// SPDX-License-Identifier: GPL-2.0 /* * xHCI host controller driver * * Copyright (C) 2008 Intel Corp. * * Author: Sarah Sharp * Some code borrowed from the Linux EHCI driver. */ #ifndef __LINUX_XHCI_HCD_H #define __LINUX_XHCI_HCD_H #include #include #include #include #include /* Code sharing between pci-quirks and xhci hcd */ #include "xhci-ext-caps.h" #include "pci-quirks.h" /* xHCI PCI Configuration Registers */ #define XHCI_SBRN_OFFSET (0x60) /* Max number of USB devices for any host controller - limit in section 6.1 */ #define MAX_HC_SLOTS 256 /* Section 5.3.3 - MaxPorts */ #define MAX_HC_PORTS 127 /* * xHCI register interface. * This corresponds to the eXtensible Host Controller Interface (xHCI) * Revision 0.95 specification */ /** * struct xhci_cap_regs - xHCI Host Controller Capability Registers. * @hc_capbase: length of the capabilities register and HC version number * @hcs_params1: HCSPARAMS1 - Structural Parameters 1 * @hcs_params2: HCSPARAMS2 - Structural Parameters 2 * @hcs_params3: HCSPARAMS3 - Structural Parameters 3 * @hcc_params: HCCPARAMS - Capability Parameters * @db_off: DBOFF - Doorbell array offset * @run_regs_off: RTSOFF - Runtime register space offset * @hcc_params2: HCCPARAMS2 Capability Parameters 2, xhci 1.1 only */ struct xhci_cap_regs { __le32 hc_capbase; __le32 hcs_params1; __le32 hcs_params2; __le32 hcs_params3; __le32 hcc_params; __le32 db_off; __le32 run_regs_off; __le32 hcc_params2; /* xhci 1.1 */ /* Reserved up to (CAPLENGTH - 0x1C) */ }; /* hc_capbase bitmasks */ /* bits 7:0 - how long is the Capabilities register */ #define HC_LENGTH(p) XHCI_HC_LENGTH(p) /* bits 31:16 */ #define HC_VERSION(p) (((p) >> 16) & 0xffff) /* HCSPARAMS1 - hcs_params1 - bitmasks */ /* bits 0:7, Max Device Slots */ #define HCS_MAX_SLOTS(p) (((p) >> 0) & 0xff) #define HCS_SLOTS_MASK 0xff /* bits 8:18, Max Interrupters */ #define HCS_MAX_INTRS(p) (((p) >> 8) & 0x7ff) /* bits 24:31, Max Ports - max value is 0x7F = 127 ports */ #define HCS_MAX_PORTS(p) (((p) >> 24) & 0x7f) /* HCSPARAMS2 - hcs_params2 - bitmasks */ /* bits 0:3, frames or uframes that SW needs to queue transactions * ahead of the HW to meet periodic deadlines */ #define HCS_IST(p) (((p) >> 0) & 0xf) /* bits 4:7, max number of Event Ring segments */ #define HCS_ERST_MAX(p) (((p) >> 4) & 0xf) /* bits 21:25 Hi 5 bits of Scratchpad buffers SW must allocate for the HW */ /* bit 26 Scratchpad restore - for save/restore HW state - not used yet */ /* bits 27:31 Lo 5 bits of Scratchpad buffers SW must allocate for the HW */ #define HCS_MAX_SCRATCHPAD(p) ((((p) >> 16) & 0x3e0) | (((p) >> 27) & 0x1f)) /* HCSPARAMS3 - hcs_params3 - bitmasks */ /* bits 0:7, Max U1 to U0 latency for the roothub ports */ #define HCS_U1_LATENCY(p) (((p) >> 0) & 0xff) /* bits 16:31, Max U2 to U0 latency for the roothub ports */ #define HCS_U2_LATENCY(p) (((p) >> 16) & 0xffff) /* HCCPARAMS - hcc_params - bitmasks */ /* true: HC can use 64-bit address pointers */ #define HCC_64BIT_ADDR(p) ((p) & (1 << 0)) /* true: HC can do bandwidth negotiation */ #define HCC_BANDWIDTH_NEG(p) ((p) & (1 << 1)) /* true: HC uses 64-byte Device Context structures * FIXME 64-byte context structures aren't supported yet. */ #define HCC_64BYTE_CONTEXT(p) ((p) & (1 << 2)) /* true: HC has port power switches */ #define HCC_PPC(p) ((p) & (1 << 3)) /* true: HC has port indicators */ #define HCS_INDICATOR(p) ((p) & (1 << 4)) /* true: HC has Light HC Reset Capability */ #define HCC_LIGHT_RESET(p) ((p) & (1 << 5)) /* true: HC supports latency tolerance messaging */ #define HCC_LTC(p) ((p) & (1 << 6)) /* true: no secondary Stream ID Support */ #define HCC_NSS(p) ((p) & (1 << 7)) /* true: HC supports Stopped - Short Packet */ #define HCC_SPC(p) ((p) & (1 << 9)) /* true: HC has Contiguous Frame ID Capability */ #define HCC_CFC(p) ((p) & (1 << 11)) /* Max size for Primary Stream Arrays - 2^(n+1), where n is bits 12:15 */ #define HCC_MAX_PSA(p) (1 << ((((p) >> 12) & 0xf) + 1)) /* Extended Capabilities pointer from PCI base - section 5.3.6 */ #define HCC_EXT_CAPS(p) XHCI_HCC_EXT_CAPS(p) #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32) /* db_off bitmask - bits 0:1 reserved */ #define DBOFF_MASK (~0x3) /* run_regs_off bitmask - bits 0:4 reserved */ #define RTSOFF_MASK (~0x1f) /* HCCPARAMS2 - hcc_params2 - bitmasks */ /* true: HC supports U3 entry Capability */ #define HCC2_U3C(p) ((p) & (1 << 0)) /* true: HC supports Configure endpoint command Max exit latency too large */ #define HCC2_CMC(p) ((p) & (1 << 1)) /* true: HC supports Force Save context Capability */ #define HCC2_FSC(p) ((p) & (1 << 2)) /* true: HC supports Compliance Transition Capability */ #define HCC2_CTC(p) ((p) & (1 << 3)) /* true: HC support Large ESIT payload Capability > 48k */ #define HCC2_LEC(p) ((p) & (1 << 4)) /* true: HC support Configuration Information Capability */ #define HCC2_CIC(p) ((p) & (1 << 5)) /* true: HC support Extended TBC Capability, Isoc burst count > 65535 */ #define HCC2_ETC(p) ((p) & (1 << 6)) /* Number of registers per port */ #define NUM_PORT_REGS 4 #define PORTSC 0 #define PORTPMSC 1 #define PORTLI 2 #define PORTHLPMC 3 /** * struct xhci_op_regs - xHCI Host Controller Operational Registers. * @command: USBCMD - xHC command register * @status: USBSTS - xHC status register * @page_size: This indicates the page size that the host controller * supports. If bit n is set, the HC supports a page size * of 2^(n+12), up to a 128MB page size. * 4K is the minimum page size. * @cmd_ring: CRP - 64-bit Command Ring Pointer * @dcbaa_ptr: DCBAAP - 64-bit Device Context Base Address Array Pointer * @config_reg: CONFIG - Configure Register * @port_status_base: PORTSCn - base address for Port Status and Control * Each port has a Port Status and Control register, * followed by a Port Power Management Status and Control * register, a Port Link Info register, and a reserved * register. * @port_power_base: PORTPMSCn - base address for * Port Power Management Status and Control * @port_link_base: PORTLIn - base address for Port Link Info (current * Link PM state and control) for USB 2.1 and USB 3.0 * devices. */ struct xhci_op_regs { __le32 command; __le32 status; __le32 page_size; __le32 reserved1; __le32 reserved2; __le32 dev_notification; __le64 cmd_ring; /* rsvd: offset 0x20-2F */ __le32 reserved3[4]; __le64 dcbaa_ptr; __le32 config_reg; /* rsvd: offset 0x3C-3FF */ __le32 reserved4[241]; /* port 1 registers, which serve as a base address for other ports */ __le32 port_status_base; __le32 port_power_base; __le32 port_link_base; __le32 reserved5; /* registers for ports 2-255 */ __le32 reserved6[NUM_PORT_REGS*254]; }; /* USBCMD - USB command - command bitmasks */ /* start/stop HC execution - do not write unless HC is halted*/ #define CMD_RUN XHCI_CMD_RUN /* Reset HC - resets internal HC state machine and all registers (except * PCI config regs). HC does NOT drive a USB reset on the downstream ports. * The xHCI driver must reinitialize the xHC after setting this bit. */ #define CMD_RESET (1 << 1) /* Event Interrupt Enable - a '1' allows interrupts from the host controller */ #define CMD_EIE XHCI_CMD_EIE /* Host System Error Interrupt Enable - get out-of-band signal for HC errors */ #define CMD_HSEIE XHCI_CMD_HSEIE /* bits 4:6 are reserved (and should be preserved on writes). */ /* light reset (port status stays unchanged) - reset completed when this is 0 */ #define CMD_LRESET (1 << 7) /* host controller save/restore state. */ #define CMD_CSS (1 << 8) #define CMD_CRS (1 << 9) /* Enable Wrap Event - '1' means xHC generates an event when MFINDEX wraps. */ #define CMD_EWE XHCI_CMD_EWE /* MFINDEX power management - '1' means xHC can stop MFINDEX counter if all root * hubs are in U3 (selective suspend), disconnect, disabled, or powered-off. * '0' means the xHC can power it off if all ports are in the disconnect, * disabled, or powered-off state. */ #define CMD_PM_INDEX (1 << 11) /* bit 14 Extended TBC Enable, changes Isoc TRB fields to support larger TBC */ #define CMD_ETE (1 << 14) /* bits 15:31 are reserved (and should be preserved on writes). */ /* IMAN - Interrupt Management Register */ #define IMAN_IE (1 << 1) #define IMAN_IP (1 << 0) /* USBSTS - USB status - status bitmasks */ /* HC not running - set to 1 when run/stop bit is cleared. */ #define STS_HALT XHCI_STS_HALT /* serious error, e.g. PCI parity error. The HC will clear the run/stop bit. */ #define STS_FATAL (1 << 2) /* event interrupt - clear this prior to clearing any IP flags in IR set*/ #define STS_EINT (1 << 3) /* port change detect */ #define STS_PORT (1 << 4) /* bits 5:7 reserved and zeroed */ /* save state status - '1' means xHC is saving state */ #define STS_SAVE (1 << 8) /* restore state status - '1' means xHC is restoring state */ #define STS_RESTORE (1 << 9) /* true: save or restore error */ #define STS_SRE (1 << 10) /* true: Controller Not Ready to accept doorbell or op reg writes after reset */ #define STS_CNR XHCI_STS_CNR /* true: internal Host Controller Error - SW needs to reset and reinitialize */ #define STS_HCE (1 << 12) /* bits 13:31 reserved and should be preserved */ /* * DNCTRL - Device Notification Control Register - dev_notification bitmasks * Generate a device notification event when the HC sees a transaction with a * notification type that matches a bit set in this bit field. */ #define DEV_NOTE_MASK (0xffff) #define ENABLE_DEV_NOTE(x) (1 << (x)) /* Most of the device notification types should only be used for debug. * SW does need to pay attention to function wake notifications. */ #define DEV_NOTE_FWAKE ENABLE_DEV_NOTE(1) /* CRCR - Command Ring Control Register - cmd_ring bitmasks */ /* bit 0 is the command ring cycle state */ /* stop ring operation after completion of the currently executing command */ #define CMD_RING_PAUSE (1 << 1) /* stop ring immediately - abort the currently executing command */ #define CMD_RING_ABORT (1 << 2) /* true: command ring is running */ #define CMD_RING_RUNNING (1 << 3) /* bits 4:5 reserved and should be preserved */ /* Command Ring pointer - bit mask for the lower 32 bits. */ #define CMD_RING_RSVD_BITS (0x3f) /* CONFIG - Configure Register - config_reg bitmasks */ /* bits 0:7 - maximum number of device slots enabled (NumSlotsEn) */ #define MAX_DEVS(p) ((p) & 0xff) /* bit 8: U3 Entry Enabled, assert PLC when root port enters U3, xhci 1.1 */ #define CONFIG_U3E (1 << 8) /* bit 9: Configuration Information Enable, xhci 1.1 */ #define CONFIG_CIE (1 << 9) /* bits 10:31 - reserved and should be preserved */ /* PORTSC - Port Status and Control Register - port_status_base bitmasks */ /* true: device connected */ #define PORT_CONNECT (1 << 0) /* true: port enabled */ #define PORT_PE (1 << 1) /* bit 2 reserved and zeroed */ /* true: port has an over-current condition */ #define PORT_OC (1 << 3) /* true: port reset signaling asserted */ #define PORT_RESET (1 << 4) /* Port Link State - bits 5:8 * A read gives the current link PM state of the port, * a write with Link State Write Strobe set sets the link state. */ #define PORT_PLS_MASK (0xf << 5) #define XDEV_U0 (0x0 << 5) #define XDEV_U1 (0x1 << 5) #define XDEV_U2 (0x2 << 5) #define XDEV_U3 (0x3 << 5) #define XDEV_DISABLED (0x4 << 5) #define XDEV_RXDETECT (0x5 << 5) #define XDEV_INACTIVE (0x6 << 5) #define XDEV_POLLING (0x7 << 5) #define XDEV_RECOVERY (0x8 << 5) #define XDEV_HOT_RESET (0x9 << 5) #define XDEV_COMP_MODE (0xa << 5) #define XDEV_TEST_MODE (0xb << 5) #define XDEV_RESUME (0xf << 5) /* true: port has power (see HCC_PPC) */ #define PORT_POWER (1 << 9) /* bits 10:13 indicate device speed: * 0 - undefined speed - port hasn't be initialized by a reset yet * 1 - full speed * 2 - low speed * 3 - high speed * 4 - super speed * 5-15 reserved */ #define DEV_SPEED_MASK (0xf << 10) #define XDEV_FS (0x1 << 10) #define XDEV_LS (0x2 << 10) #define XDEV_HS (0x3 << 10) #define XDEV_SS (0x4 << 10) #define XDEV_SSP (0x5 << 10) #define DEV_UNDEFSPEED(p) (((p) & DEV_SPEED_MASK) == (0x0<<10)) #define DEV_FULLSPEED(p) (((p) & DEV_SPEED_MASK) == XDEV_FS) #define DEV_LOWSPEED(p) (((p) & DEV_SPEED_MASK) == XDEV_LS) #define DEV_HIGHSPEED(p) (((p) & DEV_SPEED_MASK) == XDEV_HS) #define DEV_SUPERSPEED(p) (((p) & DEV_SPEED_MASK) == XDEV_SS) #define DEV_SUPERSPEEDPLUS(p) (((p) & DEV_SPEED_MASK) == XDEV_SSP) #define DEV_SUPERSPEED_ANY(p) (((p) & DEV_SPEED_MASK) >= XDEV_SS) #define DEV_PORT_SPEED(p) (((p) >> 10) & 0x0f) /* Bits 20:23 in the Slot Context are the speed for the device */ #define SLOT_SPEED_FS (XDEV_FS << 10) #define SLOT_SPEED_LS (XDEV_LS << 10) #define SLOT_SPEED_HS (XDEV_HS << 10) #define SLOT_SPEED_SS (XDEV_SS << 10) #define SLOT_SPEED_SSP (XDEV_SSP << 10) /* Port Indicator Control */ #define PORT_LED_OFF (0 << 14) #define PORT_LED_AMBER (1 << 14) #define PORT_LED_GREEN (2 << 14) #define PORT_LED_MASK (3 << 14) /* Port Link State Write Strobe - set this when changing link state */ #define PORT_LINK_STROBE (1 << 16) /* true: connect status change */ #define PORT_CSC (1 << 17) /* true: port enable change */ #define PORT_PEC (1 << 18) /* true: warm reset for a USB 3.0 device is done. A "hot" reset puts the port * into an enabled state, and the device into the default state. A "warm" reset * also resets the link, forcing the device through the link training sequence. * SW can also look at the Port Reset register to see when warm reset is done. */ #define PORT_WRC (1 << 19) /* true: over-current change */ #define PORT_OCC (1 << 20) /* true: reset change - 1 to 0 transition of PORT_RESET */ #define PORT_RC (1 << 21) /* port link status change - set on some port link state transitions: * Transition Reason * ------------------------------------------------------------------------------ * - U3 to Resume Wakeup signaling from a device * - Resume to Recovery to U0 USB 3.0 device resume * - Resume to U0 USB 2.0 device resume * - U3 to Recovery to U0 Software resume of USB 3.0 device complete * - U3 to U0 Software resume of USB 2.0 device complete * - U2 to U0 L1 resume of USB 2.1 device complete * - U0 to U0 (???) L1 entry rejection by USB 2.1 device * - U0 to disabled L1 entry error with USB 2.1 device * - Any state to inactive Error on USB 3.0 port */ #define PORT_PLC (1 << 22) /* port configure error change - port failed to configure its link partner */ #define PORT_CEC (1 << 23) /* Cold Attach Status - xHC can set this bit to report device attached during * Sx state. Warm port reset should be perfomed to clear this bit and move port * to connected state. */ #define PORT_CAS (1 << 24) /* wake on connect (enable) */ #define PORT_WKCONN_E (1 << 25) /* wake on disconnect (enable) */ #define PORT_WKDISC_E (1 << 26) /* wake on over-current (enable) */ #define PORT_WKOC_E (1 << 27) /* bits 28:29 reserved */ /* true: device is non-removable - for USB 3.0 roothub emulation */ #define PORT_DEV_REMOVE (1 << 30) /* Initiate a warm port reset - complete when PORT_WRC is '1' */ #define PORT_WR (1 << 31) /* We mark duplicate entries with -1 */ #define DUPLICATE_ENTRY ((u8)(-1)) /* Port Power Management Status and Control - port_power_base bitmasks */ /* Inactivity timer value for transitions into U1, in microseconds. * Timeout can be up to 127us. 0xFF means an infinite timeout. */ #define PORT_U1_TIMEOUT(p) ((p) & 0xff) #define PORT_U1_TIMEOUT_MASK 0xff /* Inactivity timer value for transitions into U2 */ #define PORT_U2_TIMEOUT(p) (((p) & 0xff) << 8) #define PORT_U2_TIMEOUT_MASK (0xff << 8) /* Bits 24:31 for port testing */ /* USB2 Protocol PORTSPMSC */ #define PORT_L1S_MASK 7 #define PORT_L1S_SUCCESS 1 #define PORT_RWE (1 << 3) #define PORT_HIRD(p) (((p) & 0xf) << 4) #define PORT_HIRD_MASK (0xf << 4) #define PORT_L1DS_MASK (0xff << 8) #define PORT_L1DS(p) (((p) & 0xff) << 8) #define PORT_HLE (1 << 16) #define PORT_TEST_MODE_SHIFT 28 /* USB3 Protocol PORTLI Port Link Information */ #define PORT_RX_LANES(p) (((p) >> 16) & 0xf) #define PORT_TX_LANES(p) (((p) >> 20) & 0xf) /* USB2 Protocol PORTHLPMC */ #define PORT_HIRDM(p)((p) & 3) #define PORT_L1_TIMEOUT(p)(((p) & 0xff) << 2) #define PORT_BESLD(p)(((p) & 0xf) << 10) /* use 512 microseconds as USB2 LPM L1 default timeout. */ #define XHCI_L1_TIMEOUT 512 /* Set default HIRD/BESL value to 4 (350/400us) for USB2 L1 LPM resume latency. * Safe to use with mixed HIRD and BESL systems (host and device) and is used * by other operating systems. * * XHCI 1.0 errata 8/14/12 Table 13 notes: * "Software should choose xHC BESL/BESLD field values that do not violate a * device's resume latency requirements, * e.g. not program values > '4' if BLC = '1' and a HIRD device is attached, * or not program values < '4' if BLC = '0' and a BESL device is attached. */ #define XHCI_DEFAULT_BESL 4 /** * struct xhci_intr_reg - Interrupt Register Set * @irq_pending: IMAN - Interrupt Management Register. Used to enable * interrupts and check for pending interrupts. * @irq_control: IMOD - Interrupt Moderation Register. * Used to throttle interrupts. * @erst_size: Number of segments in the Event Ring Segment Table (ERST). * @erst_base: ERST base address. * @erst_dequeue: Event ring dequeue pointer. * * Each interrupter (defined by a MSI-X vector) has an event ring and an Event * Ring Segment Table (ERST) associated with it. The event ring is comprised of * multiple segments of the same size. The HC places events on the ring and * "updates the Cycle bit in the TRBs to indicate to software the current * position of the Enqueue Pointer." The HCD (Linux) processes those events and * updates the dequeue pointer. */ struct xhci_intr_reg { __le32 irq_pending; __le32 irq_control; __le32 erst_size; __le32 rsvd; __le64 erst_base; __le64 erst_dequeue; }; /* irq_pending bitmasks */ #define ER_IRQ_PENDING(p) ((p) & 0x1) /* bits 2:31 need to be preserved */ /* THIS IS BUGGY - FIXME - IP IS WRITE 1 TO CLEAR */ #define ER_IRQ_CLEAR(p) ((p) & 0xfffffffe) #define ER_IRQ_ENABLE(p) ((ER_IRQ_CLEAR(p)) | 0x2) #define ER_IRQ_DISABLE(p) ((ER_IRQ_CLEAR(p)) & ~(0x2)) /* irq_control bitmasks */ /* Minimum interval between interrupts (in 250ns intervals). The interval * between interrupts will be longer if there are no events on the event ring. * Default is 4000 (1 ms). */ #define ER_IRQ_INTERVAL_MASK (0xffff) /* Counter used to count down the time to the next interrupt - HW use only */ #define ER_IRQ_COUNTER_MASK (0xffff << 16) /* erst_size bitmasks */ /* Preserve bits 16:31 of erst_size */ #define ERST_SIZE_MASK (0xffff << 16) /* erst_dequeue bitmasks */ /* Dequeue ERST Segment Index (DESI) - Segment number (or alias) * where the current dequeue pointer lies. This is an optional HW hint. */ #define ERST_DESI_MASK (0x7) /* Event Handler Busy (EHB) - is the event ring scheduled to be serviced by * a work queue (or delayed service routine)? */ #define ERST_EHB (1 << 3) #define ERST_PTR_MASK (0xf) /** * struct xhci_run_regs * @microframe_index: * MFINDEX - current microframe number * * Section 5.5 Host Controller Runtime Registers: * "Software should read and write these registers using only Dword (32 bit) * or larger accesses" */ struct xhci_run_regs { __le32 microframe_index; __le32 rsvd[7]; struct xhci_intr_reg ir_set[128]; }; /** * struct doorbell_array * * Bits 0 - 7: Endpoint target * Bits 8 - 15: RsvdZ * Bits 16 - 31: Stream ID * * Section 5.6 */ struct xhci_doorbell_array { __le32 doorbell[256]; }; #define DB_VALUE(ep, stream) ((((ep) + 1) & 0xff) | ((stream) << 16)) #define DB_VALUE_HOST 0x00000000 /** * struct xhci_protocol_caps * @revision: major revision, minor revision, capability ID, * and next capability pointer. * @name_string: Four ASCII characters to say which spec this xHC * follows, typically "USB ". * @port_info: Port offset, count, and protocol-defined information. */ struct xhci_protocol_caps { u32 revision; u32 name_string; u32 port_info; }; #define XHCI_EXT_PORT_MAJOR(x) (((x) >> 24) & 0xff) #define XHCI_EXT_PORT_MINOR(x) (((x) >> 16) & 0xff) #define XHCI_EXT_PORT_PSIC(x) (((x) >> 28) & 0x0f) #define XHCI_EXT_PORT_OFF(x) ((x) & 0xff) #define XHCI_EXT_PORT_COUNT(x) (((x) >> 8) & 0xff) #define XHCI_EXT_PORT_PSIV(x) (((x) >> 0) & 0x0f) #define XHCI_EXT_PORT_PSIE(x) (((x) >> 4) & 0x03) #define XHCI_EXT_PORT_PLT(x) (((x) >> 6) & 0x03) #define XHCI_EXT_PORT_PFD(x) (((x) >> 8) & 0x01) #define XHCI_EXT_PORT_LP(x) (((x) >> 14) & 0x03) #define XHCI_EXT_PORT_PSIM(x) (((x) >> 16) & 0xffff) #define PLT_MASK (0x03 << 6) #define PLT_SYM (0x00 << 6) #define PLT_ASYM_RX (0x02 << 6) #define PLT_ASYM_TX (0x03 << 6) /** * struct xhci_container_ctx * @type: Type of context. Used to calculated offsets to contained contexts. * @size: Size of the context data * @bytes: The raw context data given to HW * @dma: dma address of the bytes * * Represents either a Device or Input context. Holds a pointer to the raw * memory used for the context (bytes) and dma address of it (dma). */ struct xhci_container_ctx { unsigned type; #define XHCI_CTX_TYPE_DEVICE 0x1 #define XHCI_CTX_TYPE_INPUT 0x2 int size; u8 *bytes; dma_addr_t dma; }; /** * struct xhci_slot_ctx * @dev_info: Route string, device speed, hub info, and last valid endpoint * @dev_info2: Max exit latency for device number, root hub port number * @tt_info: tt_info is used to construct split transaction tokens * @dev_state: slot state and device address * * Slot Context - section 6.2.1.1. This assumes the HC uses 32-byte context * structures. If the HC uses 64-byte contexts, there is an additional 32 bytes * reserved at the end of the slot context for HC internal use. */ struct xhci_slot_ctx { __le32 dev_info; __le32 dev_info2; __le32 tt_info; __le32 dev_state; /* offset 0x10 to 0x1f reserved for HC internal use */ __le32 reserved[4]; }; /* dev_info bitmasks */ /* Route String - 0:19 */ #define ROUTE_STRING_MASK (0xfffff) /* Device speed - values defined by PORTSC Device Speed field - 20:23 */ #define DEV_SPEED (0xf << 20) #define GET_DEV_SPEED(n) (((n) & DEV_SPEED) >> 20) /* bit 24 reserved */ /* Is this LS/FS device connected through a HS hub? - bit 25 */ #define DEV_MTT (0x1 << 25) /* Set if the device is a hub - bit 26 */ #define DEV_HUB (0x1 << 26) /* Index of the last valid endpoint context in this device context - 27:31 */ #define LAST_CTX_MASK (0x1f << 27) #define LAST_CTX(p) ((p) << 27) #define LAST_CTX_TO_EP_NUM(p) (((p) >> 27) - 1) #define SLOT_FLAG (1 << 0) #define EP0_FLAG (1 << 1) /* dev_info2 bitmasks */ /* Max Exit Latency (ms) - worst case time to wake up all links in dev path */ #define MAX_EXIT (0xffff) /* Root hub port number that is needed to access the USB device */ #define ROOT_HUB_PORT(p) (((p) & 0xff) << 16) #define DEVINFO_TO_ROOT_HUB_PORT(p) (((p) >> 16) & 0xff) /* Maximum number of ports under a hub device */ #define XHCI_MAX_PORTS(p) (((p) & 0xff) << 24) #define DEVINFO_TO_MAX_PORTS(p) (((p) & (0xff << 24)) >> 24) /* tt_info bitmasks */ /* * TT Hub Slot ID - for low or full speed devices attached to a high-speed hub * The Slot ID of the hub that isolates the high speed signaling from * this low or full-speed device. '0' if attached to root hub port. */ #define TT_SLOT (0xff) /* * The number of the downstream facing port of the high-speed hub * '0' if the device is not low or full speed. */ #define TT_PORT (0xff << 8) #define TT_THINK_TIME(p) (((p) & 0x3) << 16) #define GET_TT_THINK_TIME(p) (((p) & (0x3 << 16)) >> 16) /* dev_state bitmasks */ /* USB device address - assigned by the HC */ #define DEV_ADDR_MASK (0xff) /* bits 8:26 reserved */ /* Slot state */ #define SLOT_STATE (0x1f << 27) #define GET_SLOT_STATE(p) (((p) & (0x1f << 27)) >> 27) #define SLOT_STATE_DISABLED 0 #define SLOT_STATE_ENABLED SLOT_STATE_DISABLED #define SLOT_STATE_DEFAULT 1 #define SLOT_STATE_ADDRESSED 2 #define SLOT_STATE_CONFIGURED 3 /** * struct xhci_ep_ctx * @ep_info: endpoint state, streams, mult, and interval information. * @ep_info2: information on endpoint type, max packet size, max burst size, * error count, and whether the HC will force an event for all * transactions. * @deq: 64-bit ring dequeue pointer address. If the endpoint only * defines one stream, this points to the endpoint transfer ring. * Otherwise, it points to a stream context array, which has a * ring pointer for each flow. * @tx_info: * Average TRB lengths for the endpoint ring and * max payload within an Endpoint Service Interval Time (ESIT). * * Endpoint Context - section 6.2.1.2. This assumes the HC uses 32-byte context * structures. If the HC uses 64-byte contexts, there is an additional 32 bytes * reserved at the end of the endpoint context for HC internal use. */ struct xhci_ep_ctx { __le32 ep_info; __le32 ep_info2; __le64 deq; __le32 tx_info; /* offset 0x14 - 0x1f reserved for HC internal use */ __le32 reserved[3]; }; /* ep_info bitmasks */ /* * Endpoint State - bits 0:2 * 0 - disabled * 1 - running * 2 - halted due to halt condition - ok to manipulate endpoint ring * 3 - stopped * 4 - TRB error * 5-7 - reserved */ #define EP_STATE_MASK (0xf) #define EP_STATE_DISABLED 0 #define EP_STATE_RUNNING 1 #define EP_STATE_HALTED 2 #define EP_STATE_STOPPED 3 #define EP_STATE_ERROR 4 #define GET_EP_CTX_STATE(ctx) (le32_to_cpu((ctx)->ep_info) & EP_STATE_MASK) /* Mult - Max number of burtst within an interval, in EP companion desc. */ #define EP_MULT(p) (((p) & 0x3) << 8) #define CTX_TO_EP_MULT(p) (((p) >> 8) & 0x3) /* bits 10:14 are Max Primary Streams */ /* bit 15 is Linear Stream Array */ /* Interval - period between requests to an endpoint - 125u increments. */ #define EP_INTERVAL(p) (((p) & 0xff) << 16) #define EP_INTERVAL_TO_UFRAMES(p) (1 << (((p) >> 16) & 0xff)) #define CTX_TO_EP_INTERVAL(p) (((p) >> 16) & 0xff) #define EP_MAXPSTREAMS_MASK (0x1f << 10) #define EP_MAXPSTREAMS(p) (((p) << 10) & EP_MAXPSTREAMS_MASK) #define CTX_TO_EP_MAXPSTREAMS(p) (((p) & EP_MAXPSTREAMS_MASK) >> 10) /* Endpoint is set up with a Linear Stream Array (vs. Secondary Stream Array) */ #define EP_HAS_LSA (1 << 15) /* hosts with LEC=1 use bits 31:24 as ESIT high bits. */ #define CTX_TO_MAX_ESIT_PAYLOAD_HI(p) (((p) >> 24) & 0xff) /* ep_info2 bitmasks */ /* * Force Event - generate transfer events for all TRBs for this endpoint * This will tell the HC to ignore the IOC and ISP flags (for debugging only). */ #define FORCE_EVENT (0x1) #define ERROR_COUNT(p) (((p) & 0x3) << 1) #define CTX_TO_EP_TYPE(p) (((p) >> 3) & 0x7) #define EP_TYPE(p) ((p) << 3) #define ISOC_OUT_EP 1 #define BULK_OUT_EP 2 #define INT_OUT_EP 3 #define CTRL_EP 4 #define ISOC_IN_EP 5 #define BULK_IN_EP 6 #define INT_IN_EP 7 /* bit 6 reserved */ /* bit 7 is Host Initiate Disable - for disabling stream selection */ #define MAX_BURST(p) (((p)&0xff) << 8) #define CTX_TO_MAX_BURST(p) (((p) >> 8) & 0xff) #define MAX_PACKET(p) (((p)&0xffff) << 16) #define MAX_PACKET_MASK (0xffff << 16) #define MAX_PACKET_DECODED(p) (((p) >> 16) & 0xffff) /* tx_info bitmasks */ #define EP_AVG_TRB_LENGTH(p) ((p) & 0xffff) #define EP_MAX_ESIT_PAYLOAD_LO(p) (((p) & 0xffff) << 16) #define EP_MAX_ESIT_PAYLOAD_HI(p) ((((p) >> 16) & 0xff) << 24) #define CTX_TO_MAX_ESIT_PAYLOAD(p) (((p) >> 16) & 0xffff) /* deq bitmasks */ #define EP_CTX_CYCLE_MASK (1 << 0) #define SCTX_DEQ_MASK (~0xfL) /** * struct xhci_input_control_context * Input control context; see section 6.2.5. * * @drop_context: set the bit of the endpoint context you want to disable * @add_context: set the bit of the endpoint context you want to enable */ struct xhci_input_control_ctx { __le32 drop_flags; __le32 add_flags; __le32 rsvd2[6]; }; #define EP_IS_ADDED(ctrl_ctx, i) \ (le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))) #define EP_IS_DROPPED(ctrl_ctx, i) \ (le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) /* Represents everything that is needed to issue a command on the command ring. * It's useful to pre-allocate these for commands that cannot fail due to * out-of-memory errors, like freeing streams. */ struct xhci_command { /* Input context for changing device state */ struct xhci_container_ctx *in_ctx; u32 status; int slot_id; /* If completion is null, no one is waiting on this command * and the structure can be freed after the command completes. */ struct completion *completion; union xhci_trb *command_trb; struct list_head cmd_list; }; /* drop context bitmasks */ #define DROP_EP(x) (0x1 << x) /* add context bitmasks */ #define ADD_EP(x) (0x1 << x) struct xhci_stream_ctx { /* 64-bit stream ring address, cycle state, and stream type */ __le64 stream_ring; /* offset 0x14 - 0x1f reserved for HC internal use */ __le32 reserved[2]; }; /* Stream Context Types (section 6.4.1) - bits 3:1 of stream ctx deq ptr */ #define SCT_FOR_CTX(p) (((p) & 0x7) << 1) /* Secondary stream array type, dequeue pointer is to a transfer ring */ #define SCT_SEC_TR 0 /* Primary stream array type, dequeue pointer is to a transfer ring */ #define SCT_PRI_TR 1 /* Dequeue pointer is for a secondary stream array (SSA) with 8 entries */ #define SCT_SSA_8 2 #define SCT_SSA_16 3 #define SCT_SSA_32 4 #define SCT_SSA_64 5 #define SCT_SSA_128 6 #define SCT_SSA_256 7 /* Assume no secondary streams for now */ struct xhci_stream_info { struct xhci_ring **stream_rings; /* Number of streams, including stream 0 (which drivers can't use) */ unsigned int num_streams; /* The stream context array may be bigger than * the number of streams the driver asked for */ struct xhci_stream_ctx *stream_ctx_array; unsigned int num_stream_ctxs; dma_addr_t ctx_array_dma; /* For mapping physical TRB addresses to segments in stream rings */ struct radix_tree_root trb_address_map; struct xhci_command *free_streams_command; }; #define SMALL_STREAM_ARRAY_SIZE 256 #define MEDIUM_STREAM_ARRAY_SIZE 1024 /* Some Intel xHCI host controllers need software to keep track of the bus * bandwidth. Keep track of endpoint info here. Each root port is allocated * the full bus bandwidth. We must also treat TTs (including each port under a * multi-TT hub) as a separate bandwidth domain. The direct memory interface * (DMI) also limits the total bandwidth (across all domains) that can be used. */ struct xhci_bw_info { /* ep_interval is zero-based */ unsigned int ep_interval; /* mult and num_packets are one-based */ unsigned int mult; unsigned int num_packets; unsigned int max_packet_size; unsigned int max_esit_payload; unsigned int type; }; /* "Block" sizes in bytes the hardware uses for different device speeds. * The logic in this part of the hardware limits the number of bits the hardware * can use, so must represent bandwidth in a less precise manner to mimic what * the scheduler hardware computes. */ #define FS_BLOCK 1 #define HS_BLOCK 4 #define SS_BLOCK 16 #define DMI_BLOCK 32 /* Each device speed has a protocol overhead (CRC, bit stuffing, etc) associated * with each byte transferred. SuperSpeed devices have an initial overhead to * set up bursts. These are in blocks, see above. LS overhead has already been * translated into FS blocks. */ #define DMI_OVERHEAD 8 #define DMI_OVERHEAD_BURST 4 #define SS_OVERHEAD 8 #define SS_OVERHEAD_BURST 32 #define HS_OVERHEAD 26 #define FS_OVERHEAD 20 #define LS_OVERHEAD 128 /* The TTs need to claim roughly twice as much bandwidth (94 bytes per * microframe ~= 24Mbps) of the HS bus as the devices can actually use because * of overhead associated with split transfers crossing microframe boundaries. * 31 blocks is pure protocol overhead. */ #define TT_HS_OVERHEAD (31 + 94) #define TT_DMI_OVERHEAD (25 + 12) /* Bandwidth limits in blocks */ #define FS_BW_LIMIT 1285 #define TT_BW_LIMIT 1320 #define HS_BW_LIMIT 1607 #define SS_BW_LIMIT_IN 3906 #define DMI_BW_LIMIT_IN 3906 #define SS_BW_LIMIT_OUT 3906 #define DMI_BW_LIMIT_OUT 3906 /* Percentage of bus bandwidth reserved for non-periodic transfers */ #define FS_BW_RESERVED 10 #define HS_BW_RESERVED 20 #define SS_BW_RESERVED 10 struct xhci_virt_ep { struct xhci_ring *ring; /* Related to endpoints that are configured to use stream IDs only */ struct xhci_stream_info *stream_info; /* Temporary storage in case the configure endpoint command fails and we * have to restore the device state to the previous state */ struct xhci_ring *new_ring; unsigned int ep_state; #define SET_DEQ_PENDING (1 << 0) #define EP_HALTED (1 << 1) /* For stall handling */ #define EP_STOP_CMD_PENDING (1 << 2) /* For URB cancellation */ /* Transitioning the endpoint to using streams, don't enqueue URBs */ #define EP_GETTING_STREAMS (1 << 3) #define EP_HAS_STREAMS (1 << 4) /* Transitioning the endpoint to not using streams, don't enqueue URBs */ #define EP_GETTING_NO_STREAMS (1 << 5) #define EP_HARD_CLEAR_TOGGLE (1 << 6) #define EP_SOFT_CLEAR_TOGGLE (1 << 7) /* ---- Related to URB cancellation ---- */ struct list_head cancelled_td_list; /* Watchdog timer for stop endpoint command to cancel URBs */ struct timer_list stop_cmd_timer; struct xhci_hcd *xhci; /* Dequeue pointer and dequeue segment for a submitted Set TR Dequeue * command. We'll need to update the ring's dequeue segment and dequeue * pointer after the command completes. */ struct xhci_segment *queued_deq_seg; union xhci_trb *queued_deq_ptr; /* * Sometimes the xHC can not process isochronous endpoint ring quickly * enough, and it will miss some isoc tds on the ring and generate * a Missed Service Error Event. * Set skip flag when receive a Missed Service Error Event and * process the missed tds on the endpoint ring. */ bool skip; /* Bandwidth checking storage */ struct xhci_bw_info bw_info; struct list_head bw_endpoint_list; /* Isoch Frame ID checking storage */ int next_frame_id; /* Use new Isoch TRB layout needed for extended TBC support */ bool use_extended_tbc; }; enum xhci_overhead_type { LS_OVERHEAD_TYPE = 0, FS_OVERHEAD_TYPE, HS_OVERHEAD_TYPE, }; struct xhci_interval_bw { unsigned int num_packets; /* Sorted by max packet size. * Head of the list is the greatest max packet size. */ struct list_head endpoints; /* How many endpoints of each speed are present. */ unsigned int overhead[3]; }; #define XHCI_MAX_INTERVAL 16 struct xhci_interval_bw_table { unsigned int interval0_esit_payload; struct xhci_interval_bw interval_bw[XHCI_MAX_INTERVAL]; /* Includes reserved bandwidth for async endpoints */ unsigned int bw_used; unsigned int ss_bw_in; unsigned int ss_bw_out; }; struct xhci_virt_device { struct usb_device *udev; /* * Commands to the hardware are passed an "input context" that * tells the hardware what to change in its data structures. * The hardware will return changes in an "output context" that * software must allocate for the hardware. We need to keep * track of input and output contexts separately because * these commands might fail and we don't trust the hardware. */ struct xhci_container_ctx *out_ctx; /* Used for addressing devices and configuration changes */ struct xhci_container_ctx *in_ctx; struct xhci_virt_ep eps[31]; u8 fake_port; u8 real_port; struct xhci_interval_bw_table *bw_table; struct xhci_tt_bw_info *tt_info; /* The current max exit latency for the enabled USB3 link states. */ u16 current_mel; /* Used for the debugfs interfaces. */ void *debugfs_private; }; /* * For each roothub, keep track of the bandwidth information for each periodic * interval. * * If a high speed hub is attached to the roothub, each TT associated with that * hub is a separate bandwidth domain. The interval information for the * endpoints on the devices under that TT will appear in the TT structure. */ struct xhci_root_port_bw_info { struct list_head tts; unsigned int num_active_tts; struct xhci_interval_bw_table bw_table; }; struct xhci_tt_bw_info { struct list_head tt_list; int slot_id; int ttport; struct xhci_interval_bw_table bw_table; int active_eps; }; /** * struct xhci_device_context_array * @dev_context_ptr array of 64-bit DMA addresses for device contexts */ struct xhci_device_context_array { /* 64-bit device addresses; we only write 32-bit addresses */ __le64 dev_context_ptrs[MAX_HC_SLOTS]; /* private xHCD pointers */ dma_addr_t dma; }; /* TODO: write function to set the 64-bit device DMA address */ /* * TODO: change this to be dynamically sized at HC mem init time since the HC * might not be able to handle the maximum number of devices possible. */ struct xhci_transfer_event { /* 64-bit buffer address, or immediate data */ __le64 buffer; __le32 transfer_len; /* This field is interpreted differently based on the type of TRB */ __le32 flags; }; /* Transfer event TRB length bit mask */ /* bits 0:23 */ #define EVENT_TRB_LEN(p) ((p) & 0xffffff) /** Transfer Event bit fields **/ #define TRB_TO_EP_ID(p) (((p) >> 16) & 0x1f) /* Completion Code - only applicable for some types of TRBs */ #define COMP_CODE_MASK (0xff << 24) #define GET_COMP_CODE(p) (((p) & COMP_CODE_MASK) >> 24) #define COMP_INVALID 0 #define COMP_SUCCESS 1 #define COMP_DATA_BUFFER_ERROR 2 #define COMP_BABBLE_DETECTED_ERROR 3 #define COMP_USB_TRANSACTION_ERROR 4 #define COMP_TRB_ERROR 5 #define COMP_STALL_ERROR 6 #define COMP_RESOURCE_ERROR 7 #define COMP_BANDWIDTH_ERROR 8 #define COMP_NO_SLOTS_AVAILABLE_ERROR 9 #define COMP_INVALID_STREAM_TYPE_ERROR 10 #define COMP_SLOT_NOT_ENABLED_ERROR 11 #define COMP_ENDPOINT_NOT_ENABLED_ERROR 12 #define COMP_SHORT_PACKET 13 #define COMP_RING_UNDERRUN 14 #define COMP_RING_OVERRUN 15 #define COMP_VF_EVENT_RING_FULL_ERROR 16 #define COMP_PARAMETER_ERROR 17 #define COMP_BANDWIDTH_OVERRUN_ERROR 18 #define COMP_CONTEXT_STATE_ERROR 19 #define COMP_NO_PING_RESPONSE_ERROR 20 #define COMP_EVENT_RING_FULL_ERROR 21 #define COMP_INCOMPATIBLE_DEVICE_ERROR 22 #define COMP_MISSED_SERVICE_ERROR 23 #define COMP_COMMAND_RING_STOPPED 24 #define COMP_COMMAND_ABORTED 25 #define COMP_STOPPED 26 #define COMP_STOPPED_LENGTH_INVALID 27 #define COMP_STOPPED_SHORT_PACKET 28 #define COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR 29 #define COMP_ISOCH_BUFFER_OVERRUN 31 #define COMP_EVENT_LOST_ERROR 32 #define COMP_UNDEFINED_ERROR 33 #define COMP_INVALID_STREAM_ID_ERROR 34 #define COMP_SECONDARY_BANDWIDTH_ERROR 35 #define COMP_SPLIT_TRANSACTION_ERROR 36 static inline const char *xhci_trb_comp_code_string(u8 status) { switch (status) { case COMP_INVALID: return "Invalid"; case COMP_SUCCESS: return "Success"; case COMP_DATA_BUFFER_ERROR: return "Data Buffer Error"; case COMP_BABBLE_DETECTED_ERROR: return "Babble Detected"; case COMP_USB_TRANSACTION_ERROR: return "USB Transaction Error"; case COMP_TRB_ERROR: return "TRB Error"; case COMP_STALL_ERROR: return "Stall Error"; case COMP_RESOURCE_ERROR: return "Resource Error"; case COMP_BANDWIDTH_ERROR: return "Bandwidth Error"; case COMP_NO_SLOTS_AVAILABLE_ERROR: return "No Slots Available Error"; case COMP_INVALID_STREAM_TYPE_ERROR: return "Invalid Stream Type Error"; case COMP_SLOT_NOT_ENABLED_ERROR: return "Slot Not Enabled Error"; case COMP_ENDPOINT_NOT_ENABLED_ERROR: return "Endpoint Not Enabled Error"; case COMP_SHORT_PACKET: return "Short Packet"; case COMP_RING_UNDERRUN: return "Ring Underrun"; case COMP_RING_OVERRUN: return "Ring Overrun"; case COMP_VF_EVENT_RING_FULL_ERROR: return "VF Event Ring Full Error"; case COMP_PARAMETER_ERROR: return "Parameter Error"; case COMP_BANDWIDTH_OVERRUN_ERROR: return "Bandwidth Overrun Error"; case COMP_CONTEXT_STATE_ERROR: return "Context State Error"; case COMP_NO_PING_RESPONSE_ERROR: return "No Ping Response Error"; case COMP_EVENT_RING_FULL_ERROR: return "Event Ring Full Error"; case COMP_INCOMPATIBLE_DEVICE_ERROR: return "Incompatible Device Error"; case COMP_MISSED_SERVICE_ERROR: return "Missed Service Error"; case COMP_COMMAND_RING_STOPPED: return "Command Ring Stopped"; case COMP_COMMAND_ABORTED: return "Command Aborted"; case COMP_STOPPED: return "Stopped"; case COMP_STOPPED_LENGTH_INVALID: return "Stopped - Length Invalid"; case COMP_STOPPED_SHORT_PACKET: return "Stopped - Short Packet"; case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR: return "Max Exit Latency Too Large Error"; case COMP_ISOCH_BUFFER_OVERRUN: return "Isoch Buffer Overrun"; case COMP_EVENT_LOST_ERROR: return "Event Lost Error"; case COMP_UNDEFINED_ERROR: return "Undefined Error"; case COMP_INVALID_STREAM_ID_ERROR: return "Invalid Stream ID Error"; case COMP_SECONDARY_BANDWIDTH_ERROR: return "Secondary Bandwidth Error"; case COMP_SPLIT_TRANSACTION_ERROR: return "Split Transaction Error"; default: return "Unknown!!"; } } struct xhci_link_trb { /* 64-bit segment pointer*/ __le64 segment_ptr; __le32 intr_target; __le32 control; }; /* control bitfields */ #define LINK_TOGGLE (0x1<<1) /* Command completion event TRB */ struct xhci_event_cmd { /* Pointer to command TRB, or the value passed by the event data trb */ __le64 cmd_trb; __le32 status; __le32 flags; }; /* flags bitmasks */ /* Address device - disable SetAddress */ #define TRB_BSR (1<<9) /* Configure Endpoint - Deconfigure */ #define TRB_DC (1<<9) /* Stop Ring - Transfer State Preserve */ #define TRB_TSP (1<<9) enum xhci_ep_reset_type { EP_HARD_RESET, EP_SOFT_RESET, }; /* Force Event */ #define TRB_TO_VF_INTR_TARGET(p) (((p) & (0x3ff << 22)) >> 22) #define TRB_TO_VF_ID(p) (((p) & (0xff << 16)) >> 16) /* Set Latency Tolerance Value */ #define TRB_TO_BELT(p) (((p) & (0xfff << 16)) >> 16) /* Get Port Bandwidth */ #define TRB_TO_DEV_SPEED(p) (((p) & (0xf << 16)) >> 16) /* Force Header */ #define TRB_TO_PACKET_TYPE(p) ((p) & 0x1f) #define TRB_TO_ROOTHUB_PORT(p) (((p) & (0xff << 24)) >> 24) enum xhci_setup_dev { SETUP_CONTEXT_ONLY, SETUP_CONTEXT_ADDRESS, }; /* bits 16:23 are the virtual function ID */ /* bits 24:31 are the slot ID */ #define TRB_TO_SLOT_ID(p) (((p) & (0xff<<24)) >> 24) #define SLOT_ID_FOR_TRB(p) (((p) & 0xff) << 24) /* Stop Endpoint TRB - ep_index to endpoint ID for this TRB */ #define TRB_TO_EP_INDEX(p) ((((p) & (0x1f << 16)) >> 16) - 1) #define EP_ID_FOR_TRB(p) ((((p) + 1) & 0x1f) << 16) #define SUSPEND_PORT_FOR_TRB(p) (((p) & 1) << 23) #define TRB_TO_SUSPEND_PORT(p) (((p) & (1 << 23)) >> 23) #define LAST_EP_INDEX 30 /* Set TR Dequeue Pointer command TRB fields, 6.4.3.9 */ #define TRB_TO_STREAM_ID(p) ((((p) & (0xffff << 16)) >> 16)) #define STREAM_ID_FOR_TRB(p) ((((p)) & 0xffff) << 16) #define SCT_FOR_TRB(p) (((p) << 1) & 0x7) /* Link TRB specific fields */ #define TRB_TC (1<<1) /* Port Status Change Event TRB fields */ /* Port ID - bits 31:24 */ #define GET_PORT_ID(p) (((p) & (0xff << 24)) >> 24) #define EVENT_DATA (1 << 2) /* Normal TRB fields */ /* transfer_len bitmasks - bits 0:16 */ #define TRB_LEN(p) ((p) & 0x1ffff) /* TD Size, packets remaining in this TD, bits 21:17 (5 bits, so max 31) */ #define TRB_TD_SIZE(p) (min((p), (u32)31) << 17) #define GET_TD_SIZE(p) (((p) & 0x3e0000) >> 17) /* xhci 1.1 uses the TD_SIZE field for TBC if Extended TBC is enabled (ETE) */ #define TRB_TD_SIZE_TBC(p) (min((p), (u32)31) << 17) /* Interrupter Target - which MSI-X vector to target the completion event at */ #define TRB_INTR_TARGET(p) (((p) & 0x3ff) << 22) #define GET_INTR_TARGET(p) (((p) >> 22) & 0x3ff) /* Total burst count field, Rsvdz on xhci 1.1 with Extended TBC enabled (ETE) */ #define TRB_TBC(p) (((p) & 0x3) << 7) #define TRB_TLBPC(p) (((p) & 0xf) << 16) /* Cycle bit - indicates TRB ownership by HC or HCD */ #define TRB_CYCLE (1<<0) /* * Force next event data TRB to be evaluated before task switch. * Used to pass OS data back after a TD completes. */ #define TRB_ENT (1<<1) /* Interrupt on short packet */ #define TRB_ISP (1<<2) /* Set PCIe no snoop attribute */ #define TRB_NO_SNOOP (1<<3) /* Chain multiple TRBs into a TD */ #define TRB_CHAIN (1<<4) /* Interrupt on completion */ #define TRB_IOC (1<<5) /* The buffer pointer contains immediate data */ #define TRB_IDT (1<<6) /* Block Event Interrupt */ #define TRB_BEI (1<<9) /* Control transfer TRB specific fields */ #define TRB_DIR_IN (1<<16) #define TRB_TX_TYPE(p) ((p) << 16) #define TRB_DATA_OUT 2 #define TRB_DATA_IN 3 /* Isochronous TRB specific fields */ #define TRB_SIA (1<<31) #define TRB_FRAME_ID(p) (((p) & 0x7ff) << 20) struct xhci_generic_trb { __le32 field[4]; }; union xhci_trb { struct xhci_link_trb link; struct xhci_transfer_event trans_event; struct xhci_event_cmd event_cmd; struct xhci_generic_trb generic; }; /* TRB bit mask */ #define TRB_TYPE_BITMASK (0xfc00) #define TRB_TYPE(p) ((p) << 10) #define TRB_FIELD_TO_TYPE(p) (((p) & TRB_TYPE_BITMASK) >> 10) /* TRB type IDs */ /* bulk, interrupt, isoc scatter/gather, and control data stage */ #define TRB_NORMAL 1 /* setup stage for control transfers */ #define TRB_SETUP 2 /* data stage for control transfers */ #define TRB_DATA 3 /* status stage for control transfers */ #define TRB_STATUS 4 /* isoc transfers */ #define TRB_ISOC 5 /* TRB for linking ring segments */ #define TRB_LINK 6 #define TRB_EVENT_DATA 7 /* Transfer Ring No-op (not for the command ring) */ #define TRB_TR_NOOP 8 /* Command TRBs */ /* Enable Slot Command */ #define TRB_ENABLE_SLOT 9 /* Disable Slot Command */ #define TRB_DISABLE_SLOT 10 /* Address Device Command */ #define TRB_ADDR_DEV 11 /* Configure Endpoint Command */ #define TRB_CONFIG_EP 12 /* Evaluate Context Command */ #define TRB_EVAL_CONTEXT 13 /* Reset Endpoint Command */ #define TRB_RESET_EP 14 /* Stop Transfer Ring Command */ #define TRB_STOP_RING 15 /* Set Transfer Ring Dequeue Pointer Command */ #define TRB_SET_DEQ 16 /* Reset Device Command */ #define TRB_RESET_DEV 17 /* Force Event Command (opt) */ #define TRB_FORCE_EVENT 18 /* Negotiate Bandwidth Command (opt) */ #define TRB_NEG_BANDWIDTH 19 /* Set Latency Tolerance Value Command (opt) */ #define TRB_SET_LT 20 /* Get port bandwidth Command */ #define TRB_GET_BW 21 /* Force Header Command - generate a transaction or link management packet */ #define TRB_FORCE_HEADER 22 /* No-op Command - not for transfer rings */ #define TRB_CMD_NOOP 23 /* TRB IDs 24-31 reserved */ /* Event TRBS */ /* Transfer Event */ #define TRB_TRANSFER 32 /* Command Completion Event */ #define TRB_COMPLETION 33 /* Port Status Change Event */ #define TRB_PORT_STATUS 34 /* Bandwidth Request Event (opt) */ #define TRB_BANDWIDTH_EVENT 35 /* Doorbell Event (opt) */ #define TRB_DOORBELL 36 /* Host Controller Event */ #define TRB_HC_EVENT 37 /* Device Notification Event - device sent function wake notification */ #define TRB_DEV_NOTE 38 /* MFINDEX Wrap Event - microframe counter wrapped */ #define TRB_MFINDEX_WRAP 39 /* TRB IDs 40-47 reserved, 48-63 is vendor-defined */ /* Nec vendor-specific command completion event. */ #define TRB_NEC_CMD_COMP 48 /* Get NEC firmware revision. */ #define TRB_NEC_GET_FW 49 static inline const char *xhci_trb_type_string(u8 type) { switch (type) { case TRB_NORMAL: return "Normal"; case TRB_SETUP: return "Setup Stage"; case TRB_DATA: return "Data Stage"; case TRB_STATUS: return "Status Stage"; case TRB_ISOC: return "Isoch"; case TRB_LINK: return "Link"; case TRB_EVENT_DATA: return "Event Data"; case TRB_TR_NOOP: return "No-Op"; case TRB_ENABLE_SLOT: return "Enable Slot Command"; case TRB_DISABLE_SLOT: return "Disable Slot Command"; case TRB_ADDR_DEV: return "Address Device Command"; case TRB_CONFIG_EP: return "Configure Endpoint Command"; case TRB_EVAL_CONTEXT: return "Evaluate Context Command"; case TRB_RESET_EP: return "Reset Endpoint Command"; case TRB_STOP_RING: return "Stop Ring Command"; case TRB_SET_DEQ: return "Set TR Dequeue Pointer Command"; case TRB_RESET_DEV: return "Reset Device Command"; case TRB_FORCE_EVENT: return "Force Event Command"; case TRB_NEG_BANDWIDTH: return "Negotiate Bandwidth Command"; case TRB_SET_LT: return "Set Latency Tolerance Value Command"; case TRB_GET_BW: return "Get Port Bandwidth Command"; case TRB_FORCE_HEADER: return "Force Header Command"; case TRB_CMD_NOOP: return "No-Op Command"; case TRB_TRANSFER: return "Transfer Event"; case TRB_COMPLETION: return "Command Completion Event"; case TRB_PORT_STATUS: return "Port Status Change Event"; case TRB_BANDWIDTH_EVENT: return "Bandwidth Request Event"; case TRB_DOORBELL: return "Doorbell Event"; case TRB_HC_EVENT: return "Host Controller Event"; case TRB_DEV_NOTE: return "Device Notification Event"; case TRB_MFINDEX_WRAP: return "MFINDEX Wrap Event"; case TRB_NEC_CMD_COMP: return "NEC Command Completion Event"; case TRB_NEC_GET_FW: return "NET Get Firmware Revision Command"; default: return "UNKNOWN"; } } #define TRB_TYPE_LINK(x) (((x) & TRB_TYPE_BITMASK) == TRB_TYPE(TRB_LINK)) /* Above, but for __le32 types -- can avoid work by swapping constants: */ #define TRB_TYPE_LINK_LE32(x) (((x) & cpu_to_le32(TRB_TYPE_BITMASK)) == \ cpu_to_le32(TRB_TYPE(TRB_LINK))) #define TRB_TYPE_NOOP_LE32(x) (((x) & cpu_to_le32(TRB_TYPE_BITMASK)) == \ cpu_to_le32(TRB_TYPE(TRB_TR_NOOP))) #define NEC_FW_MINOR(p) (((p) >> 0) & 0xff) #define NEC_FW_MAJOR(p) (((p) >> 8) & 0xff) /* * TRBS_PER_SEGMENT must be a multiple of 4, * since the command ring is 64-byte aligned. * It must also be greater than 16. */ #define TRBS_PER_SEGMENT 256 /* Allow two commands + a link TRB, along with any reserved command TRBs */ #define MAX_RSVD_CMD_TRBS (TRBS_PER_SEGMENT - 3) #define TRB_SEGMENT_SIZE (TRBS_PER_SEGMENT*16) #define TRB_SEGMENT_SHIFT (ilog2(TRB_SEGMENT_SIZE)) /* TRB buffer pointers can't cross 64KB boundaries */ #define TRB_MAX_BUFF_SHIFT 16 #define TRB_MAX_BUFF_SIZE (1 << TRB_MAX_BUFF_SHIFT) /* How much data is left before the 64KB boundary? */ #define TRB_BUFF_LEN_UP_TO_BOUNDARY(addr) (TRB_MAX_BUFF_SIZE - \ (addr & (TRB_MAX_BUFF_SIZE - 1))) struct xhci_segment { union xhci_trb *trbs; /* private to HCD */ struct xhci_segment *next; dma_addr_t dma; /* Max packet sized bounce buffer for td-fragmant alignment */ dma_addr_t bounce_dma; void *bounce_buf; unsigned int bounce_offs; unsigned int bounce_len; }; struct xhci_td { struct list_head td_list; struct list_head cancelled_td_list; struct urb *urb; struct xhci_segment *start_seg; union xhci_trb *first_trb; union xhci_trb *last_trb; struct xhci_segment *bounce_seg; /* actual_length of the URB has already been set */ bool urb_length_set; }; /* xHCI command default timeout value */ #define XHCI_CMD_DEFAULT_TIMEOUT (5 * HZ) /* command descriptor */ struct xhci_cd { struct xhci_command *command; union xhci_trb *cmd_trb; }; struct xhci_dequeue_state { struct xhci_segment *new_deq_seg; union xhci_trb *new_deq_ptr; int new_cycle_state; unsigned int stream_id; }; enum xhci_ring_type { TYPE_CTRL = 0, TYPE_ISOC, TYPE_BULK, TYPE_INTR, TYPE_STREAM, TYPE_COMMAND, TYPE_EVENT, }; static inline const char *xhci_ring_type_string(enum xhci_ring_type type) { switch (type) { case TYPE_CTRL: return "CTRL"; case TYPE_ISOC: return "ISOC"; case TYPE_BULK: return "BULK"; case TYPE_INTR: return "INTR"; case TYPE_STREAM: return "STREAM"; case TYPE_COMMAND: return "CMD"; case TYPE_EVENT: return "EVENT"; } return "UNKNOWN"; } struct xhci_ring { struct xhci_segment *first_seg; struct xhci_segment *last_seg; union xhci_trb *enqueue; struct xhci_segment *enq_seg; union xhci_trb *dequeue; struct xhci_segment *deq_seg; struct list_head td_list; /* * Write the cycle state into the TRB cycle field to give ownership of * the TRB to the host controller (if we are the producer), or to check * if we own the TRB (if we are the consumer). See section 4.9.1. */ u32 cycle_state; unsigned int stream_id; unsigned int num_segs; unsigned int num_trbs_free; unsigned int num_trbs_free_temp; unsigned int bounce_buf_len; enum xhci_ring_type type; bool last_td_was_short; struct radix_tree_root *trb_address_map; }; struct xhci_erst_entry { /* 64-bit event ring segment address */ __le64 seg_addr; __le32 seg_size; /* Set to zero */ __le32 rsvd; }; struct xhci_erst { struct xhci_erst_entry *entries; unsigned int num_entries; /* xhci->event_ring keeps track of segment dma addresses */ dma_addr_t erst_dma_addr; /* Num entries the ERST can contain */ unsigned int erst_size; }; struct xhci_scratchpad { u64 *sp_array; dma_addr_t sp_dma; void **sp_buffers; }; struct urb_priv { int num_tds; int num_tds_done; struct xhci_td td[0]; }; /* * Each segment table entry is 4*32bits long. 1K seems like an ok size: * (1K bytes * 8bytes/bit) / (4*32 bits) = 64 segment entries in the table, * meaning 64 ring segments. * Initial allocated size of the ERST, in number of entries */ #define ERST_NUM_SEGS 1 /* Initial allocated size of the ERST, in number of entries */ #define ERST_SIZE 64 /* Initial number of event segment rings allocated */ #define ERST_ENTRIES 1 /* Poll every 60 seconds */ #define POLL_TIMEOUT 60 /* Stop endpoint command timeout (secs) for URB cancellation watchdog timer */ #define XHCI_STOP_EP_CMD_TIMEOUT 5 /* XXX: Make these module parameters */ struct s3_save { u32 command; u32 dev_nt; u64 dcbaa_ptr; u32 config_reg; u32 irq_pending; u32 irq_control; u32 erst_size; u64 erst_base; u64 erst_dequeue; }; /* Use for lpm */ struct dev_info { u32 dev_id; struct list_head list; }; struct xhci_bus_state { unsigned long bus_suspended; unsigned long next_statechange; /* Port suspend arrays are indexed by the portnum of the fake roothub */ /* ports suspend status arrays - max 31 ports for USB2, 15 for USB3 */ u32 port_c_suspend; u32 suspended_ports; u32 port_remote_wakeup; unsigned long resume_done[USB_MAXCHILDREN]; /* which ports have started to resume */ unsigned long resuming_ports; /* Which ports are waiting on RExit to U0 transition. */ unsigned long rexit_ports; struct completion rexit_done[USB_MAXCHILDREN]; }; /* * It can take up to 20 ms to transition from RExit to U0 on the * Intel Lynx Point LP xHCI host. */ #define XHCI_MAX_REXIT_TIMEOUT (20 * 1000) static inline unsigned int hcd_index(struct usb_hcd *hcd) { if (hcd->speed >= HCD_USB3) return 0; else return 1; } struct xhci_port { __le32 __iomem *addr; int hw_portnum; int hcd_portnum; struct xhci_hub *rhub; }; struct xhci_hub { struct xhci_port **ports; unsigned int num_ports; struct usb_hcd *hcd; /* supported prococol extended capabiliy values */ u8 maj_rev; u8 min_rev; u32 *psi; /* array of protocol speed ID entries */ u8 psi_count; u8 psi_uid_count; }; /* There is one xhci_hcd structure per controller */ struct xhci_hcd { struct usb_hcd *main_hcd; struct usb_hcd *shared_hcd; /* glue to PCI and HCD framework */ struct xhci_cap_regs __iomem *cap_regs; struct xhci_op_regs __iomem *op_regs; struct xhci_run_regs __iomem *run_regs; struct xhci_doorbell_array __iomem *dba; /* Our HCD's current interrupter register set */ struct xhci_intr_reg __iomem *ir_set; /* Cached register copies of read-only HC data */ __u32 hcs_params1; __u32 hcs_params2; __u32 hcs_params3; __u32 hcc_params; __u32 hcc_params2; spinlock_t lock; /* packed release number */ u8 sbrn; u16 hci_version; u8 max_slots; u8 max_interrupters; u8 max_ports; u8 isoc_threshold; /* imod_interval in ns (I * 250ns) */ u32 imod_interval; int event_ring_max; /* 4KB min, 128MB max */ int page_size; /* Valid values are 12 to 20, inclusive */ int page_shift; /* msi-x vectors */ int msix_count; /* optional clocks */ struct clk *clk; struct clk *reg_clk; /* data structures */ struct xhci_device_context_array *dcbaa; struct xhci_ring *cmd_ring; unsigned int cmd_ring_state; #define CMD_RING_STATE_RUNNING (1 << 0) #define CMD_RING_STATE_ABORTED (1 << 1) #define CMD_RING_STATE_STOPPED (1 << 2) struct list_head cmd_list; unsigned int cmd_ring_reserved_trbs; struct delayed_work cmd_timer; struct completion cmd_ring_stop_completion; struct xhci_command *current_cmd; struct xhci_ring *event_ring; struct xhci_erst erst; /* Scratchpad */ struct xhci_scratchpad *scratchpad; /* Store LPM test failed devices' information */ struct list_head lpm_failed_devs; /* slot enabling and address device helpers */ /* these are not thread safe so use mutex */ struct mutex mutex; /* For USB 3.0 LPM enable/disable. */ struct xhci_command *lpm_command; /* Internal mirror of the HW's dcbaa */ struct xhci_virt_device *devs[MAX_HC_SLOTS]; /* For keeping track of bandwidth domains per roothub. */ struct xhci_root_port_bw_info *rh_bw; /* DMA pools */ struct dma_pool *device_pool; struct dma_pool *segment_pool; struct dma_pool *small_streams_pool; struct dma_pool *medium_streams_pool; /* Host controller watchdog timer structures */ unsigned int xhc_state; u32 command; struct s3_save s3; /* Host controller is dying - not responding to commands. "I'm not dead yet!" * * xHC interrupts have been disabled and a watchdog timer will (or has already) * halt the xHCI host, and complete all URBs with an -ESHUTDOWN code. Any code * that sees this status (other than the timer that set it) should stop touching * hardware immediately. Interrupt handlers should return immediately when * they see this status (any time they drop and re-acquire xhci->lock). * xhci_urb_dequeue() should call usb_hcd_check_unlink_urb() and return without * putting the TD on the canceled list, etc. * * There are no reports of xHCI host controllers that display this issue. */ #define XHCI_STATE_DYING (1 << 0) #define XHCI_STATE_HALTED (1 << 1) #define XHCI_STATE_REMOVING (1 << 2) unsigned long long quirks; #define XHCI_LINK_TRB_QUIRK BIT_ULL(0) #define XHCI_RESET_EP_QUIRK BIT_ULL(1) #define XHCI_NEC_HOST BIT_ULL(2) #define XHCI_AMD_PLL_FIX BIT_ULL(3) #define XHCI_SPURIOUS_SUCCESS BIT_ULL(4) /* * Certain Intel host controllers have a limit to the number of endpoint * contexts they can handle. Ideally, they would signal that they can't handle * anymore endpoint contexts by returning a Resource Error for the Configure * Endpoint command, but they don't. Instead they expect software to keep track * of the number of active endpoints for them, across configure endpoint * commands, reset device commands, disable slot commands, and address device * commands. */ #define XHCI_EP_LIMIT_QUIRK BIT_ULL(5) #define XHCI_BROKEN_MSI BIT_ULL(6) #define XHCI_RESET_ON_RESUME BIT_ULL(7) #define XHCI_SW_BW_CHECKING BIT_ULL(8) #define XHCI_AMD_0x96_HOST BIT_ULL(9) #define XHCI_TRUST_TX_LENGTH BIT_ULL(10) #define XHCI_LPM_SUPPORT BIT_ULL(11) #define XHCI_INTEL_HOST BIT_ULL(12) #define XHCI_SPURIOUS_REBOOT BIT_ULL(13) #define XHCI_COMP_MODE_QUIRK BIT_ULL(14) #define XHCI_AVOID_BEI BIT_ULL(15) #define XHCI_PLAT BIT_ULL(16) #define XHCI_SLOW_SUSPEND BIT_ULL(17) #define XHCI_SPURIOUS_WAKEUP BIT_ULL(18) /* For controllers with a broken beyond repair streams implementation */ #define XHCI_BROKEN_STREAMS BIT_ULL(19) #define XHCI_PME_STUCK_QUIRK BIT_ULL(20) #define XHCI_MTK_HOST BIT_ULL(21) #define XHCI_SSIC_PORT_UNUSED BIT_ULL(22) #define XHCI_NO_64BIT_SUPPORT BIT_ULL(23) #define XHCI_MISSING_CAS BIT_ULL(24) /* For controller with a broken Port Disable implementation */ #define XHCI_BROKEN_PORT_PED BIT_ULL(25) #define XHCI_LIMIT_ENDPOINT_INTERVAL_7 BIT_ULL(26) #define XHCI_U2_DISABLE_WAKE BIT_ULL(27) #define XHCI_ASMEDIA_MODIFY_FLOWCONTROL BIT_ULL(28) #define XHCI_HW_LPM_DISABLE BIT_ULL(29) #define XHCI_SUSPEND_DELAY BIT_ULL(30) #define XHCI_INTEL_USB_ROLE_SW BIT_ULL(31) #define XHCI_ZERO_64B_REGS BIT_ULL(32) unsigned int num_active_eps; unsigned int limit_active_eps; /* There are two roothubs to keep track of bus suspend info for */ struct xhci_bus_state bus_state[2]; struct xhci_port *hw_ports; struct xhci_hub usb2_rhub; struct xhci_hub usb3_rhub; /* support xHCI 0.96 spec USB2 software LPM */ unsigned sw_lpm_support:1; /* support xHCI 1.0 spec USB2 hardware LPM */ unsigned hw_lpm_support:1; /* cached usb2 extened protocol capabilites */ u32 *ext_caps; unsigned int num_ext_caps; /* Compliance Mode Recovery Data */ struct timer_list comp_mode_recovery_timer; u32 port_status_u0; u16 test_mode; /* Compliance Mode Timer Triggered every 2 seconds */ #define COMP_MODE_RCVRY_MSECS 2000 struct dentry *debugfs_root; struct dentry *debugfs_slots; struct list_head regset_list; void *dbc; /* platform-specific data -- must come last */ unsigned long priv[0] __aligned(sizeof(s64)); }; /* Platform specific overrides to generic XHCI hc_driver ops */ struct xhci_driver_overrides { size_t extra_priv_size; int (*reset)(struct usb_hcd *hcd); int (*start)(struct usb_hcd *hcd); }; #define XHCI_CFC_DELAY 10 /* convert between an HCD pointer and the corresponding EHCI_HCD */ static inline struct xhci_hcd *hcd_to_xhci(struct usb_hcd *hcd) { struct usb_hcd *primary_hcd; if (usb_hcd_is_primary_hcd(hcd)) primary_hcd = hcd; else primary_hcd = hcd->primary_hcd; return (struct xhci_hcd *) (primary_hcd->hcd_priv); } static inline struct usb_hcd *xhci_to_hcd(struct xhci_hcd *xhci) { return xhci->main_hcd; } #define xhci_dbg(xhci, fmt, args...) \ dev_dbg(xhci_to_hcd(xhci)->self.controller , fmt , ## args) #define xhci_err(xhci, fmt, args...) \ dev_err(xhci_to_hcd(xhci)->self.controller , fmt , ## args) #define xhci_warn(xhci, fmt, args...) \ dev_warn(xhci_to_hcd(xhci)->self.controller , fmt , ## args) #define xhci_warn_ratelimited(xhci, fmt, args...) \ dev_warn_ratelimited(xhci_to_hcd(xhci)->self.controller , fmt , ## args) #define xhci_info(xhci, fmt, args...) \ dev_info(xhci_to_hcd(xhci)->self.controller , fmt , ## args) /* * Registers should always be accessed with double word or quad word accesses. * * Some xHCI implementations may support 64-bit address pointers. Registers * with 64-bit address pointers should be written to with dword accesses by * writing the low dword first (ptr[0]), then the high dword (ptr[1]) second. * xHCI implementations that do not support 64-bit address pointers will ignore * the high dword, and write order is irrelevant. */ static inline u64 xhci_read_64(const struct xhci_hcd *xhci, __le64 __iomem *regs) { return lo_hi_readq(regs); } static inline void xhci_write_64(struct xhci_hcd *xhci, const u64 val, __le64 __iomem *regs) { lo_hi_writeq(val, regs); } static inline int xhci_link_trb_quirk(struct xhci_hcd *xhci) { return xhci->quirks & XHCI_LINK_TRB_QUIRK; } /* xHCI debugging */ char *xhci_get_slot_state(struct xhci_hcd *xhci, struct xhci_container_ctx *ctx); void xhci_dbg_trace(struct xhci_hcd *xhci, void (*trace)(struct va_format *), const char *fmt, ...); /* xHCI memory management */ void xhci_mem_cleanup(struct xhci_hcd *xhci); int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags); void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id); int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id, struct usb_device *udev, gfp_t flags); int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev); void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci, struct usb_device *udev); unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc); unsigned int xhci_get_endpoint_address(unsigned int ep_index); unsigned int xhci_last_valid_endpoint(u32 added_ctxs); void xhci_endpoint_zero(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev, struct usb_host_endpoint *ep); void xhci_update_tt_active_eps(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev, int old_active_eps); void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info); void xhci_update_bw_info(struct xhci_hcd *xhci, struct xhci_container_ctx *in_ctx, struct xhci_input_control_ctx *ctrl_ctx, struct xhci_virt_device *virt_dev); void xhci_endpoint_copy(struct xhci_hcd *xhci, struct xhci_container_ctx *in_ctx, struct xhci_container_ctx *out_ctx, unsigned int ep_index); void xhci_slot_copy(struct xhci_hcd *xhci, struct xhci_container_ctx *in_ctx, struct xhci_container_ctx *out_ctx); int xhci_endpoint_init(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev, struct usb_device *udev, struct usb_host_endpoint *ep, gfp_t mem_flags); struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci, unsigned int num_segs, unsigned int cycle_state, enum xhci_ring_type type, unsigned int max_packet, gfp_t flags); void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring); int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring, unsigned int num_trbs, gfp_t flags); int xhci_alloc_erst(struct xhci_hcd *xhci, struct xhci_ring *evt_ring, struct xhci_erst *erst, gfp_t flags); void xhci_free_erst(struct xhci_hcd *xhci, struct xhci_erst *erst); void xhci_free_endpoint_ring(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev, unsigned int ep_index); struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci, unsigned int num_stream_ctxs, unsigned int num_streams, unsigned int max_packet, gfp_t flags); void xhci_free_stream_info(struct xhci_hcd *xhci, struct xhci_stream_info *stream_info); void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci, struct xhci_ep_ctx *ep_ctx, struct xhci_stream_info *stream_info); void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx, struct xhci_virt_ep *ep); void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev, bool drop_control_ep); struct xhci_ring *xhci_dma_to_transfer_ring( struct xhci_virt_ep *ep, u64 address); struct xhci_ring *xhci_stream_id_to_ring( struct xhci_virt_device *dev, unsigned int ep_index, unsigned int stream_id); struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci, bool allocate_completion, gfp_t mem_flags); struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci, bool allocate_completion, gfp_t mem_flags); void xhci_urb_free_priv(struct urb_priv *urb_priv); void xhci_free_command(struct xhci_hcd *xhci, struct xhci_command *command); struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci, int type, gfp_t flags); void xhci_free_container_ctx(struct xhci_hcd *xhci, struct xhci_container_ctx *ctx); /* xHCI host controller glue */ typedef void (*xhci_get_quirks_t)(struct device *, struct xhci_hcd *); int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec); void xhci_quiesce(struct xhci_hcd *xhci); int xhci_halt(struct xhci_hcd *xhci); int xhci_start(struct xhci_hcd *xhci); int xhci_reset(struct xhci_hcd *xhci); int xhci_run(struct usb_hcd *hcd); int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks); void xhci_init_driver(struct hc_driver *drv, const struct xhci_driver_overrides *over); int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id); int xhci_ext_cap_init(struct xhci_hcd *xhci); int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup); int xhci_resume(struct xhci_hcd *xhci, bool hibernated); irqreturn_t xhci_irq(struct usb_hcd *hcd); irqreturn_t xhci_msi_irq(int irq, void *hcd); int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev); int xhci_alloc_tt_info(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev, struct usb_device *hdev, struct usb_tt *tt, gfp_t mem_flags); /* xHCI ring, segment, TRB, and TD functions */ dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, union xhci_trb *trb); struct xhci_segment *trb_in_td(struct xhci_hcd *xhci, struct xhci_segment *start_seg, union xhci_trb *start_trb, union xhci_trb *end_trb, dma_addr_t suspect_dma, bool debug); int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code); void xhci_ring_cmd_db(struct xhci_hcd *xhci); int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd, u32 trb_type, u32 slot_id); int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd, dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev); int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd, u32 field1, u32 field2, u32 field3, u32 field4); int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd, int slot_id, unsigned int ep_index, int suspend); int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, struct urb *urb, int slot_id, unsigned int ep_index); int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, struct urb *urb, int slot_id, unsigned int ep_index); int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, struct urb *urb, int slot_id, unsigned int ep_index); int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, struct urb *urb, int slot_id, unsigned int ep_index); int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd, dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed); int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd, dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed); int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd, int slot_id, unsigned int ep_index, enum xhci_ep_reset_type reset_type); int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd, u32 slot_id); void xhci_find_new_dequeue_state(struct xhci_hcd *xhci, unsigned int slot_id, unsigned int ep_index, unsigned int stream_id, struct xhci_td *cur_td, struct xhci_dequeue_state *state); void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci, unsigned int slot_id, unsigned int ep_index, struct xhci_dequeue_state *deq_state); void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index, unsigned int stream_id, struct xhci_td *td); void xhci_stop_endpoint_command_watchdog(struct timer_list *t); void xhci_handle_command_timeout(struct work_struct *work); void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, unsigned int slot_id, unsigned int ep_index, unsigned int stream_id); void xhci_cleanup_command_queue(struct xhci_hcd *xhci); void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring); unsigned int count_trbs(u64 addr, u64 len); /* xHCI roothub code */ void xhci_set_link_state(struct xhci_hcd *xhci, struct xhci_port *port, u32 link_state); void xhci_test_and_clear_bit(struct xhci_hcd *xhci, struct xhci_port *port, u32 port_bit); int xhci_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue, u16 wIndex, char *buf, u16 wLength); int xhci_hub_status_data(struct usb_hcd *hcd, char *buf); int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1); struct xhci_hub *xhci_get_rhub(struct usb_hcd *hcd); void xhci_hc_died(struct xhci_hcd *xhci); #ifdef CONFIG_PM int xhci_bus_suspend(struct usb_hcd *hcd); int xhci_bus_resume(struct usb_hcd *hcd); unsigned long xhci_get_resuming_ports(struct usb_hcd *hcd); #else #define xhci_bus_suspend NULL #define xhci_bus_resume NULL #define xhci_get_resuming_ports NULL #endif /* CONFIG_PM */ u32 xhci_port_state_to_neutral(u32 state); int xhci_find_slot_id_by_port(struct usb_hcd *hcd, struct xhci_hcd *xhci, u16 port); void xhci_ring_device(struct xhci_hcd *xhci, int slot_id); /* xHCI contexts */ struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_container_ctx *ctx); struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci, struct xhci_container_ctx *ctx); struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci, struct xhci_container_ctx *ctx, unsigned int ep_index); struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, unsigned int slot_id, unsigned int ep_index, unsigned int stream_id); static inline struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci, struct urb *urb) { return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id, xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id); } static inline char *xhci_slot_state_string(u32 state) { switch (state) { case SLOT_STATE_ENABLED: return "enabled/disabled"; case SLOT_STATE_DEFAULT: return "default"; case SLOT_STATE_ADDRESSED: return "addressed"; case SLOT_STATE_CONFIGURED: return "configured"; default: return "reserved"; } } static inline const char *xhci_decode_trb(u32 field0, u32 field1, u32 field2, u32 field3) { static char str[256]; int type = TRB_FIELD_TO_TYPE(field3); switch (type) { case TRB_LINK: sprintf(str, "LINK %08x%08x intr %d type '%s' flags %c:%c:%c:%c", field1, field0, GET_INTR_TARGET(field2), xhci_trb_type_string(type), field3 & TRB_IOC ? 'I' : 'i', field3 & TRB_CHAIN ? 'C' : 'c', field3 & TRB_TC ? 'T' : 't', field3 & TRB_CYCLE ? 'C' : 'c'); break; case TRB_TRANSFER: case TRB_COMPLETION: case TRB_PORT_STATUS: case TRB_BANDWIDTH_EVENT: case TRB_DOORBELL: case TRB_HC_EVENT: case TRB_DEV_NOTE: case TRB_MFINDEX_WRAP: sprintf(str, "TRB %08x%08x status '%s' len %d slot %d ep %d type '%s' flags %c:%c", field1, field0, xhci_trb_comp_code_string(GET_COMP_CODE(field2)), EVENT_TRB_LEN(field2), TRB_TO_SLOT_ID(field3), /* Macro decrements 1, maybe it shouldn't?!? */ TRB_TO_EP_INDEX(field3) + 1, xhci_trb_type_string(type), field3 & EVENT_DATA ? 'E' : 'e', field3 & TRB_CYCLE ? 'C' : 'c'); break; case TRB_SETUP: sprintf(str, "bRequestType %02x bRequest %02x wValue %02x%02x wIndex %02x%02x wLength %d length %d TD size %d intr %d type '%s' flags %c:%c:%c", field0 & 0xff, (field0 & 0xff00) >> 8, (field0 & 0xff000000) >> 24, (field0 & 0xff0000) >> 16, (field1 & 0xff00) >> 8, field1 & 0xff, (field1 & 0xff000000) >> 16 | (field1 & 0xff0000) >> 16, TRB_LEN(field2), GET_TD_SIZE(field2), GET_INTR_TARGET(field2), xhci_trb_type_string(type), field3 & TRB_IDT ? 'I' : 'i', field3 & TRB_IOC ? 'I' : 'i', field3 & TRB_CYCLE ? 'C' : 'c'); break; case TRB_DATA: sprintf(str, "Buffer %08x%08x length %d TD size %d intr %d type '%s' flags %c:%c:%c:%c:%c:%c:%c", field1, field0, TRB_LEN(field2), GET_TD_SIZE(field2), GET_INTR_TARGET(field2), xhci_trb_type_string(type), field3 & TRB_IDT ? 'I' : 'i', field3 & TRB_IOC ? 'I' : 'i', field3 & TRB_CHAIN ? 'C' : 'c', field3 & TRB_NO_SNOOP ? 'S' : 's', field3 & TRB_ISP ? 'I' : 'i', field3 & TRB_ENT ? 'E' : 'e', field3 & TRB_CYCLE ? 'C' : 'c'); break; case TRB_STATUS: sprintf(str, "Buffer %08x%08x length %d TD size %d intr %d type '%s' flags %c:%c:%c:%c", field1, field0, TRB_LEN(field2), GET_TD_SIZE(field2), GET_INTR_TARGET(field2), xhci_trb_type_string(type), field3 & TRB_IOC ? 'I' : 'i', field3 & TRB_CHAIN ? 'C' : 'c', field3 & TRB_ENT ? 'E' : 'e', field3 & TRB_CYCLE ? 'C' : 'c'); break; case TRB_NORMAL: case TRB_ISOC: case TRB_EVENT_DATA: case TRB_TR_NOOP: sprintf(str, "Buffer %08x%08x length %d TD size %d intr %d type '%s' flags %c:%c:%c:%c:%c:%c:%c:%c", field1, field0, TRB_LEN(field2), GET_TD_SIZE(field2), GET_INTR_TARGET(field2), xhci_trb_type_string(type), field3 & TRB_BEI ? 'B' : 'b', field3 & TRB_IDT ? 'I' : 'i', field3 & TRB_IOC ? 'I' : 'i', field3 & TRB_CHAIN ? 'C' : 'c', field3 & TRB_NO_SNOOP ? 'S' : 's', field3 & TRB_ISP ? 'I' : 'i', field3 & TRB_ENT ? 'E' : 'e', field3 & TRB_CYCLE ? 'C' : 'c'); break; case TRB_CMD_NOOP: case TRB_ENABLE_SLOT: sprintf(str, "%s: flags %c", xhci_trb_type_string(type), field3 & TRB_CYCLE ? 'C' : 'c'); break; case TRB_DISABLE_SLOT: case TRB_NEG_BANDWIDTH: sprintf(str, "%s: slot %d flags %c", xhci_trb_type_string(type), TRB_TO_SLOT_ID(field3), field3 & TRB_CYCLE ? 'C' : 'c'); break; case TRB_ADDR_DEV: sprintf(str, "%s: ctx %08x%08x slot %d flags %c:%c", xhci_trb_type_string(type), field1, field0, TRB_TO_SLOT_ID(field3), field3 & TRB_BSR ? 'B' : 'b', field3 & TRB_CYCLE ? 'C' : 'c'); break; case TRB_CONFIG_EP: sprintf(str, "%s: ctx %08x%08x slot %d flags %c:%c", xhci_trb_type_string(type), field1, field0, TRB_TO_SLOT_ID(field3), field3 & TRB_DC ? 'D' : 'd', field3 & TRB_CYCLE ? 'C' : 'c'); break; case TRB_EVAL_CONTEXT: sprintf(str, "%s: ctx %08x%08x slot %d flags %c", xhci_trb_type_string(type), field1, field0, TRB_TO_SLOT_ID(field3), field3 & TRB_CYCLE ? 'C' : 'c'); break; case TRB_RESET_EP: sprintf(str, "%s: ctx %08x%08x slot %d ep %d flags %c", xhci_trb_type_string(type), field1, field0, TRB_TO_SLOT_ID(field3), /* Macro decrements 1, maybe it shouldn't?!? */ TRB_TO_EP_INDEX(field3) + 1, field3 & TRB_CYCLE ? 'C' : 'c'); break; case TRB_STOP_RING: sprintf(str, "%s: slot %d sp %d ep %d flags %c", xhci_trb_type_string(type), TRB_TO_SLOT_ID(field3), TRB_TO_SUSPEND_PORT(field3), /* Macro decrements 1, maybe it shouldn't?!? */ TRB_TO_EP_INDEX(field3) + 1, field3 & TRB_CYCLE ? 'C' : 'c'); break; case TRB_SET_DEQ: sprintf(str, "%s: deq %08x%08x stream %d slot %d ep %d flags %c", xhci_trb_type_string(type), field1, field0, TRB_TO_STREAM_ID(field2), TRB_TO_SLOT_ID(field3), /* Macro decrements 1, maybe it shouldn't?!? */ TRB_TO_EP_INDEX(field3) + 1, field3 & TRB_CYCLE ? 'C' : 'c'); break; case TRB_RESET_DEV: sprintf(str, "%s: slot %d flags %c", xhci_trb_type_string(type), TRB_TO_SLOT_ID(field3), field3 & TRB_CYCLE ? 'C' : 'c'); break; case TRB_FORCE_EVENT: sprintf(str, "%s: event %08x%08x vf intr %d vf id %d flags %c", xhci_trb_type_string(type), field1, field0, TRB_TO_VF_INTR_TARGET(field2), TRB_TO_VF_ID(field3), field3 & TRB_CYCLE ? 'C' : 'c'); break; case TRB_SET_LT: sprintf(str, "%s: belt %d flags %c", xhci_trb_type_string(type), TRB_TO_BELT(field3), field3 & TRB_CYCLE ? 'C' : 'c'); break; case TRB_GET_BW: sprintf(str, "%s: ctx %08x%08x slot %d speed %d flags %c", xhci_trb_type_string(type), field1, field0, TRB_TO_SLOT_ID(field3), TRB_TO_DEV_SPEED(field3), field3 & TRB_CYCLE ? 'C' : 'c'); break; case TRB_FORCE_HEADER: sprintf(str, "%s: info %08x%08x%08x pkt type %d roothub port %d flags %c", xhci_trb_type_string(type), field2, field1, field0 & 0xffffffe0, TRB_TO_PACKET_TYPE(field0), TRB_TO_ROOTHUB_PORT(field3), field3 & TRB_CYCLE ? 'C' : 'c'); break; default: sprintf(str, "type '%s' -> raw %08x %08x %08x %08x", xhci_trb_type_string(type), field0, field1, field2, field3); } return str; } static inline const char *xhci_decode_slot_context(u32 info, u32 info2, u32 tt_info, u32 state) { static char str[1024]; u32 speed; u32 hub; u32 mtt; int ret = 0; speed = info & DEV_SPEED; hub = info & DEV_HUB; mtt = info & DEV_MTT; ret = sprintf(str, "RS %05x %s%s%s Ctx Entries %d MEL %d us Port# %d/%d", info & ROUTE_STRING_MASK, ({ char *s; switch (speed) { case SLOT_SPEED_FS: s = "full-speed"; break; case SLOT_SPEED_LS: s = "low-speed"; break; case SLOT_SPEED_HS: s = "high-speed"; break; case SLOT_SPEED_SS: s = "super-speed"; break; case SLOT_SPEED_SSP: s = "super-speed plus"; break; default: s = "UNKNOWN speed"; } s; }), mtt ? " multi-TT" : "", hub ? " Hub" : "", (info & LAST_CTX_MASK) >> 27, info2 & MAX_EXIT, DEVINFO_TO_ROOT_HUB_PORT(info2), DEVINFO_TO_MAX_PORTS(info2)); ret += sprintf(str + ret, " [TT Slot %d Port# %d TTT %d Intr %d] Addr %d State %s", tt_info & TT_SLOT, (tt_info & TT_PORT) >> 8, GET_TT_THINK_TIME(tt_info), GET_INTR_TARGET(tt_info), state & DEV_ADDR_MASK, xhci_slot_state_string(GET_SLOT_STATE(state))); return str; } static inline const char *xhci_portsc_link_state_string(u32 portsc) { switch (portsc & PORT_PLS_MASK) { case XDEV_U0: return "U0"; case XDEV_U1: return "U1"; case XDEV_U2: return "U2"; case XDEV_U3: return "U3"; case XDEV_DISABLED: return "Disabled"; case XDEV_RXDETECT: return "RxDetect"; case XDEV_INACTIVE: return "Inactive"; case XDEV_POLLING: return "Polling"; case XDEV_RECOVERY: return "Recovery"; case XDEV_HOT_RESET: return "Hot Reset"; case XDEV_COMP_MODE: return "Compliance mode"; case XDEV_TEST_MODE: return "Test mode"; case XDEV_RESUME: return "Resume"; default: break; } return "Unknown"; } static inline const char *xhci_decode_portsc(u32 portsc) { static char str[256]; int ret; ret = sprintf(str, "%s %s %s Link:%s PortSpeed:%d ", portsc & PORT_POWER ? "Powered" : "Powered-off", portsc & PORT_CONNECT ? "Connected" : "Not-connected", portsc & PORT_PE ? "Enabled" : "Disabled", xhci_portsc_link_state_string(portsc), DEV_PORT_SPEED(portsc)); if (portsc & PORT_OC) ret += sprintf(str + ret, "OverCurrent "); if (portsc & PORT_RESET) ret += sprintf(str + ret, "In-Reset "); ret += sprintf(str + ret, "Change: "); if (portsc & PORT_CSC) ret += sprintf(str + ret, "CSC "); if (portsc & PORT_PEC) ret += sprintf(str + ret, "PEC "); if (portsc & PORT_WRC) ret += sprintf(str + ret, "WRC "); if (portsc & PORT_OCC) ret += sprintf(str + ret, "OCC "); if (portsc & PORT_RC) ret += sprintf(str + ret, "PRC "); if (portsc & PORT_PLC) ret += sprintf(str + ret, "PLC "); if (portsc & PORT_CEC) ret += sprintf(str + ret, "CEC "); if (portsc & PORT_CAS) ret += sprintf(str + ret, "CAS "); ret += sprintf(str + ret, "Wake: "); if (portsc & PORT_WKCONN_E) ret += sprintf(str + ret, "WCE "); if (portsc & PORT_WKDISC_E) ret += sprintf(str + ret, "WDE "); if (portsc & PORT_WKOC_E) ret += sprintf(str + ret, "WOE "); return str; } static inline const char *xhci_ep_state_string(u8 state) { switch (state) { case EP_STATE_DISABLED: return "disabled"; case EP_STATE_RUNNING: return "running"; case EP_STATE_HALTED: return "halted"; case EP_STATE_STOPPED: return "stopped"; case EP_STATE_ERROR: return "error"; default: return "INVALID"; } } static inline const char *xhci_ep_type_string(u8 type) { switch (type) { case ISOC_OUT_EP: return "Isoc OUT"; case BULK_OUT_EP: return "Bulk OUT"; case INT_OUT_EP: return "Int OUT"; case CTRL_EP: return "Ctrl"; case ISOC_IN_EP: return "Isoc IN"; case BULK_IN_EP: return "Bulk IN"; case INT_IN_EP: return "Int IN"; default: return "INVALID"; } } static inline const char *xhci_decode_ep_context(u32 info, u32 info2, u64 deq, u32 tx_info) { static char str[1024]; int ret; u32 esit; u16 maxp; u16 avg; u8 max_pstr; u8 ep_state; u8 interval; u8 ep_type; u8 burst; u8 cerr; u8 mult; bool lsa; bool hid; esit = CTX_TO_MAX_ESIT_PAYLOAD_HI(info) << 16 | CTX_TO_MAX_ESIT_PAYLOAD(tx_info); ep_state = info & EP_STATE_MASK; max_pstr = CTX_TO_EP_MAXPSTREAMS(info); interval = CTX_TO_EP_INTERVAL(info); mult = CTX_TO_EP_MULT(info) + 1; lsa = !!(info & EP_HAS_LSA); cerr = (info2 & (3 << 1)) >> 1; ep_type = CTX_TO_EP_TYPE(info2); hid = !!(info2 & (1 << 7)); burst = CTX_TO_MAX_BURST(info2); maxp = MAX_PACKET_DECODED(info2); avg = EP_AVG_TRB_LENGTH(tx_info); ret = sprintf(str, "State %s mult %d max P. Streams %d %s", xhci_ep_state_string(ep_state), mult, max_pstr, lsa ? "LSA " : ""); ret += sprintf(str + ret, "interval %d us max ESIT payload %d CErr %d ", (1 << interval) * 125, esit, cerr); ret += sprintf(str + ret, "Type %s %sburst %d maxp %d deq %016llx ", xhci_ep_type_string(ep_type), hid ? "HID" : "", burst, maxp, deq); ret += sprintf(str + ret, "avg trb len %d", avg); return str; } #endif /* __LINUX_XHCI_HCD_H */