// SPDX-License-Identifier: GPL-2.0 /* * xHCI host controller driver * * Copyright (C) 2008 Intel Corp. * * Author: Sarah Sharp * Some code borrowed from the Linux EHCI driver. */ /* * Ring initialization rules: * 1. Each segment is initialized to zero, except for link TRBs. * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or * Consumer Cycle State (CCS), depending on ring function. * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. * * Ring behavior rules: * 1. A ring is empty if enqueue == dequeue. This means there will always be at * least one free TRB in the ring. This is useful if you want to turn that * into a link TRB and expand the ring. * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a * link TRB, then load the pointer with the address in the link TRB. If the * link TRB had its toggle bit set, you may need to update the ring cycle * state (see cycle bit rules). You may have to do this multiple times * until you reach a non-link TRB. * 3. A ring is full if enqueue++ (for the definition of increment above) * equals the dequeue pointer. * * Cycle bit rules: * 1. When a consumer increments a dequeue pointer and encounters a toggle bit * in a link TRB, it must toggle the ring cycle state. * 2. When a producer increments an enqueue pointer and encounters a toggle bit * in a link TRB, it must toggle the ring cycle state. * * Producer rules: * 1. Check if ring is full before you enqueue. * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. * Update enqueue pointer between each write (which may update the ring * cycle state). * 3. Notify consumer. If SW is producer, it rings the doorbell for command * and endpoint rings. If HC is the producer for the event ring, * and it generates an interrupt according to interrupt modulation rules. * * Consumer rules: * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, * the TRB is owned by the consumer. * 2. Update dequeue pointer (which may update the ring cycle state) and * continue processing TRBs until you reach a TRB which is not owned by you. * 3. Notify the producer. SW is the consumer for the event ring, and it * updates event ring dequeue pointer. HC is the consumer for the command and * endpoint rings; it generates events on the event ring for these. */ #include #include #include #include "xhci.h" #include "xhci-trace.h" #include "xhci-mtk.h" /* * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA * address of the TRB. */ dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, union xhci_trb *trb) { unsigned long segment_offset; if (!seg || !trb || trb < seg->trbs) return 0; /* offset in TRBs */ segment_offset = trb - seg->trbs; if (segment_offset >= TRBS_PER_SEGMENT) return 0; return seg->dma + (segment_offset * sizeof(*trb)); } static bool trb_is_noop(union xhci_trb *trb) { return TRB_TYPE_NOOP_LE32(trb->generic.field[3]); } static bool trb_is_link(union xhci_trb *trb) { return TRB_TYPE_LINK_LE32(trb->link.control); } static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb) { return trb == &seg->trbs[TRBS_PER_SEGMENT - 1]; } static bool last_trb_on_ring(struct xhci_ring *ring, struct xhci_segment *seg, union xhci_trb *trb) { return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg); } static bool link_trb_toggles_cycle(union xhci_trb *trb) { return le32_to_cpu(trb->link.control) & LINK_TOGGLE; } static bool last_td_in_urb(struct xhci_td *td) { struct urb_priv *urb_priv = td->urb->hcpriv; return urb_priv->num_tds_done == urb_priv->num_tds; } static void inc_td_cnt(struct urb *urb) { struct urb_priv *urb_priv = urb->hcpriv; urb_priv->num_tds_done++; } static void trb_to_noop(union xhci_trb *trb, u32 noop_type) { if (trb_is_link(trb)) { /* unchain chained link TRBs */ trb->link.control &= cpu_to_le32(~TRB_CHAIN); } else { trb->generic.field[0] = 0; trb->generic.field[1] = 0; trb->generic.field[2] = 0; /* Preserve only the cycle bit of this TRB */ trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type)); } } /* Updates trb to point to the next TRB in the ring, and updates seg if the next * TRB is in a new segment. This does not skip over link TRBs, and it does not * effect the ring dequeue or enqueue pointers. */ static void next_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, struct xhci_segment **seg, union xhci_trb **trb) { if (trb_is_link(*trb)) { *seg = (*seg)->next; *trb = ((*seg)->trbs); } else { (*trb)++; } } /* * See Cycle bit rules. SW is the consumer for the event ring only. * Don't make a ring full of link TRBs. That would be dumb and this would loop. */ void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring) { /* event ring doesn't have link trbs, check for last trb */ if (ring->type == TYPE_EVENT) { if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) { ring->dequeue++; goto out; } if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue)) ring->cycle_state ^= 1; ring->deq_seg = ring->deq_seg->next; ring->dequeue = ring->deq_seg->trbs; goto out; } /* All other rings have link trbs */ if (!trb_is_link(ring->dequeue)) { ring->dequeue++; ring->num_trbs_free++; } while (trb_is_link(ring->dequeue)) { ring->deq_seg = ring->deq_seg->next; ring->dequeue = ring->deq_seg->trbs; } out: trace_xhci_inc_deq(ring); return; } /* * See Cycle bit rules. SW is the consumer for the event ring only. * Don't make a ring full of link TRBs. That would be dumb and this would loop. * * If we've just enqueued a TRB that is in the middle of a TD (meaning the * chain bit is set), then set the chain bit in all the following link TRBs. * If we've enqueued the last TRB in a TD, make sure the following link TRBs * have their chain bit cleared (so that each Link TRB is a separate TD). * * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit * set, but other sections talk about dealing with the chain bit set. This was * fixed in the 0.96 specification errata, but we have to assume that all 0.95 * xHCI hardware can't handle the chain bit being cleared on a link TRB. * * @more_trbs_coming: Will you enqueue more TRBs before calling * prepare_transfer()? */ static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, bool more_trbs_coming) { u32 chain; union xhci_trb *next; chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; /* If this is not event ring, there is one less usable TRB */ if (!trb_is_link(ring->enqueue)) ring->num_trbs_free--; next = ++(ring->enqueue); /* Update the dequeue pointer further if that was a link TRB */ while (trb_is_link(next)) { /* * If the caller doesn't plan on enqueueing more TDs before * ringing the doorbell, then we don't want to give the link TRB * to the hardware just yet. We'll give the link TRB back in * prepare_ring() just before we enqueue the TD at the top of * the ring. */ if (!chain && !more_trbs_coming) break; /* If we're not dealing with 0.95 hardware or isoc rings on * AMD 0.96 host, carry over the chain bit of the previous TRB * (which may mean the chain bit is cleared). */ if (!(ring->type == TYPE_ISOC && (xhci->quirks & XHCI_AMD_0x96_HOST)) && !xhci_link_trb_quirk(xhci)) { next->link.control &= cpu_to_le32(~TRB_CHAIN); next->link.control |= cpu_to_le32(chain); } /* Give this link TRB to the hardware */ wmb(); next->link.control ^= cpu_to_le32(TRB_CYCLE); /* Toggle the cycle bit after the last ring segment. */ if (link_trb_toggles_cycle(next)) ring->cycle_state ^= 1; ring->enq_seg = ring->enq_seg->next; ring->enqueue = ring->enq_seg->trbs; next = ring->enqueue; } trace_xhci_inc_enq(ring); } /* * Check to see if there's room to enqueue num_trbs on the ring and make sure * enqueue pointer will not advance into dequeue segment. See rules above. */ static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, unsigned int num_trbs) { int num_trbs_in_deq_seg; if (ring->num_trbs_free < num_trbs) return 0; if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) { num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs; if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg) return 0; } return 1; } /* Ring the host controller doorbell after placing a command on the ring */ void xhci_ring_cmd_db(struct xhci_hcd *xhci) { if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) return; xhci_dbg(xhci, "// Ding dong!\n"); writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]); /* Flush PCI posted writes */ readl(&xhci->dba->doorbell[0]); } static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci, unsigned long delay) { return mod_delayed_work(system_wq, &xhci->cmd_timer, delay); } static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci) { return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command, cmd_list); } /* * Turn all commands on command ring with status set to "aborted" to no-op trbs. * If there are other commands waiting then restart the ring and kick the timer. * This must be called with command ring stopped and xhci->lock held. */ static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci, struct xhci_command *cur_cmd) { struct xhci_command *i_cmd; /* Turn all aborted commands in list to no-ops, then restart */ list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) { if (i_cmd->status != COMP_COMMAND_ABORTED) continue; i_cmd->status = COMP_COMMAND_RING_STOPPED; xhci_dbg(xhci, "Turn aborted command %p to no-op\n", i_cmd->command_trb); trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP); /* * caller waiting for completion is called when command * completion event is received for these no-op commands */ } xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; /* ring command ring doorbell to restart the command ring */ if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) && !(xhci->xhc_state & XHCI_STATE_DYING)) { xhci->current_cmd = cur_cmd; xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); xhci_ring_cmd_db(xhci); } } /* Must be called with xhci->lock held, releases and aquires lock back */ static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags) { u64 temp_64; int ret; xhci_dbg(xhci, "Abort command ring\n"); reinit_completion(&xhci->cmd_ring_stop_completion); temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); xhci_write_64(xhci, temp_64 | CMD_RING_ABORT, &xhci->op_regs->cmd_ring); /* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the * completion of the Command Abort operation. If CRR is not negated in 5 * seconds then driver handles it as if host died (-ENODEV). * In the future we should distinguish between -ENODEV and -ETIMEDOUT * and try to recover a -ETIMEDOUT with a host controller reset. */ ret = xhci_handshake(&xhci->op_regs->cmd_ring, CMD_RING_RUNNING, 0, 5 * 1000 * 1000); if (ret < 0) { xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret); xhci_halt(xhci); xhci_hc_died(xhci); return ret; } /* * Writing the CMD_RING_ABORT bit should cause a cmd completion event, * however on some host hw the CMD_RING_RUNNING bit is correctly cleared * but the completion event in never sent. Wait 2 secs (arbitrary * number) to handle those cases after negation of CMD_RING_RUNNING. */ spin_unlock_irqrestore(&xhci->lock, flags); ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion, msecs_to_jiffies(2000)); spin_lock_irqsave(&xhci->lock, flags); if (!ret) { xhci_dbg(xhci, "No stop event for abort, ring start fail?\n"); xhci_cleanup_command_queue(xhci); } else { xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci)); } return 0; } void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, unsigned int slot_id, unsigned int ep_index, unsigned int stream_id) { __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; unsigned int ep_state = ep->ep_state; /* Don't ring the doorbell for this endpoint if there are pending * cancellations because we don't want to interrupt processing. * We don't want to restart any stream rings if there's a set dequeue * pointer command pending because the device can choose to start any * stream once the endpoint is on the HW schedule. */ if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) || (ep_state & EP_HALTED) || (ep_state & EP_CLEARING_TT)) return; writel(DB_VALUE(ep_index, stream_id), db_addr); /* The CPU has better things to do at this point than wait for a * write-posting flush. It'll get there soon enough. */ } /* Ring the doorbell for any rings with pending URBs */ static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, unsigned int slot_id, unsigned int ep_index) { unsigned int stream_id; struct xhci_virt_ep *ep; ep = &xhci->devs[slot_id]->eps[ep_index]; /* A ring has pending URBs if its TD list is not empty */ if (!(ep->ep_state & EP_HAS_STREAMS)) { if (ep->ring && !(list_empty(&ep->ring->td_list))) xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); return; } for (stream_id = 1; stream_id < ep->stream_info->num_streams; stream_id++) { struct xhci_stream_info *stream_info = ep->stream_info; if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); } } void xhci_ring_doorbell_for_active_rings(struct xhci_hcd *xhci, unsigned int slot_id, unsigned int ep_index) { ring_doorbell_for_active_rings(xhci, slot_id, ep_index); } /* Get the right ring for the given slot_id, ep_index and stream_id. * If the endpoint supports streams, boundary check the URB's stream ID. * If the endpoint doesn't support streams, return the singular endpoint ring. */ struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, unsigned int slot_id, unsigned int ep_index, unsigned int stream_id) { struct xhci_virt_ep *ep; ep = &xhci->devs[slot_id]->eps[ep_index]; /* Common case: no streams */ if (!(ep->ep_state & EP_HAS_STREAMS)) return ep->ring; if (stream_id == 0) { xhci_warn(xhci, "WARN: Slot ID %u, ep index %u has streams, " "but URB has no stream ID.\n", slot_id, ep_index); return NULL; } if (stream_id < ep->stream_info->num_streams) return ep->stream_info->stream_rings[stream_id]; xhci_warn(xhci, "WARN: Slot ID %u, ep index %u has " "stream IDs 1 to %u allocated, " "but stream ID %u is requested.\n", slot_id, ep_index, ep->stream_info->num_streams - 1, stream_id); return NULL; } /* * Get the hw dequeue pointer xHC stopped on, either directly from the * endpoint context, or if streams are in use from the stream context. * The returned hw_dequeue contains the lowest four bits with cycle state * and possbile stream context type. */ static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev, unsigned int ep_index, unsigned int stream_id) { struct xhci_ep_ctx *ep_ctx; struct xhci_stream_ctx *st_ctx; struct xhci_virt_ep *ep; ep = &vdev->eps[ep_index]; if (ep->ep_state & EP_HAS_STREAMS) { st_ctx = &ep->stream_info->stream_ctx_array[stream_id]; return le64_to_cpu(st_ctx->stream_ring); } ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); return le64_to_cpu(ep_ctx->deq); } /* * Move the xHC's endpoint ring dequeue pointer past cur_td. * Record the new state of the xHC's endpoint ring dequeue segment, * dequeue pointer, stream id, and new consumer cycle state in state. * Update our internal representation of the ring's dequeue pointer. * * We do this in three jumps: * - First we update our new ring state to be the same as when the xHC stopped. * - Then we traverse the ring to find the segment that contains * the last TRB in the TD. We toggle the xHC's new cycle state when we pass * any link TRBs with the toggle cycle bit set. * - Finally we move the dequeue state one TRB further, toggling the cycle bit * if we've moved it past a link TRB with the toggle cycle bit set. * * Some of the uses of xhci_generic_trb are grotty, but if they're done * with correct __le32 accesses they should work fine. Only users of this are * in here. */ void xhci_find_new_dequeue_state(struct xhci_hcd *xhci, unsigned int slot_id, unsigned int ep_index, unsigned int stream_id, struct xhci_td *cur_td, struct xhci_dequeue_state *state) { struct xhci_virt_device *dev = xhci->devs[slot_id]; struct xhci_virt_ep *ep = &dev->eps[ep_index]; struct xhci_ring *ep_ring; struct xhci_segment *new_seg; union xhci_trb *new_deq; dma_addr_t addr; u64 hw_dequeue; bool cycle_found = false; bool td_last_trb_found = false; ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, ep_index, stream_id); if (!ep_ring) { xhci_warn(xhci, "WARN can't find new dequeue state " "for invalid stream ID %u.\n", stream_id); return; } /* Dig out the cycle state saved by the xHC during the stop ep cmd */ xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, "Finding endpoint context"); hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id); new_seg = ep_ring->deq_seg; new_deq = ep_ring->dequeue; state->new_cycle_state = hw_dequeue & 0x1; state->stream_id = stream_id; /* * We want to find the pointer, segment and cycle state of the new trb * (the one after current TD's last_trb). We know the cycle state at * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are * found. */ do { if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq) == (dma_addr_t)(hw_dequeue & ~0xf)) { cycle_found = true; if (td_last_trb_found) break; } if (new_deq == cur_td->last_trb) td_last_trb_found = true; if (cycle_found && trb_is_link(new_deq) && link_trb_toggles_cycle(new_deq)) state->new_cycle_state ^= 0x1; next_trb(xhci, ep_ring, &new_seg, &new_deq); /* Search wrapped around, bail out */ if (new_deq == ep->ring->dequeue) { xhci_err(xhci, "Error: Failed finding new dequeue state\n"); state->new_deq_seg = NULL; state->new_deq_ptr = NULL; return; } } while (!cycle_found || !td_last_trb_found); state->new_deq_seg = new_seg; state->new_deq_ptr = new_deq; /* Don't update the ring cycle state for the producer (us). */ xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, "Cycle state = 0x%x", state->new_cycle_state); xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, "New dequeue segment = %p (virtual)", state->new_deq_seg); addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr); xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, "New dequeue pointer = 0x%llx (DMA)", (unsigned long long) addr); } /* flip_cycle means flip the cycle bit of all but the first and last TRB. * (The last TRB actually points to the ring enqueue pointer, which is not part * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. */ static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, struct xhci_td *td, bool flip_cycle) { struct xhci_segment *seg = td->start_seg; union xhci_trb *trb = td->first_trb; while (1) { trb_to_noop(trb, TRB_TR_NOOP); /* flip cycle if asked to */ if (flip_cycle && trb != td->first_trb && trb != td->last_trb) trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE); if (trb == td->last_trb) break; next_trb(xhci, ep_ring, &seg, &trb); } } static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci, struct xhci_virt_ep *ep) { ep->ep_state &= ~EP_STOP_CMD_PENDING; /* Can't del_timer_sync in interrupt */ del_timer(&ep->stop_cmd_timer); } /* * Must be called with xhci->lock held in interrupt context, * releases and re-acquires xhci->lock */ static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, struct xhci_td *cur_td, int status) { struct urb *urb = cur_td->urb; struct urb_priv *urb_priv = urb->hcpriv; struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { if (xhci->quirks & XHCI_AMD_PLL_FIX) usb_amd_quirk_pll_enable(); } } xhci_urb_free_priv(urb_priv); usb_hcd_unlink_urb_from_ep(hcd, urb); spin_unlock(&xhci->lock); trace_xhci_urb_giveback(urb); usb_hcd_giveback_urb(hcd, urb, status); spin_lock(&xhci->lock); } static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci, struct xhci_ring *ring, struct xhci_td *td) { struct device *dev = xhci_to_hcd(xhci)->self.controller; struct xhci_segment *seg = td->bounce_seg; struct urb *urb = td->urb; size_t len; if (!ring || !seg || !urb) return; if (usb_urb_dir_out(urb)) { dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, DMA_TO_DEVICE); return; } dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len, DMA_FROM_DEVICE); /* for in tranfers we need to copy the data from bounce to sg */ len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, seg->bounce_buf, seg->bounce_len, seg->bounce_offs); if (len != seg->bounce_len) xhci_warn(xhci, "WARN Wrong bounce buffer read length: %zu != %d\n", len, seg->bounce_len); seg->bounce_len = 0; seg->bounce_offs = 0; } /* * When we get a command completion for a Stop Endpoint Command, we need to * unlink any cancelled TDs from the ring. There are two ways to do that: * * 1. If the HW was in the middle of processing the TD that needs to be * cancelled, then we must move the ring's dequeue pointer past the last TRB * in the TD with a Set Dequeue Pointer Command. * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain * bit cleared) so that the HW will skip over them. */ static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id, union xhci_trb *trb, struct xhci_event_cmd *event) { unsigned int ep_index; struct xhci_ring *ep_ring; struct xhci_virt_ep *ep; struct xhci_td *cur_td = NULL; struct xhci_td *last_unlinked_td; struct xhci_ep_ctx *ep_ctx; struct xhci_virt_device *vdev; u64 hw_deq; struct xhci_dequeue_state deq_state; if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) { if (!xhci->devs[slot_id]) xhci_warn(xhci, "Stop endpoint command " "completion for disabled slot %u\n", slot_id); return; } memset(&deq_state, 0, sizeof(deq_state)); ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); vdev = xhci->devs[slot_id]; ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); trace_xhci_handle_cmd_stop_ep(ep_ctx); ep = &xhci->devs[slot_id]->eps[ep_index]; last_unlinked_td = list_last_entry(&ep->cancelled_td_list, struct xhci_td, cancelled_td_list); if (list_empty(&ep->cancelled_td_list)) { xhci_stop_watchdog_timer_in_irq(xhci, ep); ring_doorbell_for_active_rings(xhci, slot_id, ep_index); return; } /* Fix up the ep ring first, so HW stops executing cancelled TDs. * We have the xHCI lock, so nothing can modify this list until we drop * it. We're also in the event handler, so we can't get re-interrupted * if another Stop Endpoint command completes */ list_for_each_entry(cur_td, &ep->cancelled_td_list, cancelled_td_list) { xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, "Removing canceled TD starting at 0x%llx (dma).", (unsigned long long)xhci_trb_virt_to_dma( cur_td->start_seg, cur_td->first_trb)); ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb); if (!ep_ring) { /* This shouldn't happen unless a driver is mucking * with the stream ID after submission. This will * leave the TD on the hardware ring, and the hardware * will try to execute it, and may access a buffer * that has already been freed. In the best case, the * hardware will execute it, and the event handler will * ignore the completion event for that TD, since it was * removed from the td_list for that endpoint. In * short, don't muck with the stream ID after * submission. */ xhci_warn(xhci, "WARN Cancelled URB %p " "has invalid stream ID %u.\n", cur_td->urb, cur_td->urb->stream_id); goto remove_finished_td; } /* * If we stopped on the TD we need to cancel, then we have to * move the xHC endpoint ring dequeue pointer past this TD. */ hw_deq = xhci_get_hw_deq(xhci, vdev, ep_index, cur_td->urb->stream_id); hw_deq &= ~0xf; if (trb_in_td(xhci, cur_td->start_seg, cur_td->first_trb, cur_td->last_trb, hw_deq, false)) { xhci_find_new_dequeue_state(xhci, slot_id, ep_index, cur_td->urb->stream_id, cur_td, &deq_state); } else { td_to_noop(xhci, ep_ring, cur_td, false); } remove_finished_td: /* * The event handler won't see a completion for this TD anymore, * so remove it from the endpoint ring's TD list. Keep it in * the cancelled TD list for URB completion later. */ list_del_init(&cur_td->td_list); } xhci_stop_watchdog_timer_in_irq(xhci, ep); /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */ if (deq_state.new_deq_ptr && deq_state.new_deq_seg) { xhci_queue_new_dequeue_state(xhci, slot_id, ep_index, &deq_state); xhci_ring_cmd_db(xhci); } else { /* Otherwise ring the doorbell(s) to restart queued transfers */ ring_doorbell_for_active_rings(xhci, slot_id, ep_index); } /* * Drop the lock and complete the URBs in the cancelled TD list. * New TDs to be cancelled might be added to the end of the list before * we can complete all the URBs for the TDs we already unlinked. * So stop when we've completed the URB for the last TD we unlinked. */ do { cur_td = list_first_entry(&ep->cancelled_td_list, struct xhci_td, cancelled_td_list); list_del_init(&cur_td->cancelled_td_list); /* Clean up the cancelled URB */ /* Doesn't matter what we pass for status, since the core will * just overwrite it (because the URB has been unlinked). */ ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb); xhci_unmap_td_bounce_buffer(xhci, ep_ring, cur_td); inc_td_cnt(cur_td->urb); if (last_td_in_urb(cur_td)) xhci_giveback_urb_in_irq(xhci, cur_td, 0); /* Stop processing the cancelled list if the watchdog timer is * running. */ if (xhci->xhc_state & XHCI_STATE_DYING) return; } while (cur_td != last_unlinked_td); /* Return to the event handler with xhci->lock re-acquired */ } static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring) { struct xhci_td *cur_td; struct xhci_td *tmp; list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) { list_del_init(&cur_td->td_list); if (!list_empty(&cur_td->cancelled_td_list)) list_del_init(&cur_td->cancelled_td_list); xhci_unmap_td_bounce_buffer(xhci, ring, cur_td); inc_td_cnt(cur_td->urb); if (last_td_in_urb(cur_td)) xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); } } static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci, int slot_id, int ep_index) { struct xhci_td *cur_td; struct xhci_td *tmp; struct xhci_virt_ep *ep; struct xhci_ring *ring; ep = &xhci->devs[slot_id]->eps[ep_index]; if ((ep->ep_state & EP_HAS_STREAMS) || (ep->ep_state & EP_GETTING_NO_STREAMS)) { int stream_id; for (stream_id = 1; stream_id < ep->stream_info->num_streams; stream_id++) { ring = ep->stream_info->stream_rings[stream_id]; if (!ring) continue; xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, "Killing URBs for slot ID %u, ep index %u, stream %u", slot_id, ep_index, stream_id); xhci_kill_ring_urbs(xhci, ring); } } else { ring = ep->ring; if (!ring) return; xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, "Killing URBs for slot ID %u, ep index %u", slot_id, ep_index); xhci_kill_ring_urbs(xhci, ring); } list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list, cancelled_td_list) { list_del_init(&cur_td->cancelled_td_list); inc_td_cnt(cur_td->urb); if (last_td_in_urb(cur_td)) xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); } } /* * host controller died, register read returns 0xffffffff * Complete pending commands, mark them ABORTED. * URBs need to be given back as usb core might be waiting with device locks * held for the URBs to finish during device disconnect, blocking host remove. * * Call with xhci->lock held. * lock is relased and re-acquired while giving back urb. */ void xhci_hc_died(struct xhci_hcd *xhci) { int i, j; if (xhci->xhc_state & XHCI_STATE_DYING) return; xhci_err(xhci, "xHCI host controller not responding, assume dead\n"); xhci->xhc_state |= XHCI_STATE_DYING; xhci_cleanup_command_queue(xhci); /* return any pending urbs, remove may be waiting for them */ for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) { if (!xhci->devs[i]) continue; for (j = 0; j < 31; j++) xhci_kill_endpoint_urbs(xhci, i, j); } /* inform usb core hc died if PCI remove isn't already handling it */ if (!(xhci->xhc_state & XHCI_STATE_REMOVING)) usb_hc_died(xhci_to_hcd(xhci)); } /* Watchdog timer function for when a stop endpoint command fails to complete. * In this case, we assume the host controller is broken or dying or dead. The * host may still be completing some other events, so we have to be careful to * let the event ring handler and the URB dequeueing/enqueueing functions know * through xhci->state. * * The timer may also fire if the host takes a very long time to respond to the * command, and the stop endpoint command completion handler cannot delete the * timer before the timer function is called. Another endpoint cancellation may * sneak in before the timer function can grab the lock, and that may queue * another stop endpoint command and add the timer back. So we cannot use a * simple flag to say whether there is a pending stop endpoint command for a * particular endpoint. * * Instead we use a combination of that flag and checking if a new timer is * pending. */ void xhci_stop_endpoint_command_watchdog(struct timer_list *t) { struct xhci_virt_ep *ep = from_timer(ep, t, stop_cmd_timer); struct xhci_hcd *xhci = ep->xhci; unsigned long flags; spin_lock_irqsave(&xhci->lock, flags); /* bail out if cmd completed but raced with stop ep watchdog timer.*/ if (!(ep->ep_state & EP_STOP_CMD_PENDING) || timer_pending(&ep->stop_cmd_timer)) { spin_unlock_irqrestore(&xhci->lock, flags); xhci_dbg(xhci, "Stop EP timer raced with cmd completion, exit"); return; } xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n"); ep->ep_state &= ~EP_STOP_CMD_PENDING; xhci_halt(xhci); /* * handle a stop endpoint cmd timeout as if host died (-ENODEV). * In the future we could distinguish between -ENODEV and -ETIMEDOUT * and try to recover a -ETIMEDOUT with a host controller reset */ xhci_hc_died(xhci); spin_unlock_irqrestore(&xhci->lock, flags); xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, "xHCI host controller is dead."); } static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci, struct xhci_virt_device *dev, struct xhci_ring *ep_ring, unsigned int ep_index) { union xhci_trb *dequeue_temp; int num_trbs_free_temp; bool revert = false; num_trbs_free_temp = ep_ring->num_trbs_free; dequeue_temp = ep_ring->dequeue; /* If we get two back-to-back stalls, and the first stalled transfer * ends just before a link TRB, the dequeue pointer will be left on * the link TRB by the code in the while loop. So we have to update * the dequeue pointer one segment further, or we'll jump off * the segment into la-la-land. */ if (trb_is_link(ep_ring->dequeue)) { ep_ring->deq_seg = ep_ring->deq_seg->next; ep_ring->dequeue = ep_ring->deq_seg->trbs; } while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) { /* We have more usable TRBs */ ep_ring->num_trbs_free++; ep_ring->dequeue++; if (trb_is_link(ep_ring->dequeue)) { if (ep_ring->dequeue == dev->eps[ep_index].queued_deq_ptr) break; ep_ring->deq_seg = ep_ring->deq_seg->next; ep_ring->dequeue = ep_ring->deq_seg->trbs; } if (ep_ring->dequeue == dequeue_temp) { revert = true; break; } } if (revert) { xhci_dbg(xhci, "Unable to find new dequeue pointer\n"); ep_ring->num_trbs_free = num_trbs_free_temp; } } /* * When we get a completion for a Set Transfer Ring Dequeue Pointer command, * we need to clear the set deq pending flag in the endpoint ring state, so that * the TD queueing code can ring the doorbell again. We also need to ring the * endpoint doorbell to restart the ring, but only if there aren't more * cancellations pending. */ static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id, union xhci_trb *trb, u32 cmd_comp_code) { unsigned int ep_index; unsigned int stream_id; struct xhci_ring *ep_ring; struct xhci_virt_device *dev; struct xhci_virt_ep *ep; struct xhci_ep_ctx *ep_ctx; struct xhci_slot_ctx *slot_ctx; ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); dev = xhci->devs[slot_id]; ep = &dev->eps[ep_index]; ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id); if (!ep_ring) { xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n", stream_id); /* XXX: Harmless??? */ goto cleanup; } ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx); trace_xhci_handle_cmd_set_deq(slot_ctx); trace_xhci_handle_cmd_set_deq_ep(ep_ctx); if (cmd_comp_code != COMP_SUCCESS) { unsigned int ep_state; unsigned int slot_state; switch (cmd_comp_code) { case COMP_TRB_ERROR: xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n"); break; case COMP_CONTEXT_STATE_ERROR: xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n"); ep_state = GET_EP_CTX_STATE(ep_ctx); slot_state = le32_to_cpu(slot_ctx->dev_state); slot_state = GET_SLOT_STATE(slot_state); xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, "Slot state = %u, EP state = %u", slot_state, ep_state); break; case COMP_SLOT_NOT_ENABLED_ERROR: xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n", slot_id); break; default: xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n", cmd_comp_code); break; } /* OK what do we do now? The endpoint state is hosed, and we * should never get to this point if the synchronization between * queueing, and endpoint state are correct. This might happen * if the device gets disconnected after we've finished * cancelling URBs, which might not be an error... */ } else { u64 deq; /* 4.6.10 deq ptr is written to the stream ctx for streams */ if (ep->ep_state & EP_HAS_STREAMS) { struct xhci_stream_ctx *ctx = &ep->stream_info->stream_ctx_array[stream_id]; deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK; } else { deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK; } xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq); if (xhci_trb_virt_to_dma(ep->queued_deq_seg, ep->queued_deq_ptr) == deq) { /* Update the ring's dequeue segment and dequeue pointer * to reflect the new position. */ update_ring_for_set_deq_completion(xhci, dev, ep_ring, ep_index); } else { xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n"); xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", ep->queued_deq_seg, ep->queued_deq_ptr); } } cleanup: dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; dev->eps[ep_index].queued_deq_seg = NULL; dev->eps[ep_index].queued_deq_ptr = NULL; /* Restart any rings with pending URBs */ ring_doorbell_for_active_rings(xhci, slot_id, ep_index); } static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id, union xhci_trb *trb, u32 cmd_comp_code) { struct xhci_virt_device *vdev; struct xhci_ep_ctx *ep_ctx; unsigned int ep_index; ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); vdev = xhci->devs[slot_id]; ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index); trace_xhci_handle_cmd_reset_ep(ep_ctx); /* This command will only fail if the endpoint wasn't halted, * but we don't care. */ xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, "Ignoring reset ep completion code of %u", cmd_comp_code); /* HW with the reset endpoint quirk needs to have a configure endpoint * command complete before the endpoint can be used. Queue that here * because the HW can't handle two commands being queued in a row. */ if (xhci->quirks & XHCI_RESET_EP_QUIRK) { struct xhci_command *command; command = xhci_alloc_command(xhci, false, GFP_ATOMIC); if (!command) return; xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, "Queueing configure endpoint command"); xhci_queue_configure_endpoint(xhci, command, xhci->devs[slot_id]->in_ctx->dma, slot_id, false); xhci_ring_cmd_db(xhci); } else { /* Clear our internal halted state */ xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED; } /* if this was a soft reset, then restart */ if ((le32_to_cpu(trb->generic.field[3])) & TRB_TSP) ring_doorbell_for_active_rings(xhci, slot_id, ep_index); } static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id, struct xhci_command *command, u32 cmd_comp_code) { if (cmd_comp_code == COMP_SUCCESS) command->slot_id = slot_id; else command->slot_id = 0; } static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id) { struct xhci_virt_device *virt_dev; struct xhci_slot_ctx *slot_ctx; virt_dev = xhci->devs[slot_id]; if (!virt_dev) return; slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); trace_xhci_handle_cmd_disable_slot(slot_ctx); if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) /* Delete default control endpoint resources */ xhci_free_device_endpoint_resources(xhci, virt_dev, true); xhci_free_virt_device(xhci, slot_id); } static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id, struct xhci_event_cmd *event, u32 cmd_comp_code) { struct xhci_virt_device *virt_dev; struct xhci_input_control_ctx *ctrl_ctx; struct xhci_ep_ctx *ep_ctx; unsigned int ep_index; unsigned int ep_state; u32 add_flags, drop_flags; /* * Configure endpoint commands can come from the USB core * configuration or alt setting changes, or because the HW * needed an extra configure endpoint command after a reset * endpoint command or streams were being configured. * If the command was for a halted endpoint, the xHCI driver * is not waiting on the configure endpoint command. */ virt_dev = xhci->devs[slot_id]; ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); if (!ctrl_ctx) { xhci_warn(xhci, "Could not get input context, bad type.\n"); return; } add_flags = le32_to_cpu(ctrl_ctx->add_flags); drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); /* Input ctx add_flags are the endpoint index plus one */ ep_index = xhci_last_valid_endpoint(add_flags) - 1; ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index); trace_xhci_handle_cmd_config_ep(ep_ctx); /* A usb_set_interface() call directly after clearing a halted * condition may race on this quirky hardware. Not worth * worrying about, since this is prototype hardware. Not sure * if this will work for streams, but streams support was * untested on this prototype. */ if (xhci->quirks & XHCI_RESET_EP_QUIRK && ep_index != (unsigned int) -1 && add_flags - SLOT_FLAG == drop_flags) { ep_state = virt_dev->eps[ep_index].ep_state; if (!(ep_state & EP_HALTED)) return; xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, "Completed config ep cmd - " "last ep index = %d, state = %d", ep_index, ep_state); /* Clear internal halted state and restart ring(s) */ virt_dev->eps[ep_index].ep_state &= ~EP_HALTED; ring_doorbell_for_active_rings(xhci, slot_id, ep_index); return; } return; } static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id) { struct xhci_virt_device *vdev; struct xhci_slot_ctx *slot_ctx; vdev = xhci->devs[slot_id]; slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); trace_xhci_handle_cmd_addr_dev(slot_ctx); } static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id, struct xhci_event_cmd *event) { struct xhci_virt_device *vdev; struct xhci_slot_ctx *slot_ctx; vdev = xhci->devs[slot_id]; slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx); trace_xhci_handle_cmd_reset_dev(slot_ctx); xhci_dbg(xhci, "Completed reset device command.\n"); if (!xhci->devs[slot_id]) xhci_warn(xhci, "Reset device command completion " "for disabled slot %u\n", slot_id); } static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci, struct xhci_event_cmd *event) { if (!(xhci->quirks & XHCI_NEC_HOST)) { xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n"); return; } xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, "NEC firmware version %2x.%02x", NEC_FW_MAJOR(le32_to_cpu(event->status)), NEC_FW_MINOR(le32_to_cpu(event->status))); } static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status) { list_del(&cmd->cmd_list); if (cmd->completion) { cmd->status = status; complete(cmd->completion); } else { kfree(cmd); } } void xhci_cleanup_command_queue(struct xhci_hcd *xhci) { struct xhci_command *cur_cmd, *tmp_cmd; xhci->current_cmd = NULL; list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list) xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED); } void xhci_handle_command_timeout(struct work_struct *work) { struct xhci_hcd *xhci; unsigned long flags; u64 hw_ring_state; xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer); spin_lock_irqsave(&xhci->lock, flags); /* * If timeout work is pending, or current_cmd is NULL, it means we * raced with command completion. Command is handled so just return. */ if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) { spin_unlock_irqrestore(&xhci->lock, flags); return; } /* mark this command to be cancelled */ xhci->current_cmd->status = COMP_COMMAND_ABORTED; /* Make sure command ring is running before aborting it */ hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); if (hw_ring_state == ~(u64)0) { xhci_hc_died(xhci); goto time_out_completed; } if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) && (hw_ring_state & CMD_RING_RUNNING)) { /* Prevent new doorbell, and start command abort */ xhci->cmd_ring_state = CMD_RING_STATE_ABORTED; xhci_dbg(xhci, "Command timeout\n"); xhci_abort_cmd_ring(xhci, flags); goto time_out_completed; } /* host removed. Bail out */ if (xhci->xhc_state & XHCI_STATE_REMOVING) { xhci_dbg(xhci, "host removed, ring start fail?\n"); xhci_cleanup_command_queue(xhci); goto time_out_completed; } /* command timeout on stopped ring, ring can't be aborted */ xhci_dbg(xhci, "Command timeout on stopped ring\n"); xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd); time_out_completed: spin_unlock_irqrestore(&xhci->lock, flags); return; } static void handle_cmd_completion(struct xhci_hcd *xhci, struct xhci_event_cmd *event) { int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); u64 cmd_dma; dma_addr_t cmd_dequeue_dma; u32 cmd_comp_code; union xhci_trb *cmd_trb; struct xhci_command *cmd; u32 cmd_type; cmd_dma = le64_to_cpu(event->cmd_trb); cmd_trb = xhci->cmd_ring->dequeue; trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic); cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, cmd_trb); /* * Check whether the completion event is for our internal kept * command. */ if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) { xhci_warn(xhci, "ERROR mismatched command completion event\n"); return; } cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list); cancel_delayed_work(&xhci->cmd_timer); cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status)); /* If CMD ring stopped we own the trbs between enqueue and dequeue */ if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) { complete_all(&xhci->cmd_ring_stop_completion); return; } if (cmd->command_trb != xhci->cmd_ring->dequeue) { xhci_err(xhci, "Command completion event does not match command\n"); return; } /* * Host aborted the command ring, check if the current command was * supposed to be aborted, otherwise continue normally. * The command ring is stopped now, but the xHC will issue a Command * Ring Stopped event which will cause us to restart it. */ if (cmd_comp_code == COMP_COMMAND_ABORTED) { xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; if (cmd->status == COMP_COMMAND_ABORTED) { if (xhci->current_cmd == cmd) xhci->current_cmd = NULL; goto event_handled; } } cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3])); switch (cmd_type) { case TRB_ENABLE_SLOT: xhci_handle_cmd_enable_slot(xhci, slot_id, cmd, cmd_comp_code); break; case TRB_DISABLE_SLOT: xhci_handle_cmd_disable_slot(xhci, slot_id); break; case TRB_CONFIG_EP: if (!cmd->completion) xhci_handle_cmd_config_ep(xhci, slot_id, event, cmd_comp_code); break; case TRB_EVAL_CONTEXT: break; case TRB_ADDR_DEV: xhci_handle_cmd_addr_dev(xhci, slot_id); break; case TRB_STOP_RING: WARN_ON(slot_id != TRB_TO_SLOT_ID( le32_to_cpu(cmd_trb->generic.field[3]))); if (!cmd->completion) xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event); break; case TRB_SET_DEQ: WARN_ON(slot_id != TRB_TO_SLOT_ID( le32_to_cpu(cmd_trb->generic.field[3]))); xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code); break; case TRB_CMD_NOOP: /* Is this an aborted command turned to NO-OP? */ if (cmd->status == COMP_COMMAND_RING_STOPPED) cmd_comp_code = COMP_COMMAND_RING_STOPPED; break; case TRB_RESET_EP: WARN_ON(slot_id != TRB_TO_SLOT_ID( le32_to_cpu(cmd_trb->generic.field[3]))); xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code); break; case TRB_RESET_DEV: /* SLOT_ID field in reset device cmd completion event TRB is 0. * Use the SLOT_ID from the command TRB instead (xhci 4.6.11) */ slot_id = TRB_TO_SLOT_ID( le32_to_cpu(cmd_trb->generic.field[3])); xhci_handle_cmd_reset_dev(xhci, slot_id, event); break; case TRB_NEC_GET_FW: xhci_handle_cmd_nec_get_fw(xhci, event); break; default: /* Skip over unknown commands on the event ring */ xhci_info(xhci, "INFO unknown command type %d\n", cmd_type); break; } /* restart timer if this wasn't the last command */ if (!list_is_singular(&xhci->cmd_list)) { xhci->current_cmd = list_first_entry(&cmd->cmd_list, struct xhci_command, cmd_list); xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); } else if (xhci->current_cmd == cmd) { xhci->current_cmd = NULL; } event_handled: xhci_complete_del_and_free_cmd(cmd, cmd_comp_code); inc_deq(xhci, xhci->cmd_ring); } static void handle_vendor_event(struct xhci_hcd *xhci, union xhci_trb *event) { u32 trb_type; trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3])); xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) handle_cmd_completion(xhci, &event->event_cmd); } static void handle_device_notification(struct xhci_hcd *xhci, union xhci_trb *event) { u32 slot_id; struct usb_device *udev; slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3])); if (!xhci->devs[slot_id]) { xhci_warn(xhci, "Device Notification event for " "unused slot %u\n", slot_id); return; } xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", slot_id); udev = xhci->devs[slot_id]->udev; if (udev && udev->parent) usb_wakeup_notification(udev->parent, udev->portnum); } /* * Quirk hanlder for errata seen on Cavium ThunderX2 processor XHCI * Controller. * As per ThunderX2errata-129 USB 2 device may come up as USB 1 * If a connection to a USB 1 device is followed by another connection * to a USB 2 device. * * Reset the PHY after the USB device is disconnected if device speed * is less than HCD_USB3. * Retry the reset sequence max of 4 times checking the PLL lock status. * */ static void xhci_cavium_reset_phy_quirk(struct xhci_hcd *xhci) { struct usb_hcd *hcd = xhci_to_hcd(xhci); u32 pll_lock_check; u32 retry_count = 4; do { /* Assert PHY reset */ writel(0x6F, hcd->regs + 0x1048); udelay(10); /* De-assert the PHY reset */ writel(0x7F, hcd->regs + 0x1048); udelay(200); pll_lock_check = readl(hcd->regs + 0x1070); } while (!(pll_lock_check & 0x1) && --retry_count); } static void handle_port_status(struct xhci_hcd *xhci, union xhci_trb *event) { struct usb_hcd *hcd; u32 port_id; u32 portsc, cmd_reg; int max_ports; int slot_id; unsigned int hcd_portnum; struct xhci_bus_state *bus_state; bool bogus_port_status = false; struct xhci_port *port; /* Port status change events always have a successful completion code */ if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) xhci_warn(xhci, "WARN: xHC returned failed port status event\n"); port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); max_ports = HCS_MAX_PORTS(xhci->hcs_params1); if ((port_id <= 0) || (port_id > max_ports)) { xhci_warn(xhci, "Port change event with invalid port ID %d\n", port_id); inc_deq(xhci, xhci->event_ring); return; } port = &xhci->hw_ports[port_id - 1]; if (!port || !port->rhub || port->hcd_portnum == DUPLICATE_ENTRY) { xhci_warn(xhci, "Port change event, no port for port ID %u\n", port_id); bogus_port_status = true; goto cleanup; } /* We might get interrupts after shared_hcd is removed */ if (port->rhub == &xhci->usb3_rhub && xhci->shared_hcd == NULL) { xhci_dbg(xhci, "ignore port event for removed USB3 hcd\n"); bogus_port_status = true; goto cleanup; } hcd = port->rhub->hcd; bus_state = &port->rhub->bus_state; hcd_portnum = port->hcd_portnum; portsc = readl(port->addr); xhci_dbg(xhci, "Port change event, %d-%d, id %d, portsc: 0x%x\n", hcd->self.busnum, hcd_portnum + 1, port_id, portsc); trace_xhci_handle_port_status(hcd_portnum, portsc); if (hcd->state == HC_STATE_SUSPENDED) { xhci_dbg(xhci, "resume root hub\n"); usb_hcd_resume_root_hub(hcd); } if (hcd->speed >= HCD_USB3 && (portsc & PORT_PLS_MASK) == XDEV_INACTIVE) bus_state->port_remote_wakeup &= ~(1 << hcd_portnum); if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_RESUME) { xhci_dbg(xhci, "port resume event for port %d\n", port_id); cmd_reg = readl(&xhci->op_regs->command); if (!(cmd_reg & CMD_RUN)) { xhci_warn(xhci, "xHC is not running.\n"); goto cleanup; } if (DEV_SUPERSPEED_ANY(portsc)) { xhci_dbg(xhci, "remote wake SS port %d\n", port_id); /* Set a flag to say the port signaled remote wakeup, * so we can tell the difference between the end of * device and host initiated resume. */ bus_state->port_remote_wakeup |= 1 << hcd_portnum; xhci_test_and_clear_bit(xhci, port, PORT_PLC); xhci_set_link_state(xhci, port, XDEV_U0); /* Need to wait until the next link state change * indicates the device is actually in U0. */ bogus_port_status = true; goto cleanup; } else if (!test_bit(hcd_portnum, &bus_state->resuming_ports)) { xhci_dbg(xhci, "resume HS port %d\n", port_id); bus_state->resume_done[hcd_portnum] = jiffies + msecs_to_jiffies(USB_RESUME_TIMEOUT); set_bit(hcd_portnum, &bus_state->resuming_ports); /* Do the rest in GetPortStatus after resume time delay. * Avoid polling roothub status before that so that a * usb device auto-resume latency around ~40ms. */ set_bit(HCD_FLAG_POLL_RH, &hcd->flags); mod_timer(&hcd->rh_timer, bus_state->resume_done[hcd_portnum]); usb_hcd_start_port_resume(&hcd->self, hcd_portnum); bogus_port_status = true; } } if ((portsc & PORT_PLC) && DEV_SUPERSPEED_ANY(portsc) && ((portsc & PORT_PLS_MASK) == XDEV_U0 || (portsc & PORT_PLS_MASK) == XDEV_U1 || (portsc & PORT_PLS_MASK) == XDEV_U2)) { xhci_dbg(xhci, "resume SS port %d finished\n", port_id); /* We've just brought the device into U0/1/2 through either the * Resume state after a device remote wakeup, or through the * U3Exit state after a host-initiated resume. If it's a device * initiated remote wake, don't pass up the link state change, * so the roothub behavior is consistent with external * USB 3.0 hub behavior. */ slot_id = xhci_find_slot_id_by_port(hcd, xhci, hcd_portnum + 1); if (slot_id && xhci->devs[slot_id]) xhci_ring_device(xhci, slot_id); if (bus_state->port_remote_wakeup & (1 << hcd_portnum)) { bus_state->port_remote_wakeup &= ~(1 << hcd_portnum); xhci_test_and_clear_bit(xhci, port, PORT_PLC); usb_wakeup_notification(hcd->self.root_hub, hcd_portnum + 1); bogus_port_status = true; goto cleanup; } } /* * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or * RExit to a disconnect state). If so, let the the driver know it's * out of the RExit state. */ if (!DEV_SUPERSPEED_ANY(portsc) && hcd->speed < HCD_USB3 && test_and_clear_bit(hcd_portnum, &bus_state->rexit_ports)) { complete(&bus_state->rexit_done[hcd_portnum]); bogus_port_status = true; goto cleanup; } if (hcd->speed < HCD_USB3) { xhci_test_and_clear_bit(xhci, port, PORT_PLC); if ((xhci->quirks & XHCI_RESET_PLL_ON_DISCONNECT) && (portsc & PORT_CSC) && !(portsc & PORT_CONNECT)) xhci_cavium_reset_phy_quirk(xhci); } cleanup: /* Update event ring dequeue pointer before dropping the lock */ inc_deq(xhci, xhci->event_ring); /* Don't make the USB core poll the roothub if we got a bad port status * change event. Besides, at that point we can't tell which roothub * (USB 2.0 or USB 3.0) to kick. */ if (bogus_port_status) return; /* * xHCI port-status-change events occur when the "or" of all the * status-change bits in the portsc register changes from 0 to 1. * New status changes won't cause an event if any other change * bits are still set. When an event occurs, switch over to * polling to avoid losing status changes. */ xhci_dbg(xhci, "%s: starting port polling.\n", __func__); set_bit(HCD_FLAG_POLL_RH, &hcd->flags); spin_unlock(&xhci->lock); /* Pass this up to the core */ usb_hcd_poll_rh_status(hcd); spin_lock(&xhci->lock); } /* * This TD is defined by the TRBs starting at start_trb in start_seg and ending * at end_trb, which may be in another segment. If the suspect DMA address is a * TRB in this TD, this function returns that TRB's segment. Otherwise it * returns 0. */ struct xhci_segment *trb_in_td(struct xhci_hcd *xhci, struct xhci_segment *start_seg, union xhci_trb *start_trb, union xhci_trb *end_trb, dma_addr_t suspect_dma, bool debug) { dma_addr_t start_dma; dma_addr_t end_seg_dma; dma_addr_t end_trb_dma; struct xhci_segment *cur_seg; start_dma = xhci_trb_virt_to_dma(start_seg, start_trb); cur_seg = start_seg; do { if (start_dma == 0) return NULL; /* We may get an event for a Link TRB in the middle of a TD */ end_seg_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); /* If the end TRB isn't in this segment, this is set to 0 */ end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb); if (debug) xhci_warn(xhci, "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n", (unsigned long long)suspect_dma, (unsigned long long)start_dma, (unsigned long long)end_trb_dma, (unsigned long long)cur_seg->dma, (unsigned long long)end_seg_dma); if (end_trb_dma > 0) { /* The end TRB is in this segment, so suspect should be here */ if (start_dma <= end_trb_dma) { if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) return cur_seg; } else { /* Case for one segment with * a TD wrapped around to the top */ if ((suspect_dma >= start_dma && suspect_dma <= end_seg_dma) || (suspect_dma >= cur_seg->dma && suspect_dma <= end_trb_dma)) return cur_seg; } return NULL; } else { /* Might still be somewhere in this segment */ if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) return cur_seg; } cur_seg = cur_seg->next; start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); } while (cur_seg != start_seg); return NULL; } static void xhci_clear_hub_tt_buffer(struct xhci_hcd *xhci, struct xhci_td *td, struct xhci_virt_ep *ep) { /* * As part of low/full-speed endpoint-halt processing * we must clear the TT buffer (USB 2.0 specification 11.17.5). */ if (td->urb->dev->tt && !usb_pipeint(td->urb->pipe) && (td->urb->dev->tt->hub != xhci_to_hcd(xhci)->self.root_hub) && !(ep->ep_state & EP_CLEARING_TT)) { ep->ep_state |= EP_CLEARING_TT; td->urb->ep->hcpriv = td->urb->dev; if (usb_hub_clear_tt_buffer(td->urb)) ep->ep_state &= ~EP_CLEARING_TT; } } static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci, unsigned int slot_id, unsigned int ep_index, unsigned int stream_id, struct xhci_td *td, enum xhci_ep_reset_type reset_type) { struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; struct xhci_command *command; command = xhci_alloc_command(xhci, false, GFP_ATOMIC); if (!command) return; ep->ep_state |= EP_HALTED; xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type); if (reset_type == EP_HARD_RESET) { ep->ep_state |= EP_HARD_CLEAR_TOGGLE; xhci_cleanup_stalled_ring(xhci, ep_index, stream_id, td); xhci_clear_hub_tt_buffer(xhci, td, ep); } xhci_ring_cmd_db(xhci); } /* Check if an error has halted the endpoint ring. The class driver will * cleanup the halt for a non-default control endpoint if we indicate a stall. * However, a babble and other errors also halt the endpoint ring, and the class * driver won't clear the halt in that case, so we need to issue a Set Transfer * Ring Dequeue Pointer command manually. */ static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci, struct xhci_ep_ctx *ep_ctx, unsigned int trb_comp_code) { /* TRB completion codes that may require a manual halt cleanup */ if (trb_comp_code == COMP_USB_TRANSACTION_ERROR || trb_comp_code == COMP_BABBLE_DETECTED_ERROR || trb_comp_code == COMP_SPLIT_TRANSACTION_ERROR) /* The 0.95 spec says a babbling control endpoint * is not halted. The 0.96 spec says it is. Some HW * claims to be 0.95 compliant, but it halts the control * endpoint anyway. Check if a babble halted the * endpoint. */ if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED) return 1; return 0; } int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) { if (trb_comp_code >= 224 && trb_comp_code <= 255) { /* Vendor defined "informational" completion code, * treat as not-an-error. */ xhci_dbg(xhci, "Vendor defined info completion code %u\n", trb_comp_code); xhci_dbg(xhci, "Treating code as success.\n"); return 1; } return 0; } static int xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td, struct xhci_ring *ep_ring, int *status) { struct urb *urb = NULL; /* Clean up the endpoint's TD list */ urb = td->urb; /* if a bounce buffer was used to align this td then unmap it */ xhci_unmap_td_bounce_buffer(xhci, ep_ring, td); /* Do one last check of the actual transfer length. * If the host controller said we transferred more data than the buffer * length, urb->actual_length will be a very big number (since it's * unsigned). Play it safe and say we didn't transfer anything. */ if (urb->actual_length > urb->transfer_buffer_length) { xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n", urb->transfer_buffer_length, urb->actual_length); urb->actual_length = 0; *status = 0; } list_del_init(&td->td_list); /* Was this TD slated to be cancelled but completed anyway? */ if (!list_empty(&td->cancelled_td_list)) list_del_init(&td->cancelled_td_list); inc_td_cnt(urb); /* Giveback the urb when all the tds are completed */ if (last_td_in_urb(td)) { if ((urb->actual_length != urb->transfer_buffer_length && (urb->transfer_flags & URB_SHORT_NOT_OK)) || (*status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc))) xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n", urb, urb->actual_length, urb->transfer_buffer_length, *status); /* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */ if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) *status = 0; xhci_giveback_urb_in_irq(xhci, td, *status); } return 0; } static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td, struct xhci_transfer_event *event, struct xhci_virt_ep *ep, int *status) { struct xhci_virt_device *xdev; struct xhci_ep_ctx *ep_ctx; struct xhci_ring *ep_ring; unsigned int slot_id; u32 trb_comp_code; int ep_index; slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); xdev = xhci->devs[slot_id]; ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); if (trb_comp_code == COMP_STOPPED_LENGTH_INVALID || trb_comp_code == COMP_STOPPED || trb_comp_code == COMP_STOPPED_SHORT_PACKET) { /* The Endpoint Stop Command completion will take care of any * stopped TDs. A stopped TD may be restarted, so don't update * the ring dequeue pointer or take this TD off any lists yet. */ return 0; } if (trb_comp_code == COMP_STALL_ERROR || xhci_requires_manual_halt_cleanup(xhci, ep_ctx, trb_comp_code)) { /* Issue a reset endpoint command to clear the host side * halt, followed by a set dequeue command to move the * dequeue pointer past the TD. * The class driver clears the device side halt later. */ xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, ep_ring->stream_id, td, EP_HARD_RESET); } else { /* Update ring dequeue pointer */ while (ep_ring->dequeue != td->last_trb) inc_deq(xhci, ep_ring); inc_deq(xhci, ep_ring); } return xhci_td_cleanup(xhci, td, ep_ring, status); } /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */ static int sum_trb_lengths(struct xhci_hcd *xhci, struct xhci_ring *ring, union xhci_trb *stop_trb) { u32 sum; union xhci_trb *trb = ring->dequeue; struct xhci_segment *seg = ring->deq_seg; for (sum = 0; trb != stop_trb; next_trb(xhci, ring, &seg, &trb)) { if (!trb_is_noop(trb) && !trb_is_link(trb)) sum += TRB_LEN(le32_to_cpu(trb->generic.field[2])); } return sum; } /* * Process control tds, update urb status and actual_length. */ static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td, union xhci_trb *ep_trb, struct xhci_transfer_event *event, struct xhci_virt_ep *ep, int *status) { struct xhci_virt_device *xdev; unsigned int slot_id; int ep_index; struct xhci_ep_ctx *ep_ctx; u32 trb_comp_code; u32 remaining, requested; u32 trb_type; trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3])); slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); xdev = xhci->devs[slot_id]; ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); requested = td->urb->transfer_buffer_length; remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); switch (trb_comp_code) { case COMP_SUCCESS: if (trb_type != TRB_STATUS) { xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n", (trb_type == TRB_DATA) ? "data" : "setup"); *status = -ESHUTDOWN; break; } *status = 0; break; case COMP_SHORT_PACKET: *status = 0; break; case COMP_STOPPED_SHORT_PACKET: if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) td->urb->actual_length = remaining; else xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n"); goto finish_td; case COMP_STOPPED: switch (trb_type) { case TRB_SETUP: td->urb->actual_length = 0; goto finish_td; case TRB_DATA: case TRB_NORMAL: td->urb->actual_length = requested - remaining; goto finish_td; case TRB_STATUS: td->urb->actual_length = requested; goto finish_td; default: xhci_warn(xhci, "WARN: unexpected TRB Type %d\n", trb_type); goto finish_td; } case COMP_STOPPED_LENGTH_INVALID: goto finish_td; default: if (!xhci_requires_manual_halt_cleanup(xhci, ep_ctx, trb_comp_code)) break; xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n", trb_comp_code, ep_index); /* else fall through */ case COMP_STALL_ERROR: /* Did we transfer part of the data (middle) phase? */ if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) td->urb->actual_length = requested - remaining; else if (!td->urb_length_set) td->urb->actual_length = 0; goto finish_td; } /* stopped at setup stage, no data transferred */ if (trb_type == TRB_SETUP) goto finish_td; /* * if on data stage then update the actual_length of the URB and flag it * as set, so it won't be overwritten in the event for the last TRB. */ if (trb_type == TRB_DATA || trb_type == TRB_NORMAL) { td->urb_length_set = true; td->urb->actual_length = requested - remaining; xhci_dbg(xhci, "Waiting for status stage event\n"); return 0; } /* at status stage */ if (!td->urb_length_set) td->urb->actual_length = requested; finish_td: return finish_td(xhci, td, event, ep, status); } /* * Process isochronous tds, update urb packet status and actual_length. */ static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, union xhci_trb *ep_trb, struct xhci_transfer_event *event, struct xhci_virt_ep *ep, int *status) { struct xhci_ring *ep_ring; struct urb_priv *urb_priv; int idx; struct usb_iso_packet_descriptor *frame; u32 trb_comp_code; bool sum_trbs_for_length = false; u32 remaining, requested, ep_trb_len; int short_framestatus; ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); urb_priv = td->urb->hcpriv; idx = urb_priv->num_tds_done; frame = &td->urb->iso_frame_desc[idx]; requested = frame->length; remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ? -EREMOTEIO : 0; /* handle completion code */ switch (trb_comp_code) { case COMP_SUCCESS: if (remaining) { frame->status = short_framestatus; if (xhci->quirks & XHCI_TRUST_TX_LENGTH) sum_trbs_for_length = true; break; } frame->status = 0; break; case COMP_SHORT_PACKET: frame->status = short_framestatus; sum_trbs_for_length = true; break; case COMP_BANDWIDTH_OVERRUN_ERROR: frame->status = -ECOMM; break; case COMP_ISOCH_BUFFER_OVERRUN: case COMP_BABBLE_DETECTED_ERROR: frame->status = -EOVERFLOW; break; case COMP_INCOMPATIBLE_DEVICE_ERROR: case COMP_STALL_ERROR: frame->status = -EPROTO; break; case COMP_USB_TRANSACTION_ERROR: frame->status = -EPROTO; if (ep_trb != td->last_trb) return 0; break; case COMP_STOPPED: sum_trbs_for_length = true; break; case COMP_STOPPED_SHORT_PACKET: /* field normally containing residue now contains tranferred */ frame->status = short_framestatus; requested = remaining; break; case COMP_STOPPED_LENGTH_INVALID: requested = 0; remaining = 0; break; default: sum_trbs_for_length = true; frame->status = -1; break; } if (sum_trbs_for_length) frame->actual_length = sum_trb_lengths(xhci, ep_ring, ep_trb) + ep_trb_len - remaining; else frame->actual_length = requested; td->urb->actual_length += frame->actual_length; return finish_td(xhci, td, event, ep, status); } static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, struct xhci_transfer_event *event, struct xhci_virt_ep *ep, int *status) { struct xhci_ring *ep_ring; struct urb_priv *urb_priv; struct usb_iso_packet_descriptor *frame; int idx; ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); urb_priv = td->urb->hcpriv; idx = urb_priv->num_tds_done; frame = &td->urb->iso_frame_desc[idx]; /* The transfer is partly done. */ frame->status = -EXDEV; /* calc actual length */ frame->actual_length = 0; /* Update ring dequeue pointer */ while (ep_ring->dequeue != td->last_trb) inc_deq(xhci, ep_ring); inc_deq(xhci, ep_ring); return xhci_td_cleanup(xhci, td, ep_ring, status); } /* * Process bulk and interrupt tds, update urb status and actual_length. */ static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td, union xhci_trb *ep_trb, struct xhci_transfer_event *event, struct xhci_virt_ep *ep, int *status) { struct xhci_slot_ctx *slot_ctx; struct xhci_ring *ep_ring; u32 trb_comp_code; u32 remaining, requested, ep_trb_len; unsigned int slot_id; int ep_index; slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); slot_ctx = xhci_get_slot_ctx(xhci, xhci->devs[slot_id]->out_ctx); ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); requested = td->urb->transfer_buffer_length; switch (trb_comp_code) { case COMP_SUCCESS: ep_ring->err_count = 0; /* handle success with untransferred data as short packet */ if (ep_trb != td->last_trb || remaining) { xhci_warn(xhci, "WARN Successful completion on short TX\n"); xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", td->urb->ep->desc.bEndpointAddress, requested, remaining); } *status = 0; break; case COMP_SHORT_PACKET: xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n", td->urb->ep->desc.bEndpointAddress, requested, remaining); *status = 0; break; case COMP_STOPPED_SHORT_PACKET: td->urb->actual_length = remaining; goto finish_td; case COMP_STOPPED_LENGTH_INVALID: /* stopped on ep trb with invalid length, exclude it */ ep_trb_len = 0; remaining = 0; break; case COMP_USB_TRANSACTION_ERROR: if ((ep_ring->err_count++ > MAX_SOFT_RETRY) || le32_to_cpu(slot_ctx->tt_info) & TT_SLOT) break; *status = 0; xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, ep_ring->stream_id, td, EP_SOFT_RESET); return 0; default: /* do nothing */ break; } if (ep_trb == td->last_trb) td->urb->actual_length = requested - remaining; else td->urb->actual_length = sum_trb_lengths(xhci, ep_ring, ep_trb) + ep_trb_len - remaining; finish_td: if (remaining > requested) { xhci_warn(xhci, "bad transfer trb length %d in event trb\n", remaining); td->urb->actual_length = 0; } return finish_td(xhci, td, event, ep, status); } /* * If this function returns an error condition, it means it got a Transfer * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. * At this point, the host controller is probably hosed and should be reset. */ static int handle_tx_event(struct xhci_hcd *xhci, struct xhci_transfer_event *event) { struct xhci_virt_device *xdev; struct xhci_virt_ep *ep; struct xhci_ring *ep_ring; unsigned int slot_id; int ep_index; struct xhci_td *td = NULL; dma_addr_t ep_trb_dma; struct xhci_segment *ep_seg; union xhci_trb *ep_trb; int status = -EINPROGRESS; struct xhci_ep_ctx *ep_ctx; struct list_head *tmp; u32 trb_comp_code; int td_num = 0; bool handling_skipped_tds = false; slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); ep_trb_dma = le64_to_cpu(event->buffer); xdev = xhci->devs[slot_id]; if (!xdev) { xhci_err(xhci, "ERROR Transfer event pointed to bad slot %u\n", slot_id); goto err_out; } ep = &xdev->eps[ep_index]; ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma); ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) { xhci_err(xhci, "ERROR Transfer event for disabled endpoint slot %u ep %u\n", slot_id, ep_index); goto err_out; } /* Some transfer events don't always point to a trb, see xhci 4.17.4 */ if (!ep_ring) { switch (trb_comp_code) { case COMP_STALL_ERROR: case COMP_USB_TRANSACTION_ERROR: case COMP_INVALID_STREAM_TYPE_ERROR: case COMP_INVALID_STREAM_ID_ERROR: xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, 0, NULL, EP_SOFT_RESET); goto cleanup; case COMP_RING_UNDERRUN: case COMP_RING_OVERRUN: case COMP_STOPPED_LENGTH_INVALID: goto cleanup; default: xhci_err(xhci, "ERROR Transfer event for unknown stream ring slot %u ep %u\n", slot_id, ep_index); goto err_out; } } /* Count current td numbers if ep->skip is set */ if (ep->skip) { list_for_each(tmp, &ep_ring->td_list) td_num++; } /* Look for common error cases */ switch (trb_comp_code) { /* Skip codes that require special handling depending on * transfer type */ case COMP_SUCCESS: if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) break; if (xhci->quirks & XHCI_TRUST_TX_LENGTH) trb_comp_code = COMP_SHORT_PACKET; else xhci_warn_ratelimited(xhci, "WARN Successful completion on short TX for slot %u ep %u: needs XHCI_TRUST_TX_LENGTH quirk?\n", slot_id, ep_index); case COMP_SHORT_PACKET: break; /* Completion codes for endpoint stopped state */ case COMP_STOPPED: xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n", slot_id, ep_index); break; case COMP_STOPPED_LENGTH_INVALID: xhci_dbg(xhci, "Stopped on No-op or Link TRB for slot %u ep %u\n", slot_id, ep_index); break; case COMP_STOPPED_SHORT_PACKET: xhci_dbg(xhci, "Stopped with short packet transfer detected for slot %u ep %u\n", slot_id, ep_index); break; /* Completion codes for endpoint halted state */ case COMP_STALL_ERROR: xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id, ep_index); ep->ep_state |= EP_HALTED; status = -EPIPE; break; case COMP_SPLIT_TRANSACTION_ERROR: case COMP_USB_TRANSACTION_ERROR: xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n", slot_id, ep_index); status = -EPROTO; break; case COMP_BABBLE_DETECTED_ERROR: xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n", slot_id, ep_index); status = -EOVERFLOW; break; /* Completion codes for endpoint error state */ case COMP_TRB_ERROR: xhci_warn(xhci, "WARN: TRB error for slot %u ep %u on endpoint\n", slot_id, ep_index); status = -EILSEQ; break; /* completion codes not indicating endpoint state change */ case COMP_DATA_BUFFER_ERROR: xhci_warn(xhci, "WARN: HC couldn't access mem fast enough for slot %u ep %u\n", slot_id, ep_index); status = -ENOSR; break; case COMP_BANDWIDTH_OVERRUN_ERROR: xhci_warn(xhci, "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n", slot_id, ep_index); break; case COMP_ISOCH_BUFFER_OVERRUN: xhci_warn(xhci, "WARN: buffer overrun event for slot %u ep %u on endpoint", slot_id, ep_index); break; case COMP_RING_UNDERRUN: /* * When the Isoch ring is empty, the xHC will generate * a Ring Overrun Event for IN Isoch endpoint or Ring * Underrun Event for OUT Isoch endpoint. */ xhci_dbg(xhci, "underrun event on endpoint\n"); if (!list_empty(&ep_ring->td_list)) xhci_dbg(xhci, "Underrun Event for slot %d ep %d " "still with TDs queued?\n", TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), ep_index); goto cleanup; case COMP_RING_OVERRUN: xhci_dbg(xhci, "overrun event on endpoint\n"); if (!list_empty(&ep_ring->td_list)) xhci_dbg(xhci, "Overrun Event for slot %d ep %d " "still with TDs queued?\n", TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), ep_index); goto cleanup; case COMP_MISSED_SERVICE_ERROR: /* * When encounter missed service error, one or more isoc tds * may be missed by xHC. * Set skip flag of the ep_ring; Complete the missed tds as * short transfer when process the ep_ring next time. */ ep->skip = true; xhci_dbg(xhci, "Miss service interval error for slot %u ep %u, set skip flag\n", slot_id, ep_index); goto cleanup; case COMP_NO_PING_RESPONSE_ERROR: ep->skip = true; xhci_dbg(xhci, "No Ping response error for slot %u ep %u, Skip one Isoc TD\n", slot_id, ep_index); goto cleanup; case COMP_INCOMPATIBLE_DEVICE_ERROR: /* needs disable slot command to recover */ xhci_warn(xhci, "WARN: detect an incompatible device for slot %u ep %u", slot_id, ep_index); status = -EPROTO; break; default: if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { status = 0; break; } xhci_warn(xhci, "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n", trb_comp_code, slot_id, ep_index); goto cleanup; } do { /* This TRB should be in the TD at the head of this ring's * TD list. */ if (list_empty(&ep_ring->td_list)) { /* * Don't print wanings if it's due to a stopped endpoint * generating an extra completion event if the device * was suspended. Or, a event for the last TRB of a * short TD we already got a short event for. * The short TD is already removed from the TD list. */ if (!(trb_comp_code == COMP_STOPPED || trb_comp_code == COMP_STOPPED_LENGTH_INVALID || ep_ring->last_td_was_short)) { xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n", TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), ep_index); } if (ep->skip) { ep->skip = false; xhci_dbg(xhci, "td_list is empty while skip flag set. Clear skip flag for slot %u ep %u.\n", slot_id, ep_index); } goto cleanup; } /* We've skipped all the TDs on the ep ring when ep->skip set */ if (ep->skip && td_num == 0) { ep->skip = false; xhci_dbg(xhci, "All tds on the ep_ring skipped. Clear skip flag for slot %u ep %u.\n", slot_id, ep_index); goto cleanup; } td = list_first_entry(&ep_ring->td_list, struct xhci_td, td_list); if (ep->skip) td_num--; /* Is this a TRB in the currently executing TD? */ ep_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue, td->last_trb, ep_trb_dma, false); /* * Skip the Force Stopped Event. The event_trb(event_dma) of FSE * is not in the current TD pointed by ep_ring->dequeue because * that the hardware dequeue pointer still at the previous TRB * of the current TD. The previous TRB maybe a Link TD or the * last TRB of the previous TD. The command completion handle * will take care the rest. */ if (!ep_seg && (trb_comp_code == COMP_STOPPED || trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) { goto cleanup; } if (!ep_seg) { if (!ep->skip || !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { /* Some host controllers give a spurious * successful event after a short transfer. * Ignore it. */ if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && ep_ring->last_td_was_short) { ep_ring->last_td_was_short = false; goto cleanup; } /* HC is busted, give up! */ xhci_err(xhci, "ERROR Transfer event TRB DMA ptr not " "part of current TD ep_index %d " "comp_code %u\n", ep_index, trb_comp_code); trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue, td->last_trb, ep_trb_dma, true); return -ESHUTDOWN; } skip_isoc_td(xhci, td, event, ep, &status); goto cleanup; } if (trb_comp_code == COMP_SHORT_PACKET) ep_ring->last_td_was_short = true; else ep_ring->last_td_was_short = false; if (ep->skip) { xhci_dbg(xhci, "Found td. Clear skip flag for slot %u ep %u.\n", slot_id, ep_index); ep->skip = false; } ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) / sizeof(*ep_trb)]; trace_xhci_handle_transfer(ep_ring, (struct xhci_generic_trb *) ep_trb); /* * No-op TRB could trigger interrupts in a case where * a URB was killed and a STALL_ERROR happens right * after the endpoint ring stopped. Reset the halted * endpoint. Otherwise, the endpoint remains stalled * indefinitely. */ if (trb_is_noop(ep_trb)) { if (trb_comp_code == COMP_STALL_ERROR || xhci_requires_manual_halt_cleanup(xhci, ep_ctx, trb_comp_code)) xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, ep_ring->stream_id, td, EP_HARD_RESET); goto cleanup; } /* update the urb's actual_length and give back to the core */ if (usb_endpoint_xfer_control(&td->urb->ep->desc)) process_ctrl_td(xhci, td, ep_trb, event, ep, &status); else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) process_isoc_td(xhci, td, ep_trb, event, ep, &status); else process_bulk_intr_td(xhci, td, ep_trb, event, ep, &status); cleanup: handling_skipped_tds = ep->skip && trb_comp_code != COMP_MISSED_SERVICE_ERROR && trb_comp_code != COMP_NO_PING_RESPONSE_ERROR; /* * Do not update event ring dequeue pointer if we're in a loop * processing missed tds. */ if (!handling_skipped_tds) inc_deq(xhci, xhci->event_ring); /* * If ep->skip is set, it means there are missed tds on the * endpoint ring need to take care of. * Process them as short transfer until reach the td pointed by * the event. */ } while (handling_skipped_tds); return 0; err_out: xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", (unsigned long long) xhci_trb_virt_to_dma( xhci->event_ring->deq_seg, xhci->event_ring->dequeue), lower_32_bits(le64_to_cpu(event->buffer)), upper_32_bits(le64_to_cpu(event->buffer)), le32_to_cpu(event->transfer_len), le32_to_cpu(event->flags)); return -ENODEV; } /* * This function handles all OS-owned events on the event ring. It may drop * xhci->lock between event processing (e.g. to pass up port status changes). * Returns >0 for "possibly more events to process" (caller should call again), * otherwise 0 if done. In future, <0 returns should indicate error code. */ static int xhci_handle_event(struct xhci_hcd *xhci) { union xhci_trb *event; int update_ptrs = 1; int ret; /* Event ring hasn't been allocated yet. */ if (!xhci->event_ring || !xhci->event_ring->dequeue) { xhci_err(xhci, "ERROR event ring not ready\n"); return -ENOMEM; } event = xhci->event_ring->dequeue; /* Does the HC or OS own the TRB? */ if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) != xhci->event_ring->cycle_state) return 0; trace_xhci_handle_event(xhci->event_ring, &event->generic); /* * Barrier between reading the TRB_CYCLE (valid) flag above and any * speculative reads of the event's flags/data below. */ rmb(); /* FIXME: Handle more event types. */ switch (le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) { case TRB_TYPE(TRB_COMPLETION): handle_cmd_completion(xhci, &event->event_cmd); break; case TRB_TYPE(TRB_PORT_STATUS): handle_port_status(xhci, event); update_ptrs = 0; break; case TRB_TYPE(TRB_TRANSFER): ret = handle_tx_event(xhci, &event->trans_event); if (ret >= 0) update_ptrs = 0; break; case TRB_TYPE(TRB_DEV_NOTE): handle_device_notification(xhci, event); break; default: if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >= TRB_TYPE(48)) handle_vendor_event(xhci, event); else xhci_warn(xhci, "ERROR unknown event type %d\n", TRB_FIELD_TO_TYPE( le32_to_cpu(event->event_cmd.flags))); } /* Any of the above functions may drop and re-acquire the lock, so check * to make sure a watchdog timer didn't mark the host as non-responsive. */ if (xhci->xhc_state & XHCI_STATE_DYING) { xhci_dbg(xhci, "xHCI host dying, returning from " "event handler.\n"); return 0; } if (update_ptrs) /* Update SW event ring dequeue pointer */ inc_deq(xhci, xhci->event_ring); /* Are there more items on the event ring? Caller will call us again to * check. */ return 1; } /* * xHCI spec says we can get an interrupt, and if the HC has an error condition, * we might get bad data out of the event ring. Section 4.10.2.7 has a list of * indicators of an event TRB error, but we check the status *first* to be safe. */ irqreturn_t xhci_irq(struct usb_hcd *hcd) { struct xhci_hcd *xhci = hcd_to_xhci(hcd); union xhci_trb *event_ring_deq; irqreturn_t ret = IRQ_NONE; unsigned long flags; dma_addr_t deq; u64 temp_64; u32 status; spin_lock_irqsave(&xhci->lock, flags); /* Check if the xHC generated the interrupt, or the irq is shared */ status = readl(&xhci->op_regs->status); if (status == ~(u32)0) { xhci_hc_died(xhci); ret = IRQ_HANDLED; goto out; } if (!(status & STS_EINT)) goto out; if (status & STS_FATAL) { xhci_warn(xhci, "WARNING: Host System Error\n"); xhci_halt(xhci); ret = IRQ_HANDLED; goto out; } /* * Clear the op reg interrupt status first, * so we can receive interrupts from other MSI-X interrupters. * Write 1 to clear the interrupt status. */ status |= STS_EINT; writel(status, &xhci->op_regs->status); if (!hcd->msi_enabled) { u32 irq_pending; irq_pending = readl(&xhci->ir_set->irq_pending); irq_pending |= IMAN_IP; writel(irq_pending, &xhci->ir_set->irq_pending); } if (xhci->xhc_state & XHCI_STATE_DYING || xhci->xhc_state & XHCI_STATE_HALTED) { xhci_dbg(xhci, "xHCI dying, ignoring interrupt. " "Shouldn't IRQs be disabled?\n"); /* Clear the event handler busy flag (RW1C); * the event ring should be empty. */ temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); xhci_write_64(xhci, temp_64 | ERST_EHB, &xhci->ir_set->erst_dequeue); ret = IRQ_HANDLED; goto out; } event_ring_deq = xhci->event_ring->dequeue; /* FIXME this should be a delayed service routine * that clears the EHB. */ while (xhci_handle_event(xhci) > 0) {} temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); /* If necessary, update the HW's version of the event ring deq ptr. */ if (event_ring_deq != xhci->event_ring->dequeue) { deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, xhci->event_ring->dequeue); if (deq == 0) xhci_warn(xhci, "WARN something wrong with SW event " "ring dequeue ptr.\n"); /* Update HC event ring dequeue pointer */ temp_64 &= ERST_PTR_MASK; temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK); } /* Clear the event handler busy flag (RW1C); event ring is empty. */ temp_64 |= ERST_EHB; xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue); ret = IRQ_HANDLED; out: spin_unlock_irqrestore(&xhci->lock, flags); return ret; } irqreturn_t xhci_msi_irq(int irq, void *hcd) { return xhci_irq(hcd); } /**** Endpoint Ring Operations ****/ /* * Generic function for queueing a TRB on a ring. * The caller must have checked to make sure there's room on the ring. * * @more_trbs_coming: Will you enqueue more TRBs before calling * prepare_transfer()? */ static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, bool more_trbs_coming, u32 field1, u32 field2, u32 field3, u32 field4) { struct xhci_generic_trb *trb; trb = &ring->enqueue->generic; trb->field[0] = cpu_to_le32(field1); trb->field[1] = cpu_to_le32(field2); trb->field[2] = cpu_to_le32(field3); trb->field[3] = cpu_to_le32(field4); trace_xhci_queue_trb(ring, trb); inc_enq(xhci, ring, more_trbs_coming); } /* * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. * FIXME allocate segments if the ring is full. */ static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) { unsigned int num_trbs_needed; /* Make sure the endpoint has been added to xHC schedule */ switch (ep_state) { case EP_STATE_DISABLED: /* * USB core changed config/interfaces without notifying us, * or hardware is reporting the wrong state. */ xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); return -ENOENT; case EP_STATE_ERROR: xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); /* FIXME event handling code for error needs to clear it */ /* XXX not sure if this should be -ENOENT or not */ return -EINVAL; case EP_STATE_HALTED: xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); case EP_STATE_STOPPED: case EP_STATE_RUNNING: break; default: xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); /* * FIXME issue Configure Endpoint command to try to get the HC * back into a known state. */ return -EINVAL; } while (1) { if (room_on_ring(xhci, ep_ring, num_trbs)) break; if (ep_ring == xhci->cmd_ring) { xhci_err(xhci, "Do not support expand command ring\n"); return -ENOMEM; } xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, "ERROR no room on ep ring, try ring expansion"); num_trbs_needed = num_trbs - ep_ring->num_trbs_free; if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed, mem_flags)) { xhci_err(xhci, "Ring expansion failed\n"); return -ENOMEM; } } while (trb_is_link(ep_ring->enqueue)) { /* If we're not dealing with 0.95 hardware or isoc rings * on AMD 0.96 host, clear the chain bit. */ if (!xhci_link_trb_quirk(xhci) && !(ep_ring->type == TYPE_ISOC && (xhci->quirks & XHCI_AMD_0x96_HOST))) ep_ring->enqueue->link.control &= cpu_to_le32(~TRB_CHAIN); else ep_ring->enqueue->link.control |= cpu_to_le32(TRB_CHAIN); wmb(); ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE); /* Toggle the cycle bit after the last ring segment. */ if (link_trb_toggles_cycle(ep_ring->enqueue)) ep_ring->cycle_state ^= 1; ep_ring->enq_seg = ep_ring->enq_seg->next; ep_ring->enqueue = ep_ring->enq_seg->trbs; } return 0; } static int prepare_transfer(struct xhci_hcd *xhci, struct xhci_virt_device *xdev, unsigned int ep_index, unsigned int stream_id, unsigned int num_trbs, struct urb *urb, unsigned int td_index, gfp_t mem_flags) { int ret; struct urb_priv *urb_priv; struct xhci_td *td; struct xhci_ring *ep_ring; struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id); if (!ep_ring) { xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", stream_id); return -EINVAL; } ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), num_trbs, mem_flags); if (ret) return ret; urb_priv = urb->hcpriv; td = &urb_priv->td[td_index]; INIT_LIST_HEAD(&td->td_list); INIT_LIST_HEAD(&td->cancelled_td_list); if (td_index == 0) { ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); if (unlikely(ret)) return ret; } td->urb = urb; /* Add this TD to the tail of the endpoint ring's TD list */ list_add_tail(&td->td_list, &ep_ring->td_list); td->start_seg = ep_ring->enq_seg; td->first_trb = ep_ring->enqueue; return 0; } unsigned int count_trbs(u64 addr, u64 len) { unsigned int num_trbs; num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)), TRB_MAX_BUFF_SIZE); if (num_trbs == 0) num_trbs++; return num_trbs; } static inline unsigned int count_trbs_needed(struct urb *urb) { return count_trbs(urb->transfer_dma, urb->transfer_buffer_length); } static unsigned int count_sg_trbs_needed(struct urb *urb) { struct scatterlist *sg; unsigned int i, len, full_len, num_trbs = 0; full_len = urb->transfer_buffer_length; for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) { len = sg_dma_len(sg); num_trbs += count_trbs(sg_dma_address(sg), len); len = min_t(unsigned int, len, full_len); full_len -= len; if (full_len == 0) break; } return num_trbs; } static unsigned int count_isoc_trbs_needed(struct urb *urb, int i) { u64 addr, len; addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); len = urb->iso_frame_desc[i].length; return count_trbs(addr, len); } static void check_trb_math(struct urb *urb, int running_total) { if (unlikely(running_total != urb->transfer_buffer_length)) dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " "queued %#x (%d), asked for %#x (%d)\n", __func__, urb->ep->desc.bEndpointAddress, running_total, running_total, urb->transfer_buffer_length, urb->transfer_buffer_length); } static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, unsigned int ep_index, unsigned int stream_id, int start_cycle, struct xhci_generic_trb *start_trb) { /* * Pass all the TRBs to the hardware at once and make sure this write * isn't reordered. */ wmb(); if (start_cycle) start_trb->field[3] |= cpu_to_le32(start_cycle); else start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); } static void check_interval(struct xhci_hcd *xhci, struct urb *urb, struct xhci_ep_ctx *ep_ctx) { int xhci_interval; int ep_interval; xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); ep_interval = urb->interval; /* Convert to microframes */ if (urb->dev->speed == USB_SPEED_LOW || urb->dev->speed == USB_SPEED_FULL) ep_interval *= 8; /* FIXME change this to a warning and a suggestion to use the new API * to set the polling interval (once the API is added). */ if (xhci_interval != ep_interval) { dev_dbg_ratelimited(&urb->dev->dev, "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", ep_interval, ep_interval == 1 ? "" : "s", xhci_interval, xhci_interval == 1 ? "" : "s"); urb->interval = xhci_interval; /* Convert back to frames for LS/FS devices */ if (urb->dev->speed == USB_SPEED_LOW || urb->dev->speed == USB_SPEED_FULL) urb->interval /= 8; } } /* * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD * (comprised of sg list entries) can take several service intervals to * transmit. */ int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, struct urb *urb, int slot_id, unsigned int ep_index) { struct xhci_ep_ctx *ep_ctx; ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index); check_interval(xhci, urb, ep_ctx); return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); } /* * For xHCI 1.0 host controllers, TD size is the number of max packet sized * packets remaining in the TD (*not* including this TRB). * * Total TD packet count = total_packet_count = * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) * * Packets transferred up to and including this TRB = packets_transferred = * rounddown(total bytes transferred including this TRB / wMaxPacketSize) * * TD size = total_packet_count - packets_transferred * * For xHCI 0.96 and older, TD size field should be the remaining bytes * including this TRB, right shifted by 10 * * For all hosts it must fit in bits 21:17, so it can't be bigger than 31. * This is taken care of in the TRB_TD_SIZE() macro * * The last TRB in a TD must have the TD size set to zero. */ static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred, int trb_buff_len, unsigned int td_total_len, struct urb *urb, bool more_trbs_coming) { u32 maxp, total_packet_count; /* MTK xHCI 0.96 contains some features from 1.0 */ if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST)) return ((td_total_len - transferred) >> 10); /* One TRB with a zero-length data packet. */ if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) || trb_buff_len == td_total_len) return 0; /* for MTK xHCI 0.96, TD size include this TRB, but not in 1.x */ if ((xhci->quirks & XHCI_MTK_HOST) && (xhci->hci_version < 0x100)) trb_buff_len = 0; maxp = usb_endpoint_maxp(&urb->ep->desc); total_packet_count = DIV_ROUND_UP(td_total_len, maxp); /* Queueing functions don't count the current TRB into transferred */ return (total_packet_count - ((transferred + trb_buff_len) / maxp)); } static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len, u32 *trb_buff_len, struct xhci_segment *seg) { struct device *dev = xhci_to_hcd(xhci)->self.controller; unsigned int unalign; unsigned int max_pkt; u32 new_buff_len; size_t len; max_pkt = usb_endpoint_maxp(&urb->ep->desc); unalign = (enqd_len + *trb_buff_len) % max_pkt; /* we got lucky, last normal TRB data on segment is packet aligned */ if (unalign == 0) return 0; xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n", unalign, *trb_buff_len); /* is the last nornal TRB alignable by splitting it */ if (*trb_buff_len > unalign) { *trb_buff_len -= unalign; xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len); return 0; } /* * We want enqd_len + trb_buff_len to sum up to a number aligned to * number which is divisible by the endpoint's wMaxPacketSize. IOW: * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0. */ new_buff_len = max_pkt - (enqd_len % max_pkt); if (new_buff_len > (urb->transfer_buffer_length - enqd_len)) new_buff_len = (urb->transfer_buffer_length - enqd_len); /* create a max max_pkt sized bounce buffer pointed to by last trb */ if (usb_urb_dir_out(urb)) { len = sg_pcopy_to_buffer(urb->sg, urb->num_sgs, seg->bounce_buf, new_buff_len, enqd_len); if (len != seg->bounce_len) xhci_warn(xhci, "WARN Wrong bounce buffer write length: %zu != %d\n", len, seg->bounce_len); seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, max_pkt, DMA_TO_DEVICE); } else { seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, max_pkt, DMA_FROM_DEVICE); } if (dma_mapping_error(dev, seg->bounce_dma)) { /* try without aligning. Some host controllers survive */ xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n"); return 0; } *trb_buff_len = new_buff_len; seg->bounce_len = new_buff_len; seg->bounce_offs = enqd_len; xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len); return 1; } /* This is very similar to what ehci-q.c qtd_fill() does */ int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, struct urb *urb, int slot_id, unsigned int ep_index) { struct xhci_ring *ring; struct urb_priv *urb_priv; struct xhci_td *td; struct xhci_generic_trb *start_trb; struct scatterlist *sg = NULL; bool more_trbs_coming = true; bool need_zero_pkt = false; bool first_trb = true; unsigned int num_trbs; unsigned int start_cycle, num_sgs = 0; unsigned int enqd_len, block_len, trb_buff_len, full_len; int sent_len, ret; u32 field, length_field, remainder; u64 addr, send_addr; ring = xhci_urb_to_transfer_ring(xhci, urb); if (!ring) return -EINVAL; full_len = urb->transfer_buffer_length; /* If we have scatter/gather list, we use it. */ if (urb->num_sgs) { num_sgs = urb->num_mapped_sgs; sg = urb->sg; addr = (u64) sg_dma_address(sg); block_len = sg_dma_len(sg); num_trbs = count_sg_trbs_needed(urb); } else { num_trbs = count_trbs_needed(urb); addr = (u64) urb->transfer_dma; block_len = full_len; } ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, urb->stream_id, num_trbs, urb, 0, mem_flags); if (unlikely(ret < 0)) return ret; urb_priv = urb->hcpriv; /* Deal with URB_ZERO_PACKET - need one more td/trb */ if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1) need_zero_pkt = true; td = &urb_priv->td[0]; /* * Don't give the first TRB to the hardware (by toggling the cycle bit) * until we've finished creating all the other TRBs. The ring's cycle * state may change as we enqueue the other TRBs, so save it too. */ start_trb = &ring->enqueue->generic; start_cycle = ring->cycle_state; send_addr = addr; /* Queue the TRBs, even if they are zero-length */ for (enqd_len = 0; first_trb || enqd_len < full_len; enqd_len += trb_buff_len) { field = TRB_TYPE(TRB_NORMAL); /* TRB buffer should not cross 64KB boundaries */ trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); trb_buff_len = min_t(unsigned int, trb_buff_len, block_len); if (enqd_len + trb_buff_len > full_len) trb_buff_len = full_len - enqd_len; /* Don't change the cycle bit of the first TRB until later */ if (first_trb) { first_trb = false; if (start_cycle == 0) field |= TRB_CYCLE; } else field |= ring->cycle_state; /* Chain all the TRBs together; clear the chain bit in the last * TRB to indicate it's the last TRB in the chain. */ if (enqd_len + trb_buff_len < full_len) { field |= TRB_CHAIN; if (trb_is_link(ring->enqueue + 1)) { if (xhci_align_td(xhci, urb, enqd_len, &trb_buff_len, ring->enq_seg)) { send_addr = ring->enq_seg->bounce_dma; /* assuming TD won't span 2 segs */ td->bounce_seg = ring->enq_seg; } } } if (enqd_len + trb_buff_len >= full_len) { field &= ~TRB_CHAIN; field |= TRB_IOC; more_trbs_coming = false; td->last_trb = ring->enqueue; if (xhci_urb_suitable_for_idt(urb)) { memcpy(&send_addr, urb->transfer_buffer, trb_buff_len); field |= TRB_IDT; } } /* Only set interrupt on short packet for IN endpoints */ if (usb_urb_dir_in(urb)) field |= TRB_ISP; /* Set the TRB length, TD size, and interrupter fields. */ remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len, full_len, urb, more_trbs_coming); length_field = TRB_LEN(trb_buff_len) | TRB_TD_SIZE(remainder) | TRB_INTR_TARGET(0); queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt, lower_32_bits(send_addr), upper_32_bits(send_addr), length_field, field); addr += trb_buff_len; sent_len = trb_buff_len; while (sg && sent_len >= block_len) { /* New sg entry */ --num_sgs; sent_len -= block_len; if (num_sgs != 0) { sg = sg_next(sg); block_len = sg_dma_len(sg); addr = (u64) sg_dma_address(sg); addr += sent_len; } } block_len -= sent_len; send_addr = addr; } if (need_zero_pkt) { ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, urb->stream_id, 1, urb, 1, mem_flags); urb_priv->td[1].last_trb = ring->enqueue; field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC; queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field); } check_trb_math(urb, enqd_len); giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, start_cycle, start_trb); return 0; } /* Caller must have locked xhci->lock */ int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, struct urb *urb, int slot_id, unsigned int ep_index) { struct xhci_ring *ep_ring; int num_trbs; int ret; struct usb_ctrlrequest *setup; struct xhci_generic_trb *start_trb; int start_cycle; u32 field; struct urb_priv *urb_priv; struct xhci_td *td; ep_ring = xhci_urb_to_transfer_ring(xhci, urb); if (!ep_ring) return -EINVAL; /* * Need to copy setup packet into setup TRB, so we can't use the setup * DMA address. */ if (!urb->setup_packet) return -EINVAL; /* 1 TRB for setup, 1 for status */ num_trbs = 2; /* * Don't need to check if we need additional event data and normal TRBs, * since data in control transfers will never get bigger than 16MB * XXX: can we get a buffer that crosses 64KB boundaries? */ if (urb->transfer_buffer_length > 0) num_trbs++; ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, urb->stream_id, num_trbs, urb, 0, mem_flags); if (ret < 0) return ret; urb_priv = urb->hcpriv; td = &urb_priv->td[0]; /* * Don't give the first TRB to the hardware (by toggling the cycle bit) * until we've finished creating all the other TRBs. The ring's cycle * state may change as we enqueue the other TRBs, so save it too. */ start_trb = &ep_ring->enqueue->generic; start_cycle = ep_ring->cycle_state; /* Queue setup TRB - see section 6.4.1.2.1 */ /* FIXME better way to translate setup_packet into two u32 fields? */ setup = (struct usb_ctrlrequest *) urb->setup_packet; field = 0; field |= TRB_IDT | TRB_TYPE(TRB_SETUP); if (start_cycle == 0) field |= 0x1; /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */ if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) { if (urb->transfer_buffer_length > 0) { if (setup->bRequestType & USB_DIR_IN) field |= TRB_TX_TYPE(TRB_DATA_IN); else field |= TRB_TX_TYPE(TRB_DATA_OUT); } } queue_trb(xhci, ep_ring, true, setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, TRB_LEN(8) | TRB_INTR_TARGET(0), /* Immediate data in pointer */ field); /* If there's data, queue data TRBs */ /* Only set interrupt on short packet for IN endpoints */ if (usb_urb_dir_in(urb)) field = TRB_ISP | TRB_TYPE(TRB_DATA); else field = TRB_TYPE(TRB_DATA); if (urb->transfer_buffer_length > 0) { u32 length_field, remainder; u64 addr; if (xhci_urb_suitable_for_idt(urb)) { memcpy(&addr, urb->transfer_buffer, urb->transfer_buffer_length); field |= TRB_IDT; } else { addr = (u64) urb->transfer_dma; } remainder = xhci_td_remainder(xhci, 0, urb->transfer_buffer_length, urb->transfer_buffer_length, urb, 1); length_field = TRB_LEN(urb->transfer_buffer_length) | TRB_TD_SIZE(remainder) | TRB_INTR_TARGET(0); if (setup->bRequestType & USB_DIR_IN) field |= TRB_DIR_IN; queue_trb(xhci, ep_ring, true, lower_32_bits(addr), upper_32_bits(addr), length_field, field | ep_ring->cycle_state); } /* Save the DMA address of the last TRB in the TD */ td->last_trb = ep_ring->enqueue; /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ /* If the device sent data, the status stage is an OUT transfer */ if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) field = 0; else field = TRB_DIR_IN; queue_trb(xhci, ep_ring, false, 0, 0, TRB_INTR_TARGET(0), /* Event on completion */ field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); giveback_first_trb(xhci, slot_id, ep_index, 0, start_cycle, start_trb); return 0; } /* * The transfer burst count field of the isochronous TRB defines the number of * bursts that are required to move all packets in this TD. Only SuperSpeed * devices can burst up to bMaxBurst number of packets per service interval. * This field is zero based, meaning a value of zero in the field means one * burst. Basically, for everything but SuperSpeed devices, this field will be * zero. Only xHCI 1.0 host controllers support this field. */ static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, struct urb *urb, unsigned int total_packet_count) { unsigned int max_burst; if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER) return 0; max_burst = urb->ep->ss_ep_comp.bMaxBurst; return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1; } /* * Returns the number of packets in the last "burst" of packets. This field is * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so * the last burst packet count is equal to the total number of packets in the * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst * must contain (bMaxBurst + 1) number of packets, but the last burst can * contain 1 to (bMaxBurst + 1) packets. */ static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, struct urb *urb, unsigned int total_packet_count) { unsigned int max_burst; unsigned int residue; if (xhci->hci_version < 0x100) return 0; if (urb->dev->speed >= USB_SPEED_SUPER) { /* bMaxBurst is zero based: 0 means 1 packet per burst */ max_burst = urb->ep->ss_ep_comp.bMaxBurst; residue = total_packet_count % (max_burst + 1); /* If residue is zero, the last burst contains (max_burst + 1) * number of packets, but the TLBPC field is zero-based. */ if (residue == 0) return max_burst; return residue - 1; } if (total_packet_count == 0) return 0; return total_packet_count - 1; } /* * Calculates Frame ID field of the isochronous TRB identifies the * target frame that the Interval associated with this Isochronous * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec. * * Returns actual frame id on success, negative value on error. */ static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci, struct urb *urb, int index) { int start_frame, ist, ret = 0; int start_frame_id, end_frame_id, current_frame_id; if (urb->dev->speed == USB_SPEED_LOW || urb->dev->speed == USB_SPEED_FULL) start_frame = urb->start_frame + index * urb->interval; else start_frame = (urb->start_frame + index * urb->interval) >> 3; /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2): * * If bit [3] of IST is cleared to '0', software can add a TRB no * later than IST[2:0] Microframes before that TRB is scheduled to * be executed. * If bit [3] of IST is set to '1', software can add a TRB no later * than IST[2:0] Frames before that TRB is scheduled to be executed. */ ist = HCS_IST(xhci->hcs_params2) & 0x7; if (HCS_IST(xhci->hcs_params2) & (1 << 3)) ist <<= 3; /* Software shall not schedule an Isoch TD with a Frame ID value that * is less than the Start Frame ID or greater than the End Frame ID, * where: * * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048 * * Both the End Frame ID and Start Frame ID values are calculated * in microframes. When software determines the valid Frame ID value; * The End Frame ID value should be rounded down to the nearest Frame * boundary, and the Start Frame ID value should be rounded up to the * nearest Frame boundary. */ current_frame_id = readl(&xhci->run_regs->microframe_index); start_frame_id = roundup(current_frame_id + ist + 1, 8); end_frame_id = rounddown(current_frame_id + 895 * 8, 8); start_frame &= 0x7ff; start_frame_id = (start_frame_id >> 3) & 0x7ff; end_frame_id = (end_frame_id >> 3) & 0x7ff; xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n", __func__, index, readl(&xhci->run_regs->microframe_index), start_frame_id, end_frame_id, start_frame); if (start_frame_id < end_frame_id) { if (start_frame > end_frame_id || start_frame < start_frame_id) ret = -EINVAL; } else if (start_frame_id > end_frame_id) { if ((start_frame > end_frame_id && start_frame < start_frame_id)) ret = -EINVAL; } else { ret = -EINVAL; } if (index == 0) { if (ret == -EINVAL || start_frame == start_frame_id) { start_frame = start_frame_id + 1; if (urb->dev->speed == USB_SPEED_LOW || urb->dev->speed == USB_SPEED_FULL) urb->start_frame = start_frame; else urb->start_frame = start_frame << 3; ret = 0; } } if (ret) { xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n", start_frame, current_frame_id, index, start_frame_id, end_frame_id); xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n"); return ret; } return start_frame; } /* This is for isoc transfer */ static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, struct urb *urb, int slot_id, unsigned int ep_index) { struct xhci_ring *ep_ring; struct urb_priv *urb_priv; struct xhci_td *td; int num_tds, trbs_per_td; struct xhci_generic_trb *start_trb; bool first_trb; int start_cycle; u32 field, length_field; int running_total, trb_buff_len, td_len, td_remain_len, ret; u64 start_addr, addr; int i, j; bool more_trbs_coming; struct xhci_virt_ep *xep; int frame_id; xep = &xhci->devs[slot_id]->eps[ep_index]; ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; num_tds = urb->number_of_packets; if (num_tds < 1) { xhci_dbg(xhci, "Isoc URB with zero packets?\n"); return -EINVAL; } start_addr = (u64) urb->transfer_dma; start_trb = &ep_ring->enqueue->generic; start_cycle = ep_ring->cycle_state; urb_priv = urb->hcpriv; /* Queue the TRBs for each TD, even if they are zero-length */ for (i = 0; i < num_tds; i++) { unsigned int total_pkt_count, max_pkt; unsigned int burst_count, last_burst_pkt_count; u32 sia_frame_id; first_trb = true; running_total = 0; addr = start_addr + urb->iso_frame_desc[i].offset; td_len = urb->iso_frame_desc[i].length; td_remain_len = td_len; max_pkt = usb_endpoint_maxp(&urb->ep->desc); total_pkt_count = DIV_ROUND_UP(td_len, max_pkt); /* A zero-length transfer still involves at least one packet. */ if (total_pkt_count == 0) total_pkt_count++; burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count); last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci, urb, total_pkt_count); trbs_per_td = count_isoc_trbs_needed(urb, i); ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, urb->stream_id, trbs_per_td, urb, i, mem_flags); if (ret < 0) { if (i == 0) return ret; goto cleanup; } td = &urb_priv->td[i]; /* use SIA as default, if frame id is used overwrite it */ sia_frame_id = TRB_SIA; if (!(urb->transfer_flags & URB_ISO_ASAP) && HCC_CFC(xhci->hcc_params)) { frame_id = xhci_get_isoc_frame_id(xhci, urb, i); if (frame_id >= 0) sia_frame_id = TRB_FRAME_ID(frame_id); } /* * Set isoc specific data for the first TRB in a TD. * Prevent HW from getting the TRBs by keeping the cycle state * inverted in the first TDs isoc TRB. */ field = TRB_TYPE(TRB_ISOC) | TRB_TLBPC(last_burst_pkt_count) | sia_frame_id | (i ? ep_ring->cycle_state : !start_cycle); /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */ if (!xep->use_extended_tbc) field |= TRB_TBC(burst_count); /* fill the rest of the TRB fields, and remaining normal TRBs */ for (j = 0; j < trbs_per_td; j++) { u32 remainder = 0; /* only first TRB is isoc, overwrite otherwise */ if (!first_trb) field = TRB_TYPE(TRB_NORMAL) | ep_ring->cycle_state; /* Only set interrupt on short packet for IN EPs */ if (usb_urb_dir_in(urb)) field |= TRB_ISP; /* Set the chain bit for all except the last TRB */ if (j < trbs_per_td - 1) { more_trbs_coming = true; field |= TRB_CHAIN; } else { more_trbs_coming = false; td->last_trb = ep_ring->enqueue; field |= TRB_IOC; /* set BEI, except for the last TD */ if (xhci->hci_version >= 0x100 && !(xhci->quirks & XHCI_AVOID_BEI) && i < num_tds - 1) field |= TRB_BEI; } /* Calculate TRB length */ trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); if (trb_buff_len > td_remain_len) trb_buff_len = td_remain_len; /* Set the TRB length, TD size, & interrupter fields. */ remainder = xhci_td_remainder(xhci, running_total, trb_buff_len, td_len, urb, more_trbs_coming); length_field = TRB_LEN(trb_buff_len) | TRB_INTR_TARGET(0); /* xhci 1.1 with ETE uses TD Size field for TBC */ if (first_trb && xep->use_extended_tbc) length_field |= TRB_TD_SIZE_TBC(burst_count); else length_field |= TRB_TD_SIZE(remainder); first_trb = false; queue_trb(xhci, ep_ring, more_trbs_coming, lower_32_bits(addr), upper_32_bits(addr), length_field, field); running_total += trb_buff_len; addr += trb_buff_len; td_remain_len -= trb_buff_len; } /* Check TD length */ if (running_total != td_len) { xhci_err(xhci, "ISOC TD length unmatch\n"); ret = -EINVAL; goto cleanup; } } /* store the next frame id */ if (HCC_CFC(xhci->hcc_params)) xep->next_frame_id = urb->start_frame + num_tds * urb->interval; if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { if (xhci->quirks & XHCI_AMD_PLL_FIX) usb_amd_quirk_pll_disable(); } xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, start_cycle, start_trb); return 0; cleanup: /* Clean up a partially enqueued isoc transfer. */ for (i--; i >= 0; i--) list_del_init(&urb_priv->td[i].td_list); /* Use the first TD as a temporary variable to turn the TDs we've queued * into No-ops with a software-owned cycle bit. That way the hardware * won't accidentally start executing bogus TDs when we partially * overwrite them. td->first_trb and td->start_seg are already set. */ urb_priv->td[0].last_trb = ep_ring->enqueue; /* Every TRB except the first & last will have its cycle bit flipped. */ td_to_noop(xhci, ep_ring, &urb_priv->td[0], true); /* Reset the ring enqueue back to the first TRB and its cycle bit. */ ep_ring->enqueue = urb_priv->td[0].first_trb; ep_ring->enq_seg = urb_priv->td[0].start_seg; ep_ring->cycle_state = start_cycle; ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp; usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); return ret; } /* * Check transfer ring to guarantee there is enough room for the urb. * Update ISO URB start_frame and interval. * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or * Contiguous Frame ID is not supported by HC. */ int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, struct urb *urb, int slot_id, unsigned int ep_index) { struct xhci_virt_device *xdev; struct xhci_ring *ep_ring; struct xhci_ep_ctx *ep_ctx; int start_frame; int num_tds, num_trbs, i; int ret; struct xhci_virt_ep *xep; int ist; xdev = xhci->devs[slot_id]; xep = &xhci->devs[slot_id]->eps[ep_index]; ep_ring = xdev->eps[ep_index].ring; ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); num_trbs = 0; num_tds = urb->number_of_packets; for (i = 0; i < num_tds; i++) num_trbs += count_isoc_trbs_needed(urb, i); /* Check the ring to guarantee there is enough room for the whole urb. * Do not insert any td of the urb to the ring if the check failed. */ ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx), num_trbs, mem_flags); if (ret) return ret; /* * Check interval value. This should be done before we start to * calculate the start frame value. */ check_interval(xhci, urb, ep_ctx); /* Calculate the start frame and put it in urb->start_frame. */ if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) { if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_RUNNING) { urb->start_frame = xep->next_frame_id; goto skip_start_over; } } start_frame = readl(&xhci->run_regs->microframe_index); start_frame &= 0x3fff; /* * Round up to the next frame and consider the time before trb really * gets scheduled by hardare. */ ist = HCS_IST(xhci->hcs_params2) & 0x7; if (HCS_IST(xhci->hcs_params2) & (1 << 3)) ist <<= 3; start_frame += ist + XHCI_CFC_DELAY; start_frame = roundup(start_frame, 8); /* * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT * is greate than 8 microframes. */ if (urb->dev->speed == USB_SPEED_LOW || urb->dev->speed == USB_SPEED_FULL) { start_frame = roundup(start_frame, urb->interval << 3); urb->start_frame = start_frame >> 3; } else { start_frame = roundup(start_frame, urb->interval); urb->start_frame = start_frame; } skip_start_over: ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free; return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); } /**** Command Ring Operations ****/ /* Generic function for queueing a command TRB on the command ring. * Check to make sure there's room on the command ring for one command TRB. * Also check that there's room reserved for commands that must not fail. * If this is a command that must not fail, meaning command_must_succeed = TRUE, * then only check for the number of reserved spots. * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB * because the command event handler may want to resubmit a failed command. */ static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, u32 field1, u32 field2, u32 field3, u32 field4, bool command_must_succeed) { int reserved_trbs = xhci->cmd_ring_reserved_trbs; int ret; if ((xhci->xhc_state & XHCI_STATE_DYING) || (xhci->xhc_state & XHCI_STATE_HALTED)) { xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n"); return -ESHUTDOWN; } if (!command_must_succeed) reserved_trbs++; ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, reserved_trbs, GFP_ATOMIC); if (ret < 0) { xhci_err(xhci, "ERR: No room for command on command ring\n"); if (command_must_succeed) xhci_err(xhci, "ERR: Reserved TRB counting for " "unfailable commands failed.\n"); return ret; } cmd->command_trb = xhci->cmd_ring->enqueue; /* if there are no other commands queued we start the timeout timer */ if (list_empty(&xhci->cmd_list)) { xhci->current_cmd = cmd; xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT); } list_add_tail(&cmd->cmd_list, &xhci->cmd_list); queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, field4 | xhci->cmd_ring->cycle_state); return 0; } /* Queue a slot enable or disable request on the command ring */ int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd, u32 trb_type, u32 slot_id) { return queue_command(xhci, cmd, 0, 0, 0, TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); } /* Queue an address device command TRB */ int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd, dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup) { return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), upper_32_bits(in_ctx_ptr), 0, TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id) | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false); } int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd, u32 field1, u32 field2, u32 field3, u32 field4) { return queue_command(xhci, cmd, field1, field2, field3, field4, false); } /* Queue a reset device command TRB */ int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd, u32 slot_id) { return queue_command(xhci, cmd, 0, 0, 0, TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), false); } /* Queue a configure endpoint command TRB */ int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd, dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed) { return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), upper_32_bits(in_ctx_ptr), 0, TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), command_must_succeed); } /* Queue an evaluate context command TRB */ int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd, dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed) { return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), upper_32_bits(in_ctx_ptr), 0, TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), command_must_succeed); } /* * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop * activity on an endpoint that is about to be suspended. */ int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd, int slot_id, unsigned int ep_index, int suspend) { u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); u32 type = TRB_TYPE(TRB_STOP_RING); u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); return queue_command(xhci, cmd, 0, 0, 0, trb_slot_id | trb_ep_index | type | trb_suspend, false); } /* Set Transfer Ring Dequeue Pointer command */ void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci, unsigned int slot_id, unsigned int ep_index, struct xhci_dequeue_state *deq_state) { dma_addr_t addr; u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); u32 trb_stream_id = STREAM_ID_FOR_TRB(deq_state->stream_id); u32 trb_sct = 0; u32 type = TRB_TYPE(TRB_SET_DEQ); struct xhci_virt_ep *ep; struct xhci_command *cmd; int ret; xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), new deq ptr = %p (0x%llx dma), new cycle = %u", deq_state->new_deq_seg, (unsigned long long)deq_state->new_deq_seg->dma, deq_state->new_deq_ptr, (unsigned long long)xhci_trb_virt_to_dma( deq_state->new_deq_seg, deq_state->new_deq_ptr), deq_state->new_cycle_state); addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, deq_state->new_deq_ptr); if (addr == 0) { xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n", deq_state->new_deq_seg, deq_state->new_deq_ptr); return; } ep = &xhci->devs[slot_id]->eps[ep_index]; if ((ep->ep_state & SET_DEQ_PENDING)) { xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n"); return; } /* This function gets called from contexts where it cannot sleep */ cmd = xhci_alloc_command(xhci, false, GFP_ATOMIC); if (!cmd) return; ep->queued_deq_seg = deq_state->new_deq_seg; ep->queued_deq_ptr = deq_state->new_deq_ptr; if (deq_state->stream_id) trb_sct = SCT_FOR_TRB(SCT_PRI_TR); ret = queue_command(xhci, cmd, lower_32_bits(addr) | trb_sct | deq_state->new_cycle_state, upper_32_bits(addr), trb_stream_id, trb_slot_id | trb_ep_index | type, false); if (ret < 0) { xhci_free_command(xhci, cmd); return; } /* Stop the TD queueing code from ringing the doorbell until * this command completes. The HC won't set the dequeue pointer * if the ring is running, and ringing the doorbell starts the * ring running. */ ep->ep_state |= SET_DEQ_PENDING; } int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd, int slot_id, unsigned int ep_index, enum xhci_ep_reset_type reset_type) { u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); u32 type = TRB_TYPE(TRB_RESET_EP); if (reset_type == EP_SOFT_RESET) type |= TRB_TSP; return queue_command(xhci, cmd, 0, 0, 0, trb_slot_id | trb_ep_index | type, false); }