEVICE : DMA_FROM_DEVICE); if (mReq->req.dma == 0) return -ENOMEM; mReq->map = 1; } if (mReq->req.zero && length && (length % mEp->ep.maxpacket == 0)) { mReq->zptr = dma_pool_alloc(mEp->td_pool, GFP_ATOMIC, &mReq->zdma); if (mReq->zptr == NULL) { if (mReq->map) { dma_unmap_single(mEp->device, mReq->req.dma, length, mEp->dir ? DMA_TO_DEVICE : DMA_FROM_DEVICE); mReq->req.dma = 0; mReq->map = 0; } return -ENOMEM; } memset(mReq->zptr, 0, sizeof(*mReq->zptr)); mReq->zptr->next = TD_TERMINATE; mReq->zptr->token = TD_STATUS_ACTIVE; if (!mReq->req.no_interrupt) mReq->zptr->token |= TD_IOC; } /* * TD configuration * TODO - handle requests which spawns into several TDs */ memset(mReq->ptr, 0, sizeof(*mReq->ptr)); mReq->ptr->token = length << ffs_nr(TD_TOTAL_BYTES); mReq->ptr->token &= TD_TOTAL_BYTES; mReq->ptr->token |= TD_STATUS_ACTIVE; if (mReq->zptr) { mReq->ptr->next = mReq->zdma; } else { mReq->ptr->next = TD_TERMINATE; if (!mReq->req.no_interrupt) mReq->ptr->token |= TD_IOC; } mReq->ptr->page[0] = mReq->req.dma; for (i = 1; i < 5; i++) mReq->ptr->page[i] = (mReq->req.dma + i * CI13XXX_PAGE_SIZE) & ~TD_RESERVED_MASK; if (!list_empty(&mEp->qh.queue)) { struct ci13xxx_req *mReqPrev; int n = hw_ep_bit(mEp->num, mEp->dir); int tmp_stat; mReqPrev = list_entry(mEp->qh.queue.prev, struct ci13xxx_req, queue); if (mReqPrev->zptr) mReqPrev->zptr->next = mReq->dma & TD_ADDR_MASK; else mReqPrev->ptr->next = mReq->dma & TD_ADDR_MASK; wmb(); if (hw_cread(CAP_ENDPTPRIME, BIT(n))) goto done; do { hw_cwrite(CAP_USBCMD, USBCMD_ATDTW, USBCMD_ATDTW); tmp_stat = hw_cread(CAP_ENDPTSTAT, BIT(n)); } while (!hw_cread(CAP_USBCMD, USBCMD_ATDTW)); hw_cwrite(CAP_USBCMD, USBCMD_ATDTW, 0); if (tmp_stat) goto done; } /* QH configuration */ mEp->qh.ptr->td.next = mReq->dma; /* TERMINATE = 0 */ mEp->qh.ptr->td.token &= ~TD_STATUS; /* clear status */ mEp->qh.ptr->cap |= QH_ZLT; wmb(); /* synchronize before ep prime */ ret = hw_ep_prime(mEp->num, mEp->dir, mEp->type == USB_ENDPOINT_XFER_CONTROL); done: return ret; } /** * _hardware_dequeue: handles a request at hardware level * @gadget: gadget * @mEp: endpoint * * This function returns an error code */ static int _hardware_dequeue(struct ci13xxx_ep *mEp, struct ci13xxx_req *mReq) { trace("%p, %p", mEp, mReq); if (mReq->req.status != -EALREADY) return -EINVAL; if ((TD_STATUS_ACTIVE & mReq->ptr->token) != 0) return -EBUSY; if (mReq->zptr) { if ((TD_STATUS_ACTIVE & mReq->zptr->token) != 0) return -EBUSY; dma_pool_free(mEp->td_pool, mReq->zptr, mReq->zdma); mReq->zptr = NULL; } mReq->req.status = 0; if (mReq->map) { dma_unmap_single(mEp->device, mReq->req.dma, mReq->req.length, mEp->dir ? DMA_TO_DEVICE : DMA_FROM_DEVICE); mReq->req.dma = 0; mReq->map = 0; } mReq->req.status = mReq->ptr->token & TD_STATUS; if ((TD_STATUS_HALTED & mReq->req.status) != 0) mReq->req.status = -1; else if ((TD_STATUS_DT_ERR & mReq->req.status) != 0) mReq->req.status = -1; else if ((TD_STATUS_TR_ERR & mReq->req.status) != 0) mReq->req.status = -1; mReq->req.actual = mReq->ptr->token & TD_TOTAL_BYTES; mReq->req.actual >>= ffs_nr(TD_TOTAL_BYTES); mReq->req.actual = mReq->req.length - mReq->req.actual; mReq->req.actual = mReq->req.status ? 0 : mReq->req.actual; return mReq->req.actual; } /** * _ep_nuke: dequeues all endpoint requests * @mEp: endpoint * * This function returns an error code * Caller must hold lock */ static int _ep_nuke(struct ci13xxx_ep *mEp) __releases(mEp->lock) __acquires(mEp->lock) { trace("%p", mEp); if (mEp == NULL) return -EINVAL; hw_ep_flush(mEp->num, mEp->dir); while (!list_empty(&mEp->qh.queue)) { /* pop oldest request */ struct ci13xxx_req *mReq = \ list_entry(mEp->qh.queue.next, struct ci13xxx_req, queue); list_del_init(&mReq->queue); mReq->req.status = -ESHUTDOWN; if (mReq->req.complete != NULL) { spin_unlock(mEp->lock); mReq->req.complete(&mEp->ep, &mReq->req); spin_lock(mEp->lock); } } return 0; } /** * _gadget_stop_activity: stops all USB activity, flushes & disables all endpts * @gadget: gadget * * This function returns an error code * Caller must hold lock */ static int _gadget_stop_activity(struct usb_gadget *gadget) { struct usb_ep *ep; struct ci13xxx *udc = container_of(gadget, struct ci13xxx, gadget); unsigned long flags; trace("%p", gadget); if (gadget == NULL) return -EINVAL; spin_lock_irqsave(udc->lock, flags); udc->gadget.speed = USB_SPEED_UNKNOWN; udc->remote_wakeup = 0; udc->suspended = 0; spin_unlock_irqrestore(udc->lock, flags); /* flush all endpoints */ gadget_for_each_ep(ep, gadget) { usb_ep_fifo_flush(ep); } usb_ep_fifo_flush(&udc->ep0out.ep); usb_ep_fifo_flush(&udc->ep0in.ep); udc->driver->disconnect(gadget); /* make sure to disable all endpoints */ gadget_for_each_ep(ep, gadget) { usb_ep_disable(ep); } if (udc->status != NULL) { usb_ep_free_request(&udc->ep0in.ep, udc->status); udc->status = NULL; } return 0; } /****************************************************************************** * ISR block *****************************************************************************/ /** * isr_reset_handler: USB reset interrupt handler * @udc: UDC device * * This function resets USB engine after a bus reset occurred */ static void isr_reset_handler(struct ci13xxx *udc) __releases(udc->lock) __acquires(udc->lock) { int retval; trace("%p", udc); if (udc == NULL) { err("EINVAL"); return; } dbg_event(0xFF, "BUS RST", 0); spin_unlock(udc->lock); retval = _gadget_stop_activity(&udc->gadget); if (retval) goto done; retval = hw_usb_reset(); if (retval) goto done; udc->status = usb_ep_alloc_request(&udc->ep0in.ep, GFP_ATOMIC); if (udc->status == NULL) retval = -ENOMEM; spin_lock(udc->lock); done: if (retval) err("error: %i", retval); } /** * isr_get_status_complete: get_status request complete function * @ep: endpoint * @req: request handled * * Caller must release lock */ static void isr_get_status_complete(struct usb_ep *ep, struct usb_request *req) { trace("%p, %p", ep, req); if (ep == NULL || req == NULL) { err("EINVAL"); return; } kfree(req->buf); usb_ep_free_request(ep, req); } /** * isr_get_status_response: get_status request response * @udc: udc struct * @setup: setup request packet * * This function returns an error code */ static int isr_get_status_response(struct ci13xxx *udc, struct usb_ctrlrequest *setup) __releases(mEp->lock) __acquires(mEp->lock) { struct ci13xxx_ep *mEp = &udc->ep0in; struct usb_request *req = NULL; gfp_t gfp_flags = GFP_ATOMIC; int dir, num, retval; trace("%p, %p", mEp, setup); if (mEp == NULL || setup == NULL) return -EINVAL; spin_unlock(mEp->lock); req = usb_ep_alloc_request(&mEp->ep, gfp_flags); spin_lock(mEp->lock); if (req == NULL) return -ENOMEM; req->complete = isr_get_status_complete; req->length = 2; req->buf = kzalloc(req->length, gfp_flags); if (req->buf == NULL) { retval = -ENOMEM; goto err_free_req; } if ((setup->bRequestType & USB_RECIP_MASK) == USB_RECIP_DEVICE) { /* Assume that device is bus powered for now. */ *((u16 *)req->buf) = _udc->remote_wakeup << 1; retval = 0; } else if ((setup->bRequestType & USB_RECIP_MASK) \ == USB_RECIP_ENDPOINT) { dir = (le16_to_cpu(setup->wIndex) & USB_ENDPOINT_DIR_MASK) ? TX : RX; num = le16_to_cpu(setup->wIndex) & USB_ENDPOINT_NUMBER_MASK; *((u16 *)req->buf) = hw_ep_get_halt(num, dir); } /* else do nothing; reserved for future use */ spin_unlock(mEp->lock); retval = usb_ep_queue(&mEp->ep, req, gfp_flags); spin_lock(mEp->lock); if (retval) goto err_free_buf; return 0; err_free_buf: kfree(req->buf); err_free_req: spin_unlock(mEp->lock); usb_ep_free_request(&mEp->ep, req); spin_lock(mEp->lock); return retval; } /** * isr_setup_status_complete: setup_status request complete function * @ep: endpoint * @req: request handled * * Caller must release lock. Put the port in test mode if test mode * feature is selected. */ static void isr_setup_status_complete(struct usb_ep *ep, struct usb_request *req) { struct ci13xxx *udc = req->context; unsigned long flags; trace("%p, %p", ep, req); spin_lock_irqsave(udc->lock, flags); if (udc->test_mode) hw_port_test_set(udc->test_mode); spin_unlock_irqrestore(udc->lock, flags); } /** * isr_setup_status_phase: queues the status phase of a setup transation * @udc: udc struct * * This function returns an error code */ static int isr_setup_status_phase(struct ci13xxx *udc) __releases(mEp->lock) __acquires(mEp->lock) { int retval; struct ci13xxx_ep *mEp; trace("%p", udc); mEp = (udc->ep0_dir == TX) ? &udc->ep0out : &udc->ep0in; udc->status->context = udc; udc->status->complete = isr_setup_status_complete; spin_unlock(mEp->lock); retval = usb_ep_queue(&mEp->ep, udc->status, GFP_ATOMIC); spin_lock(mEp->lock); return retval; } /** * isr_tr_complete_low: transaction complete low level handler * @mEp: endpoint * * This function returns an error code * Caller must hold lock */ static int isr_tr_complete_low(struct ci13xxx_ep *mEp) __releases(mEp->lock) __acquires(mEp->lock) { struct ci13xxx_req *mReq, *mReqTemp; struct ci13xxx_ep *mEpTemp = mEp; int uninitialized_var(retval); trace("%p", mEp); if (list_empty(&mEp->qh.queue)) return -EINVAL; list_for_each_entry_safe(mReq, mReqTemp, &mEp->qh.queue, queue) { retval = _hardware_dequeue(mEp, mReq); if (retval < 0) break; list_del_init(&mReq->queue); dbg_done(_usb_addr(mEp), mReq->ptr->token, retval); if (mReq->req.complete != NULL) { spin_unlock(mEp->lock); if ((mEp->type == USB_ENDPOINT_XFER_CONTROL) && mReq->req.length) mEpTemp = &_udc->ep0in; mReq->req.complete(&mEpTemp->ep, &mReq->req); spin_lock(mEp->lock); } } if (retval == -EBUSY) retval = 0; if (retval < 0) dbg_event(_usb_addr(mEp), "DONE", retval); return retval; } /** * isr_tr_complete_handler: transaction complete interrupt handler * @udc: UDC descriptor * * This function handles traffic events */ static void isr_tr_complete_handler(struct ci13xxx *udc) __releases(udc->lock) __acquires(udc->lock) { unsigned i; u8 tmode = 0; trace("%p", udc); if (udc == NULL) { err("EINVAL"); return; } for (i = 0; i < hw_ep_max; i++) { struct ci13xxx_ep *mEp = &udc->ci13xxx_ep[i]; int type, num, dir, err = -EINVAL; struct usb_ctrlrequest req; if (mEp->desc == NULL) continue; /* not configured */ if (hw_test_and_clear_complete(i)) { err = isr_tr_complete_low(mEp); if (mEp->type == USB_ENDPOINT_XFER_CONTROL) { if (err > 0) /* needs status phase */ err = isr_setup_status_phase(udc); if (err < 0) { dbg_event(_usb_addr(mEp), "ERROR", err); spin_unlock(udc->lock); if (usb_ep_set_halt(&mEp->ep)) err("error: ep_set_halt"); spin_lock(udc->lock); } } } if (mEp->type != USB_ENDPOINT_XFER_CONTROL || !hw_test_and_clear_setup_status(i)) continue; if (i != 0) { warn("ctrl traffic received at endpoint"); continue; } /* * Flush data and handshake transactions of previous * setup packet. */ _ep_nuke(&udc->ep0out); _ep_nuke(&udc->ep0in); /* read_setup_packet */ do { hw_test_and_set_setup_guard(); memcpy(&req, &mEp->qh.ptr->setup, sizeof(req)); } while (!hw_test_and_clear_setup_guard()); type = req.bRequestType; udc->ep0_dir = (type & USB_DIR_IN) ? TX : RX; dbg_setup(_usb_addr(mEp), &req); switch (req.bRequest) { case USB_REQ_CLEAR_FEATURE: if (type == (USB_DIR_OUT|USB_RECIP_ENDPOINT) && le16_to_cpu(req.wValue) == USB_ENDPOINT_HALT) { if (req.wLength != 0) break; num = le16_to_cpu(req.wIndex); dir = num & USB_ENDPOINT_DIR_MASK; num &= USB_ENDPOINT_NUMBER_MASK; if (dir) /* TX */ num += hw_ep_max/2; if (!udc->ci13xxx_ep[num].wedge) { spin_unlock(udc->lock); err = usb_ep_clear_halt( &udc->ci13xxx_ep[num].ep); spin_lock(udc->lock); if (err) break; } err = isr_setup_status_phase(udc); } else if (type == (USB_DIR_OUT|USB_RECIP_DEVICE) && le16_to_cpu(req.wValue) == USB_DEVICE_REMOTE_WAKEUP) { if (req.wLength != 0) break; udc->remote_wakeup = 0; err = isr_setup_status_phase(udc); } else { goto delegate; } break; case USB_REQ_GET_STATUS: if (type != (USB_DIR_IN|USB_RECIP_DEVICE) && type != (USB_DIR_IN|USB_RECIP_ENDPOINT) && type != (USB_DIR_IN|USB_RECIP_INTERFACE)) goto delegate; if (le16_to_cpu(req.wLength) != 2 || le16_to_cpu(req.wValue) != 0) break; err = isr_get_status_response(udc, &req); break; case USB_REQ_SET_ADDRESS: if (type != (USB_DIR_OUT|USB_RECIP_DEVICE)) goto delegate; if (le16_to_cpu(req.wLength) != 0 || le16_to_cpu(req.wIndex) != 0) break; err = hw_usb_set_address((u8)le16_to_cpu(req.wValue)); if (err) break; err = isr_setup_status_phase(udc); break; case USB_REQ_SET_FEATURE: if (type == (USB_DIR_OUT|USB_RECIP_ENDPOINT) && le16_to_cpu(req.wValue) == USB_ENDPOINT_HALT) { if (req.wLength != 0) break; num = le16_to_cpu(req.wIndex); dir = num & USB_ENDPOINT_DIR_MASK; num &= USB_ENDPOINT_NUMBER_MASK; if (dir) /* TX */ num += hw_ep_max/2; spin_unlock(udc->lock); err = usb_ep_set_halt(&udc->ci13xxx_ep[num].ep); spin_lock(udc->lock); if (!err) isr_setup_status_phase(udc); } else if (type == (USB_DIR_OUT|USB_RECIP_DEVICE)) { if (req.wLength != 0) break; switch (le16_to_cpu(req.wValue)) { case USB_DEVICE_REMOTE_WAKEUP: udc->remote_wakeup = 1; err = isr_setup_status_phase(udc); break; case USB_DEVICE_TEST_MODE: tmode = le16_to_cpu(req.wIndex) >> 8; switch (tmode) { case TEST_J: case TEST_K: case TEST_SE0_NAK: case TEST_PACKET: case TEST_FORCE_EN: udc->test_mode = tmode; err = isr_setup_status_phase( udc); break; default: break; } default: goto delegate; } } else { goto delegate; } break; default: delegate: if (req.wLength == 0) /* no data phase */ udc->ep0_dir = TX; spin_unlock(udc->lock); err = udc->driver->setup(&udc->gadget, &req); spin_lock(udc->lock); break; } if (err < 0) { dbg_event(_usb_addr(mEp), "ERROR", err); spin_unlock(udc->lock); if (usb_ep_set_halt(&mEp->ep)) err("error: ep_set_halt"); spin_lock(udc->lock); } } } /****************************************************************************** * ENDPT block *****************************************************************************/ /** * ep_enable: configure endpoint, making it usable * * Check usb_ep_enable() at "usb_gadget.h" for details */ static int ep_enable(struct usb_ep *ep, const struct usb_endpoint_descriptor *desc) { struct ci13xxx_ep *mEp = container_of(ep, struct ci13xxx_ep, ep); int retval = 0; unsigned long flags; trace("%p, %p", ep, desc); if (ep == NULL || desc == NULL) return -EINVAL; spin_lock_irqsave(mEp->lock, flags); /* only internal SW should enable ctrl endpts */ mEp->desc = desc; if (!list_empty(&mEp->qh.queue)) warn("enabling a non-empty endpoint!"); mEp->dir = usb_endpoint_dir_in(desc) ? TX : RX; mEp->num = usb_endpoint_num(desc); mEp->type = usb_endpoint_type(desc); mEp->ep.maxpacket = __constant_le16_to_cpu(desc->wMaxPacketSize); dbg_event(_usb_addr(mEp), "ENABLE", 0); mEp->qh.ptr->cap = 0; if (mEp->type == USB_ENDPOINT_XFER_CONTROL) mEp->qh.ptr->cap |= QH_IOS; else if (mEp->type == USB_ENDPOINT_XFER_ISOC) mEp->qh.ptr->cap &= ~QH_MULT; else mEp->qh.ptr->cap &= ~QH_ZLT; mEp->qh.ptr->cap |= (mEp->ep.maxpacket << ffs_nr(QH_MAX_PKT)) & QH_MAX_PKT; mEp->qh.ptr->td.next |= TD_TERMINATE; /* needed? */ /* * Enable endpoints in the HW other than ep0 as ep0 * is always enabled */ if (mEp->num) retval |= hw_ep_enable(mEp->num, mEp->dir, mEp->type); spin_unlock_irqrestore(mEp->lock, flags); return retval; } /** * ep_disable: endpoint is no longer usable * * Check usb_ep_disable() at "usb_gadget.h" for details */ static int ep_disable(struct usb_ep *ep) { struct ci13xxx_ep *mEp = container_of(ep, struct ci13xxx_ep, ep); int direction, retval = 0; unsigned long flags; trace("%p", ep); if (ep == NULL) return -EINVAL; else if (mEp->desc == NULL) return -EBUSY; spin_lock_irqsave(mEp->lock, flags); /* only internal SW should disable ctrl endpts */ direction = mEp->dir; do { dbg_event(_usb_addr(mEp), "DISABLE", 0); retval |= _ep_nuke(mEp); retval |= hw_ep_disable(mEp->num, mEp->dir); if (mEp->type == USB_ENDPOINT_XFER_CONTROL) mEp->dir = (mEp->dir == TX) ? RX : TX; } while (mEp->dir != direction); mEp->desc = NULL; spin_unlock_irqrestore(mEp->lock, flags); return retval; } /** * ep_alloc_request: allocate a request object to use with this endpoint * * Check usb_ep_alloc_request() at "usb_gadget.h" for details */ static struct usb_request *ep_alloc_request(struct usb_ep *ep, gfp_t gfp_flags) { struct ci13xxx_ep *mEp = container_of(ep, struct ci13xxx_ep, ep); struct ci13xxx_req *mReq = NULL; trace("%p, %i", ep, gfp_flags); if (ep == NULL) { err("EINVAL"); return NULL; } mReq = kzalloc(sizeof(struct ci13xxx_req), gfp_flags); if (mReq != NULL) { INIT_LIST_HEAD(&mReq->queue); mReq->ptr = dma_pool_alloc(mEp->td_pool, gfp_flags, &mReq->dma); if (mReq->ptr == NULL) { kfree(mReq); mReq = NULL; } } dbg_event(_usb_addr(mEp), "ALLOC", mReq == NULL); return (mReq == NULL) ? NULL : &mReq->req; } /** * ep_free_request: frees a request object * * Check usb_ep_free_request() at "usb_gadget.h" for details */ static void ep_free_request(struct usb_ep *ep, struct usb_request *req) { struct ci13xxx_ep *mEp = container_of(ep, struct ci13xxx_ep, ep); struct ci13xxx_req *mReq = container_of(req, struct ci13xxx_req, req); unsigned long flags; trace("%p, %p", ep, req); if (ep == NULL || req == NULL) { err("EINVAL"); return; } else if (!list_empty(&mReq->queue)) { err("EBUSY"); return; } spin_lock_irqsave(mEp->lock, flags); if (mReq->ptr) dma_pool_free(mEp->td_pool, mReq->ptr, mReq->dma); kfree(mReq); dbg_event(_usb_addr(mEp), "FREE", 0); spin_unlock_irqrestore(mEp->lock, flags); } /** * ep_queue: queues (submits) an I/O request to an endpoint * * Check usb_ep_queue()* at usb_gadget.h" for details */ static int ep_queue(struct usb_ep *ep, struct usb_request *req, gfp_t __maybe_unused gfp_flags) { struct ci13xxx_ep *mEp = container_of(ep, struct ci13xxx_ep, ep); struct ci13xxx_req *mReq = container_of(req, struct ci13xxx_req, req); int retval = 0; unsigned long flags; trace("%p, %p, %X", ep, req, gfp_flags); if (ep == NULL || req == NULL || mEp->desc == NULL) return -EINVAL; spin_lock_irqsave(mEp->lock, flags); if (mEp->type == USB_ENDPOINT_XFER_CONTROL) { if (req->length) mEp = (_udc->ep0_dir == RX) ? &_udc->ep0out : &_udc->ep0in; if (!list_empty(&mEp->qh.queue)) { _ep_nuke(mEp); retval = -EOVERFLOW; warn("endpoint ctrl %X nuked", _usb_addr(mEp)); } } /* first nuke then test link, e.g. previous status has not sent */ if (!list_empty(&mReq->queue)) { retval = -EBUSY; err("request already in queue"); goto done; } if (req->length > (4 * CI13XXX_PAGE_SIZE)) { req->length = (4 * CI13XXX_PAGE_SIZE); retval = -EMSGSIZE; warn("request length truncated"); } dbg_queue(_usb_addr(mEp), req, retval); /* push request */ mReq->req.status = -EINPROGRESS; mReq->req.actual = 0; retval = _hardware_enqueue(mEp, mReq); if (retval == -EALREADY) { dbg_event(_usb_addr(mEp), "QUEUE", retval); retval = 0; } if (!retval) list_add_tail(&mReq->queue, &mEp->qh.queue); done: spin_unlock_irqrestore(mEp->lock, flags); return retval; } /** * ep_dequeue: dequeues (cancels, unlinks) an I/O request from an endpoint * * Check usb_ep_dequeue() at "usb_gadget.h" for details */ static int ep_dequeue(struct usb_ep *ep, struct usb_request *req) { struct ci13xxx_ep *mEp = container_of(ep, struct ci13xxx_ep, ep); struct ci13xxx_req *mReq = container_of(req, struct ci13xxx_req, req); unsigned long flags; trace("%p, %p", ep, req); if (ep == NULL || req == NULL || mReq->req.status != -EALREADY || mEp->desc == NULL || list_empty(&mReq->queue) || list_empty(&mEp->qh.queue)) return -EINVAL; spin_lock_irqsave(mEp->lock, flags); dbg_event(_usb_addr(mEp), "DEQUEUE", 0); hw_ep_flush(mEp->num, mEp->dir); /* pop request */ list_del_init(&mReq->queue); if (mReq->map) { dma_unmap_single(mEp->device, mReq->req.dma, mReq->req.length, mEp->dir ? DMA_TO_DEVICE : DMA_FROM_DEVICE); mReq->req.dma = 0; mReq->map = 0; } req->status = -ECONNRESET; if (mReq->req.complete != NULL) { spin_unlock(mEp->lock); mReq->req.complete(&mEp->ep, &mReq->req); spin_lock(mEp->lock); } spin_unlock_irqrestore(mEp->lock, flags); return 0; } /** * ep_set_halt: sets the endpoint halt feature * * Check usb_ep_set_halt() at "usb_gadget.h" for details */ static int ep_set_halt(struct usb_ep *ep, int value) { struct ci13xxx_ep *mEp = container_of(ep, struct ci13xxx_ep, ep); int direction, retval = 0; unsigned long flags; trace("%p, %i", ep, value); if (ep == NULL || mEp->desc == NULL) return -EINVAL; spin_lock_irqsave(mEp->lock, flags); #ifndef STALL_IN /* g_file_storage MS compliant but g_zero fails chapter 9 compliance */ if (value && mEp->type == USB_ENDPOINT_XFER_BULK && mEp->dir == TX && !list_empty(&mEp->qh.queue)) { spin_unlock_irqrestore(mEp->lock, flags); return -EAGAIN; } #endif direction = mEp->dir; do { dbg_event(_usb_addr(mEp), "HALT", value); retval |= hw_ep_set_halt(mEp->num, mEp->dir, value); if (!value) mEp->wedge = 0; if (mEp->type == USB_ENDPOINT_XFER_CONTROL) mEp->dir = (mEp->dir == TX) ? RX : TX; } while (mEp->dir != direction); spin_unlock_irqrestore(mEp->lock, flags); return retval; } /** * ep_set_wedge: sets the halt feature and ignores clear requests * * Check usb_ep_set_wedge() at "usb_gadget.h" for details */ static int ep_set_wedge(struct usb_ep *ep) { struct ci13xxx_ep *mEp = container_of(ep, struct ci13xxx_ep, ep); unsigned long flags; trace("%p", ep); if (ep == NULL || mEp->desc == NULL) return -EINVAL; spin_lock_irqsave(mEp->lock, flags); dbg_event(_usb_addr(mEp), "WEDGE", 0); mEp->wedge = 1; spin_unlock_irqrestore(mEp->lock, flags); return usb_ep_set_halt(ep); } /** * ep_fifo_flush: flushes contents of a fifo * * Check usb_ep_fifo_flush() at "usb_gadget.h" for details */ static void ep_fifo_flush(struct usb_ep *ep) { struct ci13xxx_ep *mEp = container_of(ep, struct ci13xxx_ep, ep); unsigned long flags; trace("%p", ep); if (ep == NULL) { err("%02X: -EINVAL", _usb_addr(mEp)); return; } spin_lock_irqsave(mEp->lock, flags); dbg_event(_usb_addr(mEp), "FFLUSH", 0); hw_ep_flush(mEp->num, mEp->dir); spin_unlock_irqrestore(mEp->lock, flags); } /** * Endpoint-specific part of the API to the USB controller hardware * Check "usb_gadget.h" for details */ static const struct usb_ep_ops usb_ep_ops = { .enable = ep_enable, .disable = ep_disable, .alloc_request = ep_alloc_request, .free_request = ep_free_request, .queue = ep_queue, .dequeue = ep_dequeue, .set_halt = ep_set_halt, .set_wedge = ep_set_wedge, .fifo_flush = ep_fifo_flush, }; /****************************************************************************** * GADGET block *****************************************************************************/ static int ci13xxx_vbus_session(struct usb_gadget *_gadget, int is_active) { struct ci13xxx *udc = container_of(_gadget, struct ci13xxx, gadget); unsigned long flags; int gadget_ready = 0; if (!(udc->udc_driver->flags & CI13XXX_PULLUP_ON_VBUS)) return -EOPNOTSUPP; spin_lock_irqsave(udc->lock, flags); udc->vbus_active = is_active; if (udc->driver) gadget_ready = 1; spin_unlock_irqrestore(udc->lock, flags); if (gadget_ready) { if (is_active) { pm_runtime_get_sync(&_gadget->dev); hw_device_reset(udc); hw_device_state(udc->ep0out.qh.dma); } else { hw_device_state(0); if (udc->udc_driver->notify_event) udc->udc_driver->notify_event(udc, CI13XXX_CONTROLLER_STOPPED_EVENT); _gadget_stop_activity(&udc->gadget); pm_runtime_put_sync(&_gadget->dev); } } return 0; } static int ci13xxx_wakeup(struct usb_gadget *_gadget) { struct ci13xxx *udc = container_of(_gadget, struct ci13xxx, gadget); unsigned long flags; int ret = 0; trace(); spin_lock_irqsave(udc->lock, flags); if (!udc->remote_wakeup) { ret = -EOPNOTSUPP; dbg_trace("remote wakeup feature is not enabled\n"); goto out; } if (!hw_cread(CAP_PORTSC, PORTSC_SUSP)) { ret = -EINVAL; dbg_trace("port is not suspended\n"); goto out; } hw_cwrite(CAP_PORTSC, PORTSC_FPR, PORTSC_FPR); out: spin_unlock_irqrestore(udc->lock, flags); return ret; } static int ci13xxx_vbus_draw(struct usb_gadget *_gadget, unsigned mA) { struct ci13xxx *udc = container_of(_gadget, struct ci13xxx, gadget); if (udc->transceiver) return otg_set_power(udc->transceiver, mA); return -ENOTSUPP; } static int ci13xxx_start(struct usb_gadget_driver *driver, int (*bind)(struct usb_gadget *)); static int ci13xxx_stop(struct usb_gadget_driver *driver); /** * Device operations part of the API to the USB controller hardware, * which don't involve endpoints (or i/o) * Check "usb_gadget.h" for details */ static const struct usb_gadget_ops usb_gadget_ops = { .vbus_session = ci13xxx_vbus_session, .wakeup = ci13xxx_wakeup, .vbus_draw = ci13xxx_vbus_draw, .start = ci13xxx_start, .stop = ci13xxx_stop, }; /** * ci13xxx_start: register a gadget driver * @driver: the driver being registered * @bind: the driver's bind callback * * Check ci13xxx_start() at for details. * Interrupts are enabled here. */ static int ci13xxx_start(struct usb_gadget_driver *driver, int (*bind)(struct usb_gadget *)) { struct ci13xxx *udc = _udc; unsigned long flags; int i, j; int retval = -ENOMEM; trace("%p", driver); if (driver == NULL || bind == NULL || driver->setup == NULL || driver->disconnect == NULL || driver->suspend == NULL || driver->resume == NULL) return -EINVAL; else if (udc == NULL) return -ENODEV; else if (udc->driver != NULL) return -EBUSY; /* alloc resources */ udc->qh_pool = dma_pool_create("ci13xxx_qh", &udc->gadget.dev, sizeof(struct ci13xxx_qh), 64, CI13XXX_PAGE_SIZE); if (udc->qh_pool == NULL) return -ENOMEM; udc->td_pool = dma_pool_create("ci13xxx_td", &udc->gadget.dev, sizeof(struct ci13xxx_td), 64, CI13XXX_PAGE_SIZE); if (udc->td_pool == NULL) { dma_pool_destroy(udc->qh_pool); udc->qh_pool = NULL; return -ENOMEM; } spin_lock_irqsave(udc->lock, flags); info("hw_ep_max = %d", hw_ep_max); udc->gadget.dev.driver = NULL; retval = 0; for (i = 0; i < hw_ep_max/2; i++) { for (j = RX; j <= TX; j++) { int k = i + j * hw_ep_max/2; struct ci13xxx_ep *mEp = &udc->ci13xxx_ep[k]; scnprintf(mEp->name, sizeof(mEp->name), "ep%i%s", i, (j == TX) ? "in" : "out"); mEp->lock = udc->lock; mEp->device = &udc->gadget.dev; mEp->td_pool = udc->td_pool; mEp->ep.name = mEp->name; mEp->ep.ops = &usb_ep_ops; mEp->ep.maxpacket = CTRL_PAYLOAD_MAX; INIT_LIST_HEAD(&mEp->qh.queue); spin_unlock_irqrestore(udc->lock, flags); mEp->qh.ptr = dma_pool_alloc(udc->qh_pool, GFP_KERNEL, &mEp->qh.dma); spin_lock_irqsave(udc->lock, flags); if (mEp->qh.ptr == NULL) retval = -ENOMEM; else memset(mEp->qh.ptr, 0, sizeof(*mEp->qh.ptr)); /* skip ep0 out and in endpoints */ if (i == 0) continue; list_add_tail(&mEp->ep.ep_list, &udc->gadget.ep_list); } } if (retval) goto done; spin_unlock_irqrestore(udc->lock, flags); retval = usb_ep_enable(&udc->ep0out.ep, &ctrl_endpt_out_desc); if (retval) return retval; retval = usb_ep_enable(&udc->ep0in.ep, &ctrl_endpt_in_desc); if (retval) return retval; spin_lock_irqsave(udc->lock, flags); udc->gadget.ep0 = &udc->ep0in.ep; /* bind gadget */ driver->driver.bus = NULL; udc->gadget.dev.driver = &driver->driver; spin_unlock_irqrestore(udc->lock, flags); retval = bind(&udc->gadget); /* MAY SLEEP */ spin_lock_irqsave(udc->lock, flags); if (retval) { udc->gadget.dev.driver = NULL; goto done; } udc->driver = driver; pm_runtime_get_sync(&udc->gadget.dev); if (udc->udc_driver->flags & CI13XXX_PULLUP_ON_VBUS) { if (udc->vbus_active) { if (udc->udc_driver->flags & CI13XXX_REGS_SHARED) hw_device_reset(udc); } else { pm_runtime_put_sync(&udc->gadget.dev); goto done; } } retval = hw_device_state(udc->ep0out.qh.dma); if (retval) pm_runtime_put_sync(&udc->gadget.dev); done: spin_unlock_irqrestore(udc->lock, flags); return retval; } /** * ci13xxx_stop: unregister a gadget driver * * Check usb_gadget_unregister_driver() at "usb_gadget.h" for details */ static int ci13xxx_stop(struct usb_gadget_driver *driver) { struct ci13xxx *udc = _udc; unsigned long i, flags; trace("%p", driver); if (driver == NULL || driver->unbind == NULL || driver->setup == NULL || driver->disconnect == NULL || driver->suspend == NULL || driver->resume == NULL || driver != udc->driver) return -EINVAL; spin_lock_irqsave(udc->lock, flags); if (!(udc->udc_driver->flags & CI13XXX_PULLUP_ON_VBUS) || udc->vbus_active) { hw_device_state(0); if (udc->udc_driver->notify_event) udc->udc_driver->notify_event(udc, CI13XXX_CONTROLLER_STOPPED_EVENT); _gadget_stop_activity(&udc->gadget); pm_runtime_put(&udc->gadget.dev); } /* unbind gadget */ spin_unlock_irqrestore(udc->lock, flags); driver->unbind(&udc->gadget); /* MAY SLEEP */ spin_lock_irqsave(udc->lock, flags); udc->gadget.dev.driver = NULL; /* free resources */ for (i = 0; i < hw_ep_max; i++) { struct ci13xxx_ep *mEp = &udc->ci13xxx_ep[i]; if (!list_empty(&mEp->ep.ep_list)) list_del_init(&mEp->ep.ep_list); if (mEp->qh.ptr != NULL) dma_pool_free(udc->qh_pool, mEp->qh.ptr, mEp->qh.dma); } udc->gadget.ep0 = NULL; udc->driver = NULL; spin_unlock_irqrestore(udc->lock, flags); if (udc->td_pool != NULL) { dma_pool_destroy(udc->td_pool); udc->td_pool = NULL; } if (udc->qh_pool != NULL) { dma_pool_destroy(udc->qh_pool); udc->qh_pool = NULL; } return 0; } /****************************************************************************** * BUS block *****************************************************************************/ /** * udc_irq: global interrupt handler * * This function returns IRQ_HANDLED if the IRQ has been handled * It locks access to registers */ static irqreturn_t udc_irq(void) { struct ci13xxx *udc = _udc; irqreturn_t retval; u32 intr; trace(); if (udc == NULL) { err("ENODEV"); return IRQ_HANDLED; } spin_lock(udc->lock); if (udc->udc_driver->flags & CI13XXX_REGS_SHARED) { if (hw_cread(CAP_USBMODE, USBMODE_CM) != USBMODE_CM_DEVICE) { spin_unlock(udc->lock); return IRQ_NONE; } } intr = hw_test_and_clear_intr_active(); if (intr) { isr_statistics.hndl.buf[isr_statistics.hndl.idx++] = intr; isr_statistics.hndl.idx &= ISR_MASK; isr_statistics.hndl.cnt++; /* order defines priority - do NOT change it */ if (USBi_URI & intr) { isr_statistics.uri++; isr_reset_handler(udc); } if (USBi_PCI & intr) { isr_statistics.pci++; udc->gadget.speed = hw_port_is_high_speed() ? USB_SPEED_HIGH : USB_SPEED_FULL; if (udc->suspended) { spin_unlock(udc->lock); udc->driver->resume(&udc->gadget); spin_lock(udc->lock); udc->suspended = 0; } } if (USBi_UEI & intr) isr_statistics.uei++; if (USBi_UI & intr) { isr_statistics.ui++; isr_tr_complete_handler(udc); } if (USBi_SLI & intr) { if (udc->gadget.speed != USB_SPEED_UNKNOWN) { udc->suspended = 1; spin_unlock(udc->lock); udc->driver->suspend(&udc->gadget); spin_lock(udc->lock); } isr_statistics.sli++; } retval = IRQ_HANDLED; } else { isr_statistics.none++; retval = IRQ_NONE; } spin_unlock(udc->lock); return retval; } /** * udc_release: driver release function * @dev: device * * Currently does nothing */ static void udc_release(struct device *dev) { trace("%p", dev); if (dev == NULL) err("EINVAL"); } /** * udc_probe: parent probe must call this to initialize UDC * @dev: parent device * @regs: registers base address * @name: driver name * * This function returns an error code * No interrupts active, the IRQ has not been requested yet * Kernel assumes 32-bit DMA operations by default, no need to dma_set_mask */ static int udc_probe(struct ci13xxx_udc_driver *driver, struct device *dev, void __iomem *regs) { struct ci13xxx *udc; int retval = 0; trace("%p, %p, %p", dev, regs, name); if (dev == NULL || regs == NULL || driver == NULL || driver->name == NULL) return -EINVAL; udc = kzalloc(sizeof(struct ci13xxx), GFP_KERNEL); if (udc == NULL) return -ENOMEM; udc->lock = &udc_lock; udc->regs = regs; udc->udc_driver = driver; udc->gadget.ops = &usb_gadget_ops; udc->gadget.speed = USB_SPEED_UNKNOWN; udc->gadget.is_dualspeed = 1; udc->gadget.is_otg = 0; udc->gadget.name = driver->name; INIT_LIST_HEAD(&udc->gadget.ep_list); udc->gadget.ep0 = NULL; dev_set_name(&udc->gadget.dev, "gadget"); udc->gadget.dev.dma_mask = dev->dma_mask; udc->gadget.dev.coherent_dma_mask = dev->coherent_dma_mask; udc->gadget.dev.parent = dev; udc->gadget.dev.release = udc_release; retval = hw_device_init(regs); if (retval < 0) goto free_udc; udc->transceiver = otg_get_transceiver(); if (udc->udc_driver->flags & CI13XXX_REQUIRE_TRANSCEIVER) { if (udc->transceiver == NULL) { retval = -ENODEV; goto free_udc; } } if (!(udc->udc_driver->flags & CI13XXX_REGS_SHARED)) { retval = hw_device_reset(udc); if (retval) goto put_transceiver; } retval = device_register(&udc->gadget.dev); if (retval) { put_device(&udc->gadget.dev); goto put_transceiver; } #ifdef CONFIG_USB_GADGET_DEBUG_FILES retval = dbg_create_files(&udc->gadget.dev); #endif if (retval) goto unreg_device; if (udc->transceiver) { retval = otg_set_peripheral(udc->transceiver, &udc->gadget); if (retval) goto remove_dbg; } retval = usb_add_gadget_udc(dev, &udc->gadget); if (retval) goto remove_trans; pm_runtime_no_callbacks(&udc->gadget.dev); pm_runtime_enable(&udc->gadget.dev); _udc = udc; return retval; remove_trans: if (udc->transceiver) { otg_set_peripheral(udc->transceiver, &udc->gadget); otg_put_transceiver(udc->transceiver); } err("error = %i", retval); remove_dbg: #ifdef CONFIG_USB_GADGET_DEBUG_FILES dbg_remove_files(&udc->gadget.dev); #endif unreg_device: device_unregister(&udc->gadget.dev); put_transceiver: if (udc->transceiver) otg_put_transceiver(udc->transceiver); free_udc: kfree(udc); _udc = NULL; return retval; } /** * udc_remove: parent remove must call this to remove UDC * * No interrupts active, the IRQ has been released */ static void udc_remove(void) { struct ci13xxx *udc = _udc; if (udc == NULL) { err("EINVAL"); return; } usb_del_gadget_udc(&udc->gadget); if (udc->transceiver) { otg_set_peripheral(udc->transceiver, &udc->gadget); otg_put_transceiver(udc->transceiver); } #ifdef CONFIG_USB_GADGET_DEBUG_FILES dbg_remove_files(&udc->gadget.dev); #endif device_unregister(&udc->gadget.dev); kfree(udc); _udc = NULL; }