// SPDX-License-Identifier: GPL-2.0-only /* * VFIO core * * Copyright (C) 2012 Red Hat, Inc. All rights reserved. * Author: Alex Williamson * * Derived from original vfio: * Copyright 2010 Cisco Systems, Inc. All rights reserved. * Author: Tom Lyon, pugs@cisco.com */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "vfio.h" #define DRIVER_VERSION "0.3" #define DRIVER_AUTHOR "Alex Williamson " #define DRIVER_DESC "VFIO - User Level meta-driver" static struct vfio { struct class *class; struct list_head iommu_drivers_list; struct mutex iommu_drivers_lock; struct list_head group_list; struct mutex group_lock; /* locks group_list */ struct ida group_ida; dev_t group_devt; } vfio; struct vfio_iommu_driver { const struct vfio_iommu_driver_ops *ops; struct list_head vfio_next; }; struct vfio_container { struct kref kref; struct list_head group_list; struct rw_semaphore group_lock; struct vfio_iommu_driver *iommu_driver; void *iommu_data; bool noiommu; }; struct vfio_unbound_dev { struct device *dev; struct list_head unbound_next; }; struct vfio_group { struct device dev; struct cdev cdev; refcount_t users; atomic_t container_users; struct iommu_group *iommu_group; struct vfio_container *container; struct list_head device_list; struct mutex device_lock; struct notifier_block nb; struct list_head vfio_next; struct list_head container_next; struct list_head unbound_list; struct mutex unbound_lock; atomic_t opened; wait_queue_head_t container_q; enum vfio_group_type type; unsigned int dev_counter; struct kvm *kvm; struct blocking_notifier_head notifier; }; #ifdef CONFIG_VFIO_NOIOMMU static bool noiommu __read_mostly; module_param_named(enable_unsafe_noiommu_mode, noiommu, bool, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(enable_unsafe_noiommu_mode, "Enable UNSAFE, no-IOMMU mode. This mode provides no device isolation, no DMA translation, no host kernel protection, cannot be used for device assignment to virtual machines, requires RAWIO permissions, and will taint the kernel. If you do not know what this is for, step away. (default: false)"); #endif static DEFINE_XARRAY(vfio_device_set_xa); static const struct file_operations vfio_group_fops; int vfio_assign_device_set(struct vfio_device *device, void *set_id) { unsigned long idx = (unsigned long)set_id; struct vfio_device_set *new_dev_set; struct vfio_device_set *dev_set; if (WARN_ON(!set_id)) return -EINVAL; /* * Atomically acquire a singleton object in the xarray for this set_id */ xa_lock(&vfio_device_set_xa); dev_set = xa_load(&vfio_device_set_xa, idx); if (dev_set) goto found_get_ref; xa_unlock(&vfio_device_set_xa); new_dev_set = kzalloc(sizeof(*new_dev_set), GFP_KERNEL); if (!new_dev_set) return -ENOMEM; mutex_init(&new_dev_set->lock); INIT_LIST_HEAD(&new_dev_set->device_list); new_dev_set->set_id = set_id; xa_lock(&vfio_device_set_xa); dev_set = __xa_cmpxchg(&vfio_device_set_xa, idx, NULL, new_dev_set, GFP_KERNEL); if (!dev_set) { dev_set = new_dev_set; goto found_get_ref; } kfree(new_dev_set); if (xa_is_err(dev_set)) { xa_unlock(&vfio_device_set_xa); return xa_err(dev_set); } found_get_ref: dev_set->device_count++; xa_unlock(&vfio_device_set_xa); mutex_lock(&dev_set->lock); device->dev_set = dev_set; list_add_tail(&device->dev_set_list, &dev_set->device_list); mutex_unlock(&dev_set->lock); return 0; } EXPORT_SYMBOL_GPL(vfio_assign_device_set); static void vfio_release_device_set(struct vfio_device *device) { struct vfio_device_set *dev_set = device->dev_set; if (!dev_set) return; mutex_lock(&dev_set->lock); list_del(&device->dev_set_list); mutex_unlock(&dev_set->lock); xa_lock(&vfio_device_set_xa); if (!--dev_set->device_count) { __xa_erase(&vfio_device_set_xa, (unsigned long)dev_set->set_id); mutex_destroy(&dev_set->lock); kfree(dev_set); } xa_unlock(&vfio_device_set_xa); } #ifdef CONFIG_VFIO_NOIOMMU static void *vfio_noiommu_open(unsigned long arg) { if (arg != VFIO_NOIOMMU_IOMMU) return ERR_PTR(-EINVAL); if (!capable(CAP_SYS_RAWIO)) return ERR_PTR(-EPERM); return NULL; } static void vfio_noiommu_release(void *iommu_data) { } static long vfio_noiommu_ioctl(void *iommu_data, unsigned int cmd, unsigned long arg) { if (cmd == VFIO_CHECK_EXTENSION) return noiommu && (arg == VFIO_NOIOMMU_IOMMU) ? 1 : 0; return -ENOTTY; } static int vfio_noiommu_attach_group(void *iommu_data, struct iommu_group *iommu_group, enum vfio_group_type type) { return 0; } static void vfio_noiommu_detach_group(void *iommu_data, struct iommu_group *iommu_group) { } static const struct vfio_iommu_driver_ops vfio_noiommu_ops = { .name = "vfio-noiommu", .owner = THIS_MODULE, .open = vfio_noiommu_open, .release = vfio_noiommu_release, .ioctl = vfio_noiommu_ioctl, .attach_group = vfio_noiommu_attach_group, .detach_group = vfio_noiommu_detach_group, }; /* * Only noiommu containers can use vfio-noiommu and noiommu containers can only * use vfio-noiommu. */ static inline bool vfio_iommu_driver_allowed(struct vfio_container *container, const struct vfio_iommu_driver *driver) { return container->noiommu == (driver->ops == &vfio_noiommu_ops); } #else static inline bool vfio_iommu_driver_allowed(struct vfio_container *container, const struct vfio_iommu_driver *driver) { return true; } #endif /* CONFIG_VFIO_NOIOMMU */ /* * IOMMU driver registration */ int vfio_register_iommu_driver(const struct vfio_iommu_driver_ops *ops) { struct vfio_iommu_driver *driver, *tmp; driver = kzalloc(sizeof(*driver), GFP_KERNEL); if (!driver) return -ENOMEM; driver->ops = ops; mutex_lock(&vfio.iommu_drivers_lock); /* Check for duplicates */ list_for_each_entry(tmp, &vfio.iommu_drivers_list, vfio_next) { if (tmp->ops == ops) { mutex_unlock(&vfio.iommu_drivers_lock); kfree(driver); return -EINVAL; } } list_add(&driver->vfio_next, &vfio.iommu_drivers_list); mutex_unlock(&vfio.iommu_drivers_lock); return 0; } EXPORT_SYMBOL_GPL(vfio_register_iommu_driver); void vfio_unregister_iommu_driver(const struct vfio_iommu_driver_ops *ops) { struct vfio_iommu_driver *driver; mutex_lock(&vfio.iommu_drivers_lock); list_for_each_entry(driver, &vfio.iommu_drivers_list, vfio_next) { if (driver->ops == ops) { list_del(&driver->vfio_next); mutex_unlock(&vfio.iommu_drivers_lock); kfree(driver); return; } } mutex_unlock(&vfio.iommu_drivers_lock); } EXPORT_SYMBOL_GPL(vfio_unregister_iommu_driver); static int vfio_iommu_group_notifier(struct notifier_block *nb, unsigned long action, void *data); static void vfio_group_get(struct vfio_group *group); /* * Container objects - containers are created when /dev/vfio/vfio is * opened, but their lifecycle extends until the last user is done, so * it's freed via kref. Must support container/group/device being * closed in any order. */ static void vfio_container_get(struct vfio_container *container) { kref_get(&container->kref); } static void vfio_container_release(struct kref *kref) { struct vfio_container *container; container = container_of(kref, struct vfio_container, kref); kfree(container); } static void vfio_container_put(struct vfio_container *container) { kref_put(&container->kref, vfio_container_release); } /* * Group objects - create, release, get, put, search */ static struct vfio_group * __vfio_group_get_from_iommu(struct iommu_group *iommu_group) { struct vfio_group *group; list_for_each_entry(group, &vfio.group_list, vfio_next) { if (group->iommu_group == iommu_group) { vfio_group_get(group); return group; } } return NULL; } static struct vfio_group * vfio_group_get_from_iommu(struct iommu_group *iommu_group) { struct vfio_group *group; mutex_lock(&vfio.group_lock); group = __vfio_group_get_from_iommu(iommu_group); mutex_unlock(&vfio.group_lock); return group; } static void vfio_group_release(struct device *dev) { struct vfio_group *group = container_of(dev, struct vfio_group, dev); struct vfio_unbound_dev *unbound, *tmp; list_for_each_entry_safe(unbound, tmp, &group->unbound_list, unbound_next) { list_del(&unbound->unbound_next); kfree(unbound); } mutex_destroy(&group->device_lock); mutex_destroy(&group->unbound_lock); iommu_group_put(group->iommu_group); ida_free(&vfio.group_ida, MINOR(group->dev.devt)); kfree(group); } static struct vfio_group *vfio_group_alloc(struct iommu_group *iommu_group, enum vfio_group_type type) { struct vfio_group *group; int minor; group = kzalloc(sizeof(*group), GFP_KERNEL); if (!group) return ERR_PTR(-ENOMEM); minor = ida_alloc_max(&vfio.group_ida, MINORMASK, GFP_KERNEL); if (minor < 0) { kfree(group); return ERR_PTR(minor); } device_initialize(&group->dev); group->dev.devt = MKDEV(MAJOR(vfio.group_devt), minor); group->dev.class = vfio.class; group->dev.release = vfio_group_release; cdev_init(&group->cdev, &vfio_group_fops); group->cdev.owner = THIS_MODULE; refcount_set(&group->users, 1); INIT_LIST_HEAD(&group->device_list); mutex_init(&group->device_lock); INIT_LIST_HEAD(&group->unbound_list); mutex_init(&group->unbound_lock); init_waitqueue_head(&group->container_q); group->iommu_group = iommu_group; /* put in vfio_group_release() */ iommu_group_ref_get(iommu_group); group->type = type; BLOCKING_INIT_NOTIFIER_HEAD(&group->notifier); return group; } static struct vfio_group *vfio_create_group(struct iommu_group *iommu_group, enum vfio_group_type type) { struct vfio_group *group; struct vfio_group *ret; int err; group = vfio_group_alloc(iommu_group, type); if (IS_ERR(group)) return group; err = dev_set_name(&group->dev, "%s%d", group->type == VFIO_NO_IOMMU ? "noiommu-" : "", iommu_group_id(iommu_group)); if (err) { ret = ERR_PTR(err); goto err_put; } group->nb.notifier_call = vfio_iommu_group_notifier; err = iommu_group_register_notifier(iommu_group, &group->nb); if (err) { ret = ERR_PTR(err); goto err_put; } mutex_lock(&vfio.group_lock); /* Did we race creating this group? */ ret = __vfio_group_get_from_iommu(iommu_group); if (ret) goto err_unlock; err = cdev_device_add(&group->cdev, &group->dev); if (err) { ret = ERR_PTR(err); goto err_unlock; } list_add(&group->vfio_next, &vfio.group_list); mutex_unlock(&vfio.group_lock); return group; err_unlock: mutex_unlock(&vfio.group_lock); iommu_group_unregister_notifier(group->iommu_group, &group->nb); err_put: put_device(&group->dev); return ret; } static void vfio_group_put(struct vfio_group *group) { if (!refcount_dec_and_mutex_lock(&group->users, &vfio.group_lock)) return; /* * These data structures all have paired operations that can only be * undone when the caller holds a live reference on the group. Since all * pairs must be undone these WARN_ON's indicate some caller did not * properly hold the group reference. */ WARN_ON(!list_empty(&group->device_list)); WARN_ON(atomic_read(&group->container_users)); WARN_ON(group->notifier.head); list_del(&group->vfio_next); cdev_device_del(&group->cdev, &group->dev); mutex_unlock(&vfio.group_lock); iommu_group_unregister_notifier(group->iommu_group, &group->nb); put_device(&group->dev); } static void vfio_group_get(struct vfio_group *group) { refcount_inc(&group->users); } static struct vfio_group *vfio_group_get_from_dev(struct device *dev) { struct iommu_group *iommu_group; struct vfio_group *group; iommu_group = iommu_group_get(dev); if (!iommu_group) return NULL; group = vfio_group_get_from_iommu(iommu_group); iommu_group_put(iommu_group); return group; } /* * Device objects - create, release, get, put, search */ /* Device reference always implies a group reference */ void vfio_device_put(struct vfio_device *device) { if (refcount_dec_and_test(&device->refcount)) complete(&device->comp); } EXPORT_SYMBOL_GPL(vfio_device_put); static bool vfio_device_try_get(struct vfio_device *device) { return refcount_inc_not_zero(&device->refcount); } static struct vfio_device *vfio_group_get_device(struct vfio_group *group, struct device *dev) { struct vfio_device *device; mutex_lock(&group->device_lock); list_for_each_entry(device, &group->device_list, group_next) { if (device->dev == dev && vfio_device_try_get(device)) { mutex_unlock(&group->device_lock); return device; } } mutex_unlock(&group->device_lock); return NULL; } /* * Some drivers, like pci-stub, are only used to prevent other drivers from * claiming a device and are therefore perfectly legitimate for a user owned * group. The pci-stub driver has no dependencies on DMA or the IOVA mapping * of the device, but it does prevent the user from having direct access to * the device, which is useful in some circumstances. * * We also assume that we can include PCI interconnect devices, ie. bridges. * IOMMU grouping on PCI necessitates that if we lack isolation on a bridge * then all of the downstream devices will be part of the same IOMMU group as * the bridge. Thus, if placing the bridge into the user owned IOVA space * breaks anything, it only does so for user owned devices downstream. Note * that error notification via MSI can be affected for platforms that handle * MSI within the same IOVA space as DMA. */ static const char * const vfio_driver_allowed[] = { "pci-stub" }; static bool vfio_dev_driver_allowed(struct device *dev, struct device_driver *drv) { if (dev_is_pci(dev)) { struct pci_dev *pdev = to_pci_dev(dev); if (pdev->hdr_type != PCI_HEADER_TYPE_NORMAL) return true; } return match_string(vfio_driver_allowed, ARRAY_SIZE(vfio_driver_allowed), drv->name) >= 0; } /* * A vfio group is viable for use by userspace if all devices are in * one of the following states: * - driver-less * - bound to a vfio driver * - bound to an otherwise allowed driver * - a PCI interconnect device * * We use two methods to determine whether a device is bound to a vfio * driver. The first is to test whether the device exists in the vfio * group. The second is to test if the device exists on the group * unbound_list, indicating it's in the middle of transitioning from * a vfio driver to driver-less. */ static int vfio_dev_viable(struct device *dev, void *data) { struct vfio_group *group = data; struct vfio_device *device; struct device_driver *drv = READ_ONCE(dev->driver); struct vfio_unbound_dev *unbound; int ret = -EINVAL; mutex_lock(&group->unbound_lock); list_for_each_entry(unbound, &group->unbound_list, unbound_next) { if (dev == unbound->dev) { ret = 0; break; } } mutex_unlock(&group->unbound_lock); if (!ret || !drv || vfio_dev_driver_allowed(dev, drv)) return 0; device = vfio_group_get_device(group, dev); if (device) { vfio_device_put(device); return 0; } return ret; } /* * Async device support */ static int vfio_group_nb_add_dev(struct vfio_group *group, struct device *dev) { struct vfio_device *device; /* Do we already know about it? We shouldn't */ device = vfio_group_get_device(group, dev); if (WARN_ON_ONCE(device)) { vfio_device_put(device); return 0; } /* Nothing to do for idle groups */ if (!atomic_read(&group->container_users)) return 0; /* TODO Prevent device auto probing */ dev_WARN(dev, "Device added to live group %d!\n", iommu_group_id(group->iommu_group)); return 0; } static int vfio_group_nb_verify(struct vfio_group *group, struct device *dev) { /* We don't care what happens when the group isn't in use */ if (!atomic_read(&group->container_users)) return 0; return vfio_dev_viable(dev, group); } static int vfio_iommu_group_notifier(struct notifier_block *nb, unsigned long action, void *data) { struct vfio_group *group = container_of(nb, struct vfio_group, nb); struct device *dev = data; struct vfio_unbound_dev *unbound; switch (action) { case IOMMU_GROUP_NOTIFY_ADD_DEVICE: vfio_group_nb_add_dev(group, dev); break; case IOMMU_GROUP_NOTIFY_DEL_DEVICE: /* * Nothing to do here. If the device is in use, then the * vfio sub-driver should block the remove callback until * it is unused. If the device is unused or attached to a * stub driver, then it should be released and we don't * care that it will be going away. */ break; case IOMMU_GROUP_NOTIFY_BIND_DRIVER: dev_dbg(dev, "%s: group %d binding to driver\n", __func__, iommu_group_id(group->iommu_group)); break; case IOMMU_GROUP_NOTIFY_BOUND_DRIVER: dev_dbg(dev, "%s: group %d bound to driver %s\n", __func__, iommu_group_id(group->iommu_group), dev->driver->name); BUG_ON(vfio_group_nb_verify(group, dev)); break; case IOMMU_GROUP_NOTIFY_UNBIND_DRIVER: dev_dbg(dev, "%s: group %d unbinding from driver %s\n", __func__, iommu_group_id(group->iommu_group), dev->driver->name); break; case IOMMU_GROUP_NOTIFY_UNBOUND_DRIVER: dev_dbg(dev, "%s: group %d unbound from driver\n", __func__, iommu_group_id(group->iommu_group)); /* * XXX An unbound device in a live group is ok, but we'd * really like to avoid the above BUG_ON by preventing other * drivers from binding to it. Once that occurs, we have to * stop the system to maintain isolation. At a minimum, we'd * want a toggle to disable driver auto probe for this device. */ mutex_lock(&group->unbound_lock); list_for_each_entry(unbound, &group->unbound_list, unbound_next) { if (dev == unbound->dev) { list_del(&unbound->unbound_next); kfree(unbound); break; } } mutex_unlock(&group->unbound_lock); break; } return NOTIFY_OK; } /* * VFIO driver API */ void vfio_init_group_dev(struct vfio_device *device, struct device *dev, const struct vfio_device_ops *ops) { init_completion(&device->comp); device->dev = dev; device->ops = ops; } EXPORT_SYMBOL_GPL(vfio_init_group_dev); void vfio_uninit_group_dev(struct vfio_device *device) { vfio_release_device_set(device); } EXPORT_SYMBOL_GPL(vfio_uninit_group_dev); static struct vfio_group *vfio_noiommu_group_alloc(struct device *dev, enum vfio_group_type type) { struct iommu_group *iommu_group; struct vfio_group *group; int ret; iommu_group = iommu_group_alloc(); if (IS_ERR(iommu_group)) return ERR_CAST(iommu_group); iommu_group_set_name(iommu_group, "vfio-noiommu"); ret = iommu_group_add_device(iommu_group, dev); if (ret) goto out_put_group; group = vfio_create_group(iommu_group, type); if (IS_ERR(group)) { ret = PTR_ERR(group); goto out_remove_device; } iommu_group_put(iommu_group); return group; out_remove_device: iommu_group_remove_device(dev); out_put_group: iommu_group_put(iommu_group); return ERR_PTR(ret); } static struct vfio_group *vfio_group_find_or_alloc(struct device *dev) { struct iommu_group *iommu_group; struct vfio_group *group; iommu_group = iommu_group_get(dev); #ifdef CONFIG_VFIO_NOIOMMU if (!iommu_group && noiommu) { /* * With noiommu enabled, create an IOMMU group for devices that * don't already have one, implying no IOMMU hardware/driver * exists. Taint the kernel because we're about to give a DMA * capable device to a user without IOMMU protection. */ group = vfio_noiommu_group_alloc(dev, VFIO_NO_IOMMU); if (!IS_ERR(group)) { add_taint(TAINT_USER, LOCKDEP_STILL_OK); dev_warn(dev, "Adding kernel taint for vfio-noiommu group on device\n"); } return group; } #endif if (!iommu_group) return ERR_PTR(-EINVAL); group = vfio_group_get_from_iommu(iommu_group); if (!group) group = vfio_create_group(iommu_group, VFIO_IOMMU); /* The vfio_group holds a reference to the iommu_group */ iommu_group_put(iommu_group); return group; } static int __vfio_register_dev(struct vfio_device *device, struct vfio_group *group) { struct vfio_device *existing_device; if (IS_ERR(group)) return PTR_ERR(group); /* * If the driver doesn't specify a set then the device is added to a * singleton set just for itself. */ if (!device->dev_set) vfio_assign_device_set(device, device); existing_device = vfio_group_get_device(group, device->dev); if (existing_device) { dev_WARN(device->dev, "Device already exists on group %d\n", iommu_group_id(group->iommu_group)); vfio_device_put(existing_device); if (group->type == VFIO_NO_IOMMU || group->type == VFIO_EMULATED_IOMMU) iommu_group_remove_device(device->dev); vfio_group_put(group); return -EBUSY; } /* Our reference on group is moved to the device */ device->group = group; /* Refcounting can't start until the driver calls register */ refcount_set(&device->refcount, 1); mutex_lock(&group->device_lock); list_add(&device->group_next, &group->device_list); group->dev_counter++; mutex_unlock(&group->device_lock); return 0; } int vfio_register_group_dev(struct vfio_device *device) { return __vfio_register_dev(device, vfio_group_find_or_alloc(device->dev)); } EXPORT_SYMBOL_GPL(vfio_register_group_dev); /* * Register a virtual device without IOMMU backing. The user of this * device must not be able to directly trigger unmediated DMA. */ int vfio_register_emulated_iommu_dev(struct vfio_device *device) { return __vfio_register_dev(device, vfio_noiommu_group_alloc(device->dev, VFIO_EMULATED_IOMMU)); } EXPORT_SYMBOL_GPL(vfio_register_emulated_iommu_dev); /* * Get a reference to the vfio_device for a device. Even if the * caller thinks they own the device, they could be racing with a * release call path, so we can't trust drvdata for the shortcut. * Go the long way around, from the iommu_group to the vfio_group * to the vfio_device. */ struct vfio_device *vfio_device_get_from_dev(struct device *dev) { struct vfio_group *group; struct vfio_device *device; group = vfio_group_get_from_dev(dev); if (!group) return NULL; device = vfio_group_get_device(group, dev); vfio_group_put(group); return device; } EXPORT_SYMBOL_GPL(vfio_device_get_from_dev); static struct vfio_device *vfio_device_get_from_name(struct vfio_group *group, char *buf) { struct vfio_device *it, *device = ERR_PTR(-ENODEV); mutex_lock(&group->device_lock); list_for_each_entry(it, &group->device_list, group_next) { int ret; if (it->ops->match) { ret = it->ops->match(it, buf); if (ret < 0) { device = ERR_PTR(ret); break; } } else { ret = !strcmp(dev_name(it->dev), buf); } if (ret && vfio_device_try_get(it)) { device = it; break; } } mutex_unlock(&group->device_lock); return device; } /* * Decrement the device reference count and wait for the device to be * removed. Open file descriptors for the device... */ void vfio_unregister_group_dev(struct vfio_device *device) { struct vfio_group *group = device->group; struct vfio_unbound_dev *unbound; unsigned int i = 0; bool interrupted = false; long rc; /* * When the device is removed from the group, the group suddenly * becomes non-viable; the device has a driver (until the unbind * completes), but it's not present in the group. This is bad news * for any external users that need to re-acquire a group reference * in order to match and release their existing reference. To * solve this, we track such devices on the unbound_list to bridge * the gap until they're fully unbound. */ unbound = kzalloc(sizeof(*unbound), GFP_KERNEL); if (unbound) { unbound->dev = device->dev; mutex_lock(&group->unbound_lock); list_add(&unbound->unbound_next, &group->unbound_list); mutex_unlock(&group->unbound_lock); } WARN_ON(!unbound); vfio_device_put(device); rc = try_wait_for_completion(&device->comp); while (rc <= 0) { if (device->ops->request) device->ops->request(device, i++); if (interrupted) { rc = wait_for_completion_timeout(&device->comp, HZ * 10); } else { rc = wait_for_completion_interruptible_timeout( &device->comp, HZ * 10); if (rc < 0) { interrupted = true; dev_warn(device->dev, "Device is currently in use, task" " \"%s\" (%d) " "blocked until device is released", current->comm, task_pid_nr(current)); } } } mutex_lock(&group->device_lock); list_del(&device->group_next); group->dev_counter--; mutex_unlock(&group->device_lock); /* * In order to support multiple devices per group, devices can be * plucked from the group while other devices in the group are still * in use. The container persists with this group and those remaining * devices still attached. If the user creates an isolation violation * by binding this device to another driver while the group is still in * use, that's their fault. However, in the case of removing the last, * or potentially the only, device in the group there can be no other * in-use devices in the group. The user has done their due diligence * and we should lay no claims to those devices. In order to do that, * we need to make sure the group is detached from the container. * Without this stall, we're potentially racing with a user process * that may attempt to immediately bind this device to another driver. */ if (list_empty(&group->device_list)) wait_event(group->container_q, !group->container); if (group->type == VFIO_NO_IOMMU || group->type == VFIO_EMULATED_IOMMU) iommu_group_remove_device(device->dev); /* Matches the get in vfio_register_group_dev() */ vfio_group_put(group); } EXPORT_SYMBOL_GPL(vfio_unregister_group_dev); /* * VFIO base fd, /dev/vfio/vfio */ static long vfio_ioctl_check_extension(struct vfio_container *container, unsigned long arg) { struct vfio_iommu_driver *driver; long ret = 0; down_read(&container->group_lock); driver = container->iommu_driver; switch (arg) { /* No base extensions yet */ default: /* * If no driver is set, poll all registered drivers for * extensions and return the first positive result. If * a driver is already set, further queries will be passed * only to that driver. */ if (!driver) { mutex_lock(&vfio.iommu_drivers_lock); list_for_each_entry(driver, &vfio.iommu_drivers_list, vfio_next) { if (!list_empty(&container->group_list) && !vfio_iommu_driver_allowed(container, driver)) continue; if (!try_module_get(driver->ops->owner)) continue; ret = driver->ops->ioctl(NULL, VFIO_CHECK_EXTENSION, arg); module_put(driver->ops->owner); if (ret > 0) break; } mutex_unlock(&vfio.iommu_drivers_lock); } else ret = driver->ops->ioctl(container->iommu_data, VFIO_CHECK_EXTENSION, arg); } up_read(&container->group_lock); return ret; } /* hold write lock on container->group_lock */ static int __vfio_container_attach_groups(struct vfio_container *container, struct vfio_iommu_driver *driver, void *data) { struct vfio_group *group; int ret = -ENODEV; list_for_each_entry(group, &container->group_list, container_next) { ret = driver->ops->attach_group(data, group->iommu_group, group->type); if (ret) goto unwind; } return ret; unwind: list_for_each_entry_continue_reverse(group, &container->group_list, container_next) { driver->ops->detach_group(data, group->iommu_group); } return ret; } static long vfio_ioctl_set_iommu(struct vfio_container *container, unsigned long arg) { struct vfio_iommu_driver *driver; long ret = -ENODEV; down_write(&container->group_lock); /* * The container is designed to be an unprivileged interface while * the group can be assigned to specific users. Therefore, only by * adding a group to a container does the user get the privilege of * enabling the iommu, which may allocate finite resources. There * is no unset_iommu, but by removing all the groups from a container, * the container is deprivileged and returns to an unset state. */ if (list_empty(&container->group_list) || container->iommu_driver) { up_write(&container->group_lock); return -EINVAL; } mutex_lock(&vfio.iommu_drivers_lock); list_for_each_entry(driver, &vfio.iommu_drivers_list, vfio_next) { void *data; if (!vfio_iommu_driver_allowed(container, driver)) continue; if (!try_module_get(driver->ops->owner)) continue; /* * The arg magic for SET_IOMMU is the same as CHECK_EXTENSION, * so test which iommu driver reported support for this * extension and call open on them. We also pass them the * magic, allowing a single driver to support multiple * interfaces if they'd like. */ if (driver->ops->ioctl(NULL, VFIO_CHECK_EXTENSION, arg) <= 0) { module_put(driver->ops->owner); continue; } data = driver->ops->open(arg); if (IS_ERR(data)) { ret = PTR_ERR(data); module_put(driver->ops->owner); continue; } ret = __vfio_container_attach_groups(container, driver, data); if (ret) { driver->ops->release(data); module_put(driver->ops->owner); continue; } container->iommu_driver = driver; container->iommu_data = data; break; } mutex_unlock(&vfio.iommu_drivers_lock); up_write(&container->group_lock); return ret; } static long vfio_fops_unl_ioctl(struct file *filep, unsigned int cmd, unsigned long arg) { struct vfio_container *container = filep->private_data; struct vfio_iommu_driver *driver; void *data; long ret = -EINVAL; if (!container) return ret; switch (cmd) { case VFIO_GET_API_VERSION: ret = VFIO_API_VERSION; break; case VFIO_CHECK_EXTENSION: ret = vfio_ioctl_check_extension(container, arg); break; case VFIO_SET_IOMMU: ret = vfio_ioctl_set_iommu(container, arg); break; default: driver = container->iommu_driver; data = container->iommu_data; if (driver) /* passthrough all unrecognized ioctls */ ret = driver->ops->ioctl(data, cmd, arg); } return ret; } static int vfio_fops_open(struct inode *inode, struct file *filep) { struct vfio_container *container; container = kzalloc(sizeof(*container), GFP_KERNEL); if (!container) return -ENOMEM; INIT_LIST_HEAD(&container->group_list); init_rwsem(&container->group_lock); kref_init(&container->kref); filep->private_data = container; return 0; } static int vfio_fops_release(struct inode *inode, struct file *filep) { struct vfio_container *container = filep->private_data; struct vfio_iommu_driver *driver = container->iommu_driver; if (driver && driver->ops->notify) driver->ops->notify(container->iommu_data, VFIO_IOMMU_CONTAINER_CLOSE); filep->private_data = NULL; vfio_container_put(container); return 0; } static const struct file_operations vfio_fops = { .owner = THIS_MODULE, .open = vfio_fops_open, .release = vfio_fops_release, .unlocked_ioctl = vfio_fops_unl_ioctl, .compat_ioctl = compat_ptr_ioctl, }; /* * VFIO Group fd, /dev/vfio/$GROUP */ static void __vfio_group_unset_container(struct vfio_group *group) { struct vfio_container *container = group->container; struct vfio_iommu_driver *driver; down_write(&container->group_lock); driver = container->iommu_driver; if (driver) driver->ops->detach_group(container->iommu_data, group->iommu_group); group->container = NULL; wake_up(&group->container_q); list_del(&group->container_next); /* Detaching the last group deprivileges a container, remove iommu */ if (driver && list_empty(&container->group_list)) { driver->ops->release(container->iommu_data); module_put(driver->ops->owner); container->iommu_driver = NULL; container->iommu_data = NULL; } up_write(&container->group_lock); vfio_container_put(container); } /* * VFIO_GROUP_UNSET_CONTAINER should fail if there are other users or * if there was no container to unset. Since the ioctl is called on * the group, we know that still exists, therefore the only valid * transition here is 1->0. */ static int vfio_group_unset_container(struct vfio_group *group) { int users = atomic_cmpxchg(&group->container_users, 1, 0); if (!users) return -EINVAL; if (users != 1) return -EBUSY; __vfio_group_unset_container(group); return 0; } /* * When removing container users, anything that removes the last user * implicitly removes the group from the container. That is, if the * group file descriptor is closed, as well as any device file descriptors, * the group is free. */ static void vfio_group_try_dissolve_container(struct vfio_group *group) { if (0 == atomic_dec_if_positive(&group->container_users)) __vfio_group_unset_container(group); } static int vfio_group_set_container(struct vfio_group *group, int container_fd) { struct fd f; struct vfio_container *container; struct vfio_iommu_driver *driver; int ret = 0; if (atomic_read(&group->container_users)) return -EINVAL; if (group->type == VFIO_NO_IOMMU && !capable(CAP_SYS_RAWIO)) return -EPERM; f = fdget(container_fd); if (!f.file) return -EBADF; /* Sanity check, is this really our fd? */ if (f.file->f_op != &vfio_fops) { fdput(f); return -EINVAL; } container = f.file->private_data; WARN_ON(!container); /* fget ensures we don't race vfio_release */ down_write(&container->group_lock); /* Real groups and fake groups cannot mix */ if (!list_empty(&container->group_list) && container->noiommu != (group->type == VFIO_NO_IOMMU)) { ret = -EPERM; goto unlock_out; } driver = container->iommu_driver; if (driver) { ret = driver->ops->attach_group(container->iommu_data, group->iommu_group, group->type); if (ret) goto unlock_out; } group->container = container; container->noiommu = (group->type == VFIO_NO_IOMMU); list_add(&group->container_next, &container->group_list); /* Get a reference on the container and mark a user within the group */ vfio_container_get(container); atomic_inc(&group->container_users); unlock_out: up_write(&container->group_lock); fdput(f); return ret; } static bool vfio_group_viable(struct vfio_group *group) { return (iommu_group_for_each_dev(group->iommu_group, group, vfio_dev_viable) == 0); } static int vfio_group_add_container_user(struct vfio_group *group) { if (!atomic_inc_not_zero(&group->container_users)) return -EINVAL; if (group->type == VFIO_NO_IOMMU) { atomic_dec(&group->container_users); return -EPERM; } if (!group->container->iommu_driver || !vfio_group_viable(group)) { atomic_dec(&group->container_users); return -EINVAL; } return 0; } static const struct file_operations vfio_device_fops; static int vfio_group_get_device_fd(struct vfio_group *group, char *buf) { struct vfio_device *device; struct file *filep; int fdno; int ret = 0; if (0 == atomic_read(&group->container_users) || !group->container->iommu_driver || !vfio_group_viable(group)) return -EINVAL; if (group->type == VFIO_NO_IOMMU && !capable(CAP_SYS_RAWIO)) return -EPERM; device = vfio_device_get_from_name(group, buf); if (IS_ERR(device)) return PTR_ERR(device); if (!try_module_get(device->dev->driver->owner)) { ret = -ENODEV; goto err_device_put; } mutex_lock(&device->dev_set->lock); device->open_count++; if (device->open_count == 1 && device->ops->open_device) { ret = device->ops->open_device(device); if (ret) goto err_undo_count; } mutex_unlock(&device->dev_set->lock); /* * We can't use anon_inode_getfd() because we need to modify * the f_mode flags directly to allow more than just ioctls */ fdno = ret = get_unused_fd_flags(O_CLOEXEC); if (ret < 0) goto err_close_device; filep = anon_inode_getfile("[vfio-device]", &vfio_device_fops, device, O_RDWR); if (IS_ERR(filep)) { ret = PTR_ERR(filep); goto err_fd; } /* * TODO: add an anon_inode interface to do this. * Appears to be missing by lack of need rather than * explicitly prevented. Now there's need. */ filep->f_mode |= (FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE); atomic_inc(&group->container_users); fd_install(fdno, filep); if (group->type == VFIO_NO_IOMMU) dev_warn(device->dev, "vfio-noiommu device opened by user " "(%s:%d)\n", current->comm, task_pid_nr(current)); return fdno; err_fd: put_unused_fd(fdno); err_close_device: mutex_lock(&device->dev_set->lock); if (device->open_count == 1 && device->ops->close_device) device->ops->close_device(device); err_undo_count: device->open_count--; mutex_unlock(&device->dev_set->lock); module_put(device->dev->driver->owner); err_device_put: vfio_device_put(device); return ret; } static long vfio_group_fops_unl_ioctl(struct file *filep, unsigned int cmd, unsigned long arg) { struct vfio_group *group = filep->private_data; long ret = -ENOTTY; switch (cmd) { case VFIO_GROUP_GET_STATUS: { struct vfio_group_status status; unsigned long minsz; minsz = offsetofend(struct vfio_group_status, flags); if (copy_from_user(&status, (void __user *)arg, minsz)) return -EFAULT; if (status.argsz < minsz) return -EINVAL; status.flags = 0; if (vfio_group_viable(group)) status.flags |= VFIO_GROUP_FLAGS_VIABLE; if (group->container) status.flags |= VFIO_GROUP_FLAGS_CONTAINER_SET; if (copy_to_user((void __user *)arg, &status, minsz)) return -EFAULT; ret = 0; break; } case VFIO_GROUP_SET_CONTAINER: { int fd; if (get_user(fd, (int __user *)arg)) return -EFAULT; if (fd < 0) return -EINVAL; ret = vfio_group_set_container(group, fd); break; } case VFIO_GROUP_UNSET_CONTAINER: ret = vfio_group_unset_container(group); break; case VFIO_GROUP_GET_DEVICE_FD: { char *buf; buf = strndup_user((const char __user *)arg, PAGE_SIZE); if (IS_ERR(buf)) return PTR_ERR(buf); ret = vfio_group_get_device_fd(group, buf); kfree(buf); break; } } return ret; } static int vfio_group_fops_open(struct inode *inode, struct file *filep) { struct vfio_group *group = container_of(inode->i_cdev, struct vfio_group, cdev); int opened; /* users can be zero if this races with vfio_group_put() */ if (!refcount_inc_not_zero(&group->users)) return -ENODEV; if (group->type == VFIO_NO_IOMMU && !capable(CAP_SYS_RAWIO)) { vfio_group_put(group); return -EPERM; } /* Do we need multiple instances of the group open? Seems not. */ opened = atomic_cmpxchg(&group->opened, 0, 1); if (opened) { vfio_group_put(group); return -EBUSY; } /* Is something still in use from a previous open? */ if (group->container) { atomic_dec(&group->opened); vfio_group_put(group); return -EBUSY; } /* Warn if previous user didn't cleanup and re-init to drop them */ if (WARN_ON(group->notifier.head)) BLOCKING_INIT_NOTIFIER_HEAD(&group->notifier); filep->private_data = group; return 0; } static int vfio_group_fops_release(struct inode *inode, struct file *filep) { struct vfio_group *group = filep->private_data; filep->private_data = NULL; vfio_group_try_dissolve_container(group); atomic_dec(&group->opened); vfio_group_put(group); return 0; } static const struct file_operations vfio_group_fops = { .owner = THIS_MODULE, .unlocked_ioctl = vfio_group_fops_unl_ioctl, .compat_ioctl = compat_ptr_ioctl, .open = vfio_group_fops_open, .release = vfio_group_fops_release, }; /* * VFIO Device fd */ static int vfio_device_fops_release(struct inode *inode, struct file *filep) { struct vfio_device *device = filep->private_data; mutex_lock(&device->dev_set->lock); if (!--device->open_count && device->ops->close_device) device->ops->close_device(device); mutex_unlock(&device->dev_set->lock); module_put(device->dev->driver->owner); vfio_group_try_dissolve_container(device->group); vfio_device_put(device); return 0; } /* * vfio_mig_get_next_state - Compute the next step in the FSM * @cur_fsm - The current state the device is in * @new_fsm - The target state to reach * @next_fsm - Pointer to the next step to get to new_fsm * * Return 0 upon success, otherwise -errno * Upon success the next step in the state progression between cur_fsm and * new_fsm will be set in next_fsm. * * This breaks down requests for combination transitions into smaller steps and * returns the next step to get to new_fsm. The function may need to be called * multiple times before reaching new_fsm. * */ int vfio_mig_get_next_state(struct vfio_device *device, enum vfio_device_mig_state cur_fsm, enum vfio_device_mig_state new_fsm, enum vfio_device_mig_state *next_fsm) { enum { VFIO_DEVICE_NUM_STATES = VFIO_DEVICE_STATE_RUNNING_P2P + 1 }; /* * The coding in this table requires the driver to implement the * following FSM arcs: * RESUMING -> STOP * STOP -> RESUMING * STOP -> STOP_COPY * STOP_COPY -> STOP * * If P2P is supported then the driver must also implement these FSM * arcs: * RUNNING -> RUNNING_P2P * RUNNING_P2P -> RUNNING * RUNNING_P2P -> STOP * STOP -> RUNNING_P2P * Without P2P the driver must implement: * RUNNING -> STOP * STOP -> RUNNING * * The coding will step through multiple states for some combination * transitions; if all optional features are supported, this means the * following ones: * RESUMING -> STOP -> RUNNING_P2P * RESUMING -> STOP -> RUNNING_P2P -> RUNNING * RESUMING -> STOP -> STOP_COPY * RUNNING -> RUNNING_P2P -> STOP * RUNNING -> RUNNING_P2P -> STOP -> RESUMING * RUNNING -> RUNNING_P2P -> STOP -> STOP_COPY * RUNNING_P2P -> STOP -> RESUMING * RUNNING_P2P -> STOP -> STOP_COPY * STOP -> RUNNING_P2P -> RUNNING * STOP_COPY -> STOP -> RESUMING * STOP_COPY -> STOP -> RUNNING_P2P * STOP_COPY -> STOP -> RUNNING_P2P -> RUNNING */ static const u8 vfio_from_fsm_table[VFIO_DEVICE_NUM_STATES][VFIO_DEVICE_NUM_STATES] = { [VFIO_DEVICE_STATE_STOP] = { [VFIO_DEVICE_STATE_STOP] = VFIO_DEVICE_STATE_STOP, [VFIO_DEVICE_STATE_RUNNING] = VFIO_DEVICE_STATE_RUNNING_P2P, [VFIO_DEVICE_STATE_STOP_COPY] = VFIO_DEVICE_STATE_STOP_COPY, [VFIO_DEVICE_STATE_RESUMING] = VFIO_DEVICE_STATE_RESUMING, [VFIO_DEVICE_STATE_RUNNING_P2P] = VFIO_DEVICE_STATE_RUNNING_P2P, [VFIO_DEVICE_STATE_ERROR] = VFIO_DEVICE_STATE_ERROR, }, [VFIO_DEVICE_STATE_RUNNING] = { [VFIO_DEVICE_STATE_STOP] = VFIO_DEVICE_STATE_RUNNING_P2P, [VFIO_DEVICE_STATE_RUNNING] = VFIO_DEVICE_STATE_RUNNING, [VFIO_DEVICE_STATE_STOP_COPY] = VFIO_DEVICE_STATE_RUNNING_P2P, [VFIO_DEVICE_STATE_RESUMING] = VFIO_DEVICE_STATE_RUNNING_P2P, [VFIO_DEVICE_STATE_RUNNING_P2P] = VFIO_DEVICE_STATE_RUNNING_P2P, [VFIO_DEVICE_STATE_ERROR] = VFIO_DEVICE_STATE_ERROR, }, [VFIO_DEVICE_STATE_STOP_COPY] = { [VFIO_DEVICE_STATE_STOP] = VFIO_DEVICE_STATE_STOP, [VFIO_DEVICE_STATE_RUNNING] = VFIO_DEVICE_STATE_STOP, [VFIO_DEVICE_STATE_STOP_COPY] = VFIO_DEVICE_STATE_STOP_COPY, [VFIO_DEVICE_STATE_RESUMING] = VFIO_DEVICE_STATE_STOP, [VFIO_DEVICE_STATE_RUNNING_P2P] = VFIO_DEVICE_STATE_STOP, [VFIO_DEVICE_STATE_ERROR] = VFIO_DEVICE_STATE_ERROR, }, [VFIO_DEVICE_STATE_RESUMING] = { [VFIO_DEVICE_STATE_STOP] = VFIO_DEVICE_STATE_STOP, [VFIO_DEVICE_STATE_RUNNING] = VFIO_DEVICE_STATE_STOP, [VFIO_DEVICE_STATE_STOP_COPY] = VFIO_DEVICE_STATE_STOP, [VFIO_DEVICE_STATE_RESUMING] = VFIO_DEVICE_STATE_RESUMING, [VFIO_DEVICE_STATE_RUNNING_P2P] = VFIO_DEVICE_STATE_STOP, [VFIO_DEVICE_STATE_ERROR] = VFIO_DEVICE_STATE_ERROR, }, [VFIO_DEVICE_STATE_RUNNING_P2P] = { [VFIO_DEVICE_STATE_STOP] = VFIO_DEVICE_STATE_STOP, [VFIO_DEVICE_STATE_RUNNING] = VFIO_DEVICE_STATE_RUNNING, [VFIO_DEVICE_STATE_STOP_COPY] = VFIO_DEVICE_STATE_STOP, [VFIO_DEVICE_STATE_RESUMING] = VFIO_DEVICE_STATE_STOP, [VFIO_DEVICE_STATE_RUNNING_P2P] = VFIO_DEVICE_STATE_RUNNING_P2P, [VFIO_DEVICE_STATE_ERROR] = VFIO_DEVICE_STATE_ERROR, }, [VFIO_DEVICE_STATE_ERROR] = { [VFIO_DEVICE_STATE_STOP] = VFIO_DEVICE_STATE_ERROR, [VFIO_DEVICE_STATE_RUNNING] = VFIO_DEVICE_STATE_ERROR, [VFIO_DEVICE_STATE_STOP_COPY] = VFIO_DEVICE_STATE_ERROR, [VFIO_DEVICE_STATE_RESUMING] = VFIO_DEVICE_STATE_ERROR, [VFIO_DEVICE_STATE_RUNNING_P2P] = VFIO_DEVICE_STATE_ERROR, [VFIO_DEVICE_STATE_ERROR] = VFIO_DEVICE_STATE_ERROR, }, }; static const unsigned int state_flags_table[VFIO_DEVICE_NUM_STATES] = { [VFIO_DEVICE_STATE_STOP] = VFIO_MIGRATION_STOP_COPY, [VFIO_DEVICE_STATE_RUNNING] = VFIO_MIGRATION_STOP_COPY, [VFIO_DEVICE_STATE_STOP_COPY] = VFIO_MIGRATION_STOP_COPY, [VFIO_DEVICE_STATE_RESUMING] = VFIO_MIGRATION_STOP_COPY, [VFIO_DEVICE_STATE_RUNNING_P2P] = VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_P2P, [VFIO_DEVICE_STATE_ERROR] = ~0U, }; if (WARN_ON(cur_fsm >= ARRAY_SIZE(vfio_from_fsm_table) || (state_flags_table[cur_fsm] & device->migration_flags) != state_flags_table[cur_fsm])) return -EINVAL; if (new_fsm >= ARRAY_SIZE(vfio_from_fsm_table) || (state_flags_table[new_fsm] & device->migration_flags) != state_flags_table[new_fsm]) return -EINVAL; /* * Arcs touching optional and unsupported states are skipped over. The * driver will instead see an arc from the original state to the next * logical state, as per the above comment. */ *next_fsm = vfio_from_fsm_table[cur_fsm][new_fsm]; while ((state_flags_table[*next_fsm] & device->migration_flags) != state_flags_table[*next_fsm]) *next_fsm = vfio_from_fsm_table[*next_fsm][new_fsm]; return (*next_fsm != VFIO_DEVICE_STATE_ERROR) ? 0 : -EINVAL; } EXPORT_SYMBOL_GPL(vfio_mig_get_next_state); /* * Convert the drivers's struct file into a FD number and return it to userspace */ static int vfio_ioct_mig_return_fd(struct file *filp, void __user *arg, struct vfio_device_feature_mig_state *mig) { int ret; int fd; fd = get_unused_fd_flags(O_CLOEXEC); if (fd < 0) { ret = fd; goto out_fput; } mig->data_fd = fd; if (copy_to_user(arg, mig, sizeof(*mig))) { ret = -EFAULT; goto out_put_unused; } fd_install(fd, filp); return 0; out_put_unused: put_unused_fd(fd); out_fput: fput(filp); return ret; } static int vfio_ioctl_device_feature_mig_device_state(struct vfio_device *device, u32 flags, void __user *arg, size_t argsz) { size_t minsz = offsetofend(struct vfio_device_feature_mig_state, data_fd); struct vfio_device_feature_mig_state mig; struct file *filp = NULL; int ret; if (!device->ops->migration_set_state || !device->ops->migration_get_state) return -ENOTTY; ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET | VFIO_DEVICE_FEATURE_GET, sizeof(mig)); if (ret != 1) return ret; if (copy_from_user(&mig, arg, minsz)) return -EFAULT; if (flags & VFIO_DEVICE_FEATURE_GET) { enum vfio_device_mig_state curr_state; ret = device->ops->migration_get_state(device, &curr_state); if (ret) return ret; mig.device_state = curr_state; goto out_copy; } /* Handle the VFIO_DEVICE_FEATURE_SET */ filp = device->ops->migration_set_state(device, mig.device_state); if (IS_ERR(filp) || !filp) goto out_copy; return vfio_ioct_mig_return_fd(filp, arg, &mig); out_copy: mig.data_fd = -1; if (copy_to_user(arg, &mig, sizeof(mig))) return -EFAULT; if (IS_ERR(filp)) return PTR_ERR(filp); return 0; } static int vfio_ioctl_device_feature_migration(struct vfio_device *device, u32 flags, void __user *arg, size_t argsz) { struct vfio_device_feature_migration mig = { .flags = device->migration_flags, }; int ret; if (!device->ops->migration_set_state || !device->ops->migration_get_state) return -ENOTTY; ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_GET, sizeof(mig)); if (ret != 1) return ret; if (copy_to_user(arg, &mig, sizeof(mig))) return -EFAULT; return 0; } static int vfio_ioctl_device_feature(struct vfio_device *device, struct vfio_device_feature __user *arg) { size_t minsz = offsetofend(struct vfio_device_feature, flags); struct vfio_device_feature feature; if (copy_from_user(&feature, arg, minsz)) return -EFAULT; if (feature.argsz < minsz) return -EINVAL; /* Check unknown flags */ if (feature.flags & ~(VFIO_DEVICE_FEATURE_MASK | VFIO_DEVICE_FEATURE_SET | VFIO_DEVICE_FEATURE_GET | VFIO_DEVICE_FEATURE_PROBE)) return -EINVAL; /* GET & SET are mutually exclusive except with PROBE */ if (!(feature.flags & VFIO_DEVICE_FEATURE_PROBE) && (feature.flags & VFIO_DEVICE_FEATURE_SET) && (feature.flags & VFIO_DEVICE_FEATURE_GET)) return -EINVAL; switch (feature.flags & VFIO_DEVICE_FEATURE_MASK) { case VFIO_DEVICE_FEATURE_MIGRATION: return vfio_ioctl_device_feature_migration( device, feature.flags, arg->data, feature.argsz - minsz); case VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE: return vfio_ioctl_device_feature_mig_device_state( device, feature.flags, arg->data, feature.argsz - minsz); default: if (unlikely(!device->ops->device_feature)) return -EINVAL; return device->ops->device_feature(device, feature.flags, arg->data, feature.argsz - minsz); } } static long vfio_device_fops_unl_ioctl(struct file *filep, unsigned int cmd, unsigned long arg) { struct vfio_device *device = filep->private_data; switch (cmd) { case VFIO_DEVICE_FEATURE: return vfio_ioctl_device_feature(device, (void __user *)arg); default: if (unlikely(!device->ops->ioctl)) return -EINVAL; return device->ops->ioctl(device, cmd, arg); } } static ssize_t vfio_device_fops_read(struct file *filep, char __user *buf, size_t count, loff_t *ppos) { struct vfio_device *device = filep->private_data; if (unlikely(!device->ops->read)) return -EINVAL; return device->ops->read(device, buf, count, ppos); } static ssize_t vfio_device_fops_write(struct file *filep, const char __user *buf, size_t count, loff_t *ppos) { struct vfio_device *device = filep->private_data; if (unlikely(!device->ops->write)) return -EINVAL; return device->ops->write(device, buf, count, ppos); } static int vfio_device_fops_mmap(struct file *filep, struct vm_area_struct *vma) { struct vfio_device *device = filep->private_data; if (unlikely(!device->ops->mmap)) return -EINVAL; return device->ops->mmap(device, vma); } static const struct file_operations vfio_device_fops = { .owner = THIS_MODULE, .release = vfio_device_fops_release, .read = vfio_device_fops_read, .write = vfio_device_fops_write, .unlocked_ioctl = vfio_device_fops_unl_ioctl, .compat_ioctl = compat_ptr_ioctl, .mmap = vfio_device_fops_mmap, }; /* * External user API, exported by symbols to be linked dynamically. * * The protocol includes: * 1. do normal VFIO init operation: * - opening a new container; * - attaching group(s) to it; * - setting an IOMMU driver for a container. * When IOMMU is set for a container, all groups in it are * considered ready to use by an external user. * * 2. User space passes a group fd to an external user. * The external user calls vfio_group_get_external_user() * to verify that: * - the group is initialized; * - IOMMU is set for it. * If both checks passed, vfio_group_get_external_user() * increments the container user counter to prevent * the VFIO group from disposal before KVM exits. * * 3. The external user calls vfio_external_user_iommu_id() * to know an IOMMU ID. * * 4. When the external KVM finishes, it calls * vfio_group_put_external_user() to release the VFIO group. * This call decrements the container user counter. */ struct vfio_group *vfio_group_get_external_user(struct file *filep) { struct vfio_group *group = filep->private_data; int ret; if (filep->f_op != &vfio_group_fops) return ERR_PTR(-EINVAL); ret = vfio_group_add_container_user(group); if (ret) return ERR_PTR(ret); /* * Since the caller holds the fget on the file group->users must be >= 1 */ vfio_group_get(group); return group; } EXPORT_SYMBOL_GPL(vfio_group_get_external_user); void vfio_group_put_external_user(struct vfio_group *group) { vfio_group_try_dissolve_container(group); vfio_group_put(group); } EXPORT_SYMBOL_GPL(vfio_group_put_external_user); bool vfio_external_group_match_file(struct vfio_group *test_group, struct file *filep) { struct vfio_group *group = filep->private_data; return (filep->f_op == &vfio_group_fops) && (group == test_group); } EXPORT_SYMBOL_GPL(vfio_external_group_match_file); int vfio_external_user_iommu_id(struct vfio_group *group) { return iommu_group_id(group->iommu_group); } EXPORT_SYMBOL_GPL(vfio_external_user_iommu_id); long vfio_external_check_extension(struct vfio_group *group, unsigned long arg) { return vfio_ioctl_check_extension(group->container, arg); } EXPORT_SYMBOL_GPL(vfio_external_check_extension); /* * Sub-module support */ /* * Helper for managing a buffer of info chain capabilities, allocate or * reallocate a buffer with additional @size, filling in @id and @version * of the capability. A pointer to the new capability is returned. * * NB. The chain is based at the head of the buffer, so new entries are * added to the tail, vfio_info_cap_shift() should be called to fixup the * next offsets prior to copying to the user buffer. */ struct vfio_info_cap_header *vfio_info_cap_add(struct vfio_info_cap *caps, size_t size, u16 id, u16 version) { void *buf; struct vfio_info_cap_header *header, *tmp; buf = krealloc(caps->buf, caps->size + size, GFP_KERNEL); if (!buf) { kfree(caps->buf); caps->size = 0; return ERR_PTR(-ENOMEM); } caps->buf = buf; header = buf + caps->size; /* Eventually copied to user buffer, zero */ memset(header, 0, size); header->id = id; header->version = version; /* Add to the end of the capability chain */ for (tmp = buf; tmp->next; tmp = buf + tmp->next) ; /* nothing */ tmp->next = caps->size; caps->size += size; return header; } EXPORT_SYMBOL_GPL(vfio_info_cap_add); void vfio_info_cap_shift(struct vfio_info_cap *caps, size_t offset) { struct vfio_info_cap_header *tmp; void *buf = (void *)caps->buf; for (tmp = buf; tmp->next; tmp = buf + tmp->next - offset) tmp->next += offset; } EXPORT_SYMBOL(vfio_info_cap_shift); int vfio_info_add_capability(struct vfio_info_cap *caps, struct vfio_info_cap_header *cap, size_t size) { struct vfio_info_cap_header *header; header = vfio_info_cap_add(caps, size, cap->id, cap->version); if (IS_ERR(header)) return PTR_ERR(header); memcpy(header + 1, cap + 1, size - sizeof(*header)); return 0; } EXPORT_SYMBOL(vfio_info_add_capability); int vfio_set_irqs_validate_and_prepare(struct vfio_irq_set *hdr, int num_irqs, int max_irq_type, size_t *data_size) { unsigned long minsz; size_t size; minsz = offsetofend(struct vfio_irq_set, count); if ((hdr->argsz < minsz) || (hdr->index >= max_irq_type) || (hdr->count >= (U32_MAX - hdr->start)) || (hdr->flags & ~(VFIO_IRQ_SET_DATA_TYPE_MASK | VFIO_IRQ_SET_ACTION_TYPE_MASK))) return -EINVAL; if (data_size) *data_size = 0; if (hdr->start >= num_irqs || hdr->start + hdr->count > num_irqs) return -EINVAL; switch (hdr->flags & VFIO_IRQ_SET_DATA_TYPE_MASK) { case VFIO_IRQ_SET_DATA_NONE: size = 0; break; case VFIO_IRQ_SET_DATA_BOOL: size = sizeof(uint8_t); break; case VFIO_IRQ_SET_DATA_EVENTFD: size = sizeof(int32_t); break; default: return -EINVAL; } if (size) { if (hdr->argsz - minsz < hdr->count * size) return -EINVAL; if (!data_size) return -EINVAL; *data_size = hdr->count * size; } return 0; } EXPORT_SYMBOL(vfio_set_irqs_validate_and_prepare); /* * Pin a set of guest PFNs and return their associated host PFNs for local * domain only. * @device [in] : device * @user_pfn [in]: array of user/guest PFNs to be pinned. * @npage [in] : count of elements in user_pfn array. This count should not * be greater VFIO_PIN_PAGES_MAX_ENTRIES. * @prot [in] : protection flags * @phys_pfn[out]: array of host PFNs * Return error or number of pages pinned. */ int vfio_pin_pages(struct vfio_device *device, unsigned long *user_pfn, int npage, int prot, unsigned long *phys_pfn) { struct vfio_container *container; struct vfio_group *group = device->group; struct vfio_iommu_driver *driver; int ret; if (!user_pfn || !phys_pfn || !npage) return -EINVAL; if (npage > VFIO_PIN_PAGES_MAX_ENTRIES) return -E2BIG; if (group->dev_counter > 1) return -EINVAL; ret = vfio_group_add_container_user(group); if (ret) return ret; container = group->container; driver = container->iommu_driver; if (likely(driver && driver->ops->pin_pages)) ret = driver->ops->pin_pages(container->iommu_data, group->iommu_group, user_pfn, npage, prot, phys_pfn); else ret = -ENOTTY; vfio_group_try_dissolve_container(group); return ret; } EXPORT_SYMBOL(vfio_pin_pages); /* * Unpin set of host PFNs for local domain only. * @device [in] : device * @user_pfn [in]: array of user/guest PFNs to be unpinned. Number of user/guest * PFNs should not be greater than VFIO_PIN_PAGES_MAX_ENTRIES. * @npage [in] : count of elements in user_pfn array. This count should not * be greater than VFIO_PIN_PAGES_MAX_ENTRIES. * Return error or number of pages unpinned. */ int vfio_unpin_pages(struct vfio_device *device, unsigned long *user_pfn, int npage) { struct vfio_container *container; struct vfio_iommu_driver *driver; int ret; if (!user_pfn || !npage) return -EINVAL; if (npage > VFIO_PIN_PAGES_MAX_ENTRIES) return -E2BIG; ret = vfio_group_add_container_user(device->group); if (ret) return ret; container = device->group->container; driver = container->iommu_driver; if (likely(driver && driver->ops->unpin_pages)) ret = driver->ops->unpin_pages(container->iommu_data, user_pfn, npage); else ret = -ENOTTY; vfio_group_try_dissolve_container(device->group); return ret; } EXPORT_SYMBOL(vfio_unpin_pages); /* * This interface allows the CPUs to perform some sort of virtual DMA on * behalf of the device. * * CPUs read/write from/into a range of IOVAs pointing to user space memory * into/from a kernel buffer. * * As the read/write of user space memory is conducted via the CPUs and is * not a real device DMA, it is not necessary to pin the user space memory. * * @device [in] : VFIO device * @user_iova [in] : base IOVA of a user space buffer * @data [in] : pointer to kernel buffer * @len [in] : kernel buffer length * @write : indicate read or write * Return error code on failure or 0 on success. */ int vfio_dma_rw(struct vfio_device *device, dma_addr_t user_iova, void *data, size_t len, bool write) { struct vfio_container *container; struct vfio_iommu_driver *driver; int ret = 0; if (!data || len <= 0) return -EINVAL; ret = vfio_group_add_container_user(device->group); if (ret) return ret; container = device->group->container; driver = container->iommu_driver; if (likely(driver && driver->ops->dma_rw)) ret = driver->ops->dma_rw(container->iommu_data, user_iova, data, len, write); else ret = -ENOTTY; vfio_group_try_dissolve_container(device->group); return ret; } EXPORT_SYMBOL(vfio_dma_rw); static int vfio_register_iommu_notifier(struct vfio_group *group, unsigned long *events, struct notifier_block *nb) { struct vfio_container *container; struct vfio_iommu_driver *driver; int ret; ret = vfio_group_add_container_user(group); if (ret) return -EINVAL; container = group->container; driver = container->iommu_driver; if (likely(driver && driver->ops->register_notifier)) ret = driver->ops->register_notifier(container->iommu_data, events, nb); else ret = -ENOTTY; vfio_group_try_dissolve_container(group); return ret; } static int vfio_unregister_iommu_notifier(struct vfio_group *group, struct notifier_block *nb) { struct vfio_container *container; struct vfio_iommu_driver *driver; int ret; ret = vfio_group_add_container_user(group); if (ret) return -EINVAL; container = group->container; driver = container->iommu_driver; if (likely(driver && driver->ops->unregister_notifier)) ret = driver->ops->unregister_notifier(container->iommu_data, nb); else ret = -ENOTTY; vfio_group_try_dissolve_container(group); return ret; } void vfio_group_set_kvm(struct vfio_group *group, struct kvm *kvm) { group->kvm = kvm; blocking_notifier_call_chain(&group->notifier, VFIO_GROUP_NOTIFY_SET_KVM, kvm); } EXPORT_SYMBOL_GPL(vfio_group_set_kvm); static int vfio_register_group_notifier(struct vfio_group *group, unsigned long *events, struct notifier_block *nb) { int ret; bool set_kvm = false; if (*events & VFIO_GROUP_NOTIFY_SET_KVM) set_kvm = true; /* clear known events */ *events &= ~VFIO_GROUP_NOTIFY_SET_KVM; /* refuse to continue if still events remaining */ if (*events) return -EINVAL; ret = vfio_group_add_container_user(group); if (ret) return -EINVAL; ret = blocking_notifier_chain_register(&group->notifier, nb); /* * The attaching of kvm and vfio_group might already happen, so * here we replay once upon registration. */ if (!ret && set_kvm && group->kvm) blocking_notifier_call_chain(&group->notifier, VFIO_GROUP_NOTIFY_SET_KVM, group->kvm); vfio_group_try_dissolve_container(group); return ret; } static int vfio_unregister_group_notifier(struct vfio_group *group, struct notifier_block *nb) { int ret; ret = vfio_group_add_container_user(group); if (ret) return -EINVAL; ret = blocking_notifier_chain_unregister(&group->notifier, nb); vfio_group_try_dissolve_container(group); return ret; } int vfio_register_notifier(struct vfio_device *device, enum vfio_notify_type type, unsigned long *events, struct notifier_block *nb) { struct vfio_group *group = device->group; int ret; if (!nb || !events || (*events == 0)) return -EINVAL; switch (type) { case VFIO_IOMMU_NOTIFY: ret = vfio_register_iommu_notifier(group, events, nb); break; case VFIO_GROUP_NOTIFY: ret = vfio_register_group_notifier(group, events, nb); break; default: ret = -EINVAL; } return ret; } EXPORT_SYMBOL(vfio_register_notifier); int vfio_unregister_notifier(struct vfio_device *device, enum vfio_notify_type type, struct notifier_block *nb) { struct vfio_group *group = device->group; int ret; if (!nb) return -EINVAL; switch (type) { case VFIO_IOMMU_NOTIFY: ret = vfio_unregister_iommu_notifier(group, nb); break; case VFIO_GROUP_NOTIFY: ret = vfio_unregister_group_notifier(group, nb); break; default: ret = -EINVAL; } return ret; } EXPORT_SYMBOL(vfio_unregister_notifier); /* * Module/class support */ static char *vfio_devnode(struct device *dev, umode_t *mode) { return kasprintf(GFP_KERNEL, "vfio/%s", dev_name(dev)); } static struct miscdevice vfio_dev = { .minor = VFIO_MINOR, .name = "vfio", .fops = &vfio_fops, .nodename = "vfio/vfio", .mode = S_IRUGO | S_IWUGO, }; static int __init vfio_init(void) { int ret; ida_init(&vfio.group_ida); mutex_init(&vfio.group_lock); mutex_init(&vfio.iommu_drivers_lock); INIT_LIST_HEAD(&vfio.group_list); INIT_LIST_HEAD(&vfio.iommu_drivers_list); ret = misc_register(&vfio_dev); if (ret) { pr_err("vfio: misc device register failed\n"); return ret; } /* /dev/vfio/$GROUP */ vfio.class = class_create(THIS_MODULE, "vfio"); if (IS_ERR(vfio.class)) { ret = PTR_ERR(vfio.class); goto err_class; } vfio.class->devnode = vfio_devnode; ret = alloc_chrdev_region(&vfio.group_devt, 0, MINORMASK + 1, "vfio"); if (ret) goto err_alloc_chrdev; pr_info(DRIVER_DESC " version: " DRIVER_VERSION "\n"); #ifdef CONFIG_VFIO_NOIOMMU vfio_register_iommu_driver(&vfio_noiommu_ops); #endif return 0; err_alloc_chrdev: class_destroy(vfio.class); vfio.class = NULL; err_class: misc_deregister(&vfio_dev); return ret; } static void __exit vfio_cleanup(void) { WARN_ON(!list_empty(&vfio.group_list)); #ifdef CONFIG_VFIO_NOIOMMU vfio_unregister_iommu_driver(&vfio_noiommu_ops); #endif ida_destroy(&vfio.group_ida); unregister_chrdev_region(vfio.group_devt, MINORMASK + 1); class_destroy(vfio.class); vfio.class = NULL; misc_deregister(&vfio_dev); xa_destroy(&vfio_device_set_xa); } module_init(vfio_init); module_exit(vfio_cleanup); MODULE_VERSION(DRIVER_VERSION); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR(DRIVER_AUTHOR); MODULE_DESCRIPTION(DRIVER_DESC); MODULE_ALIAS_MISCDEV(VFIO_MINOR); MODULE_ALIAS("devname:vfio/vfio"); MODULE_SOFTDEP("post: vfio_iommu_type1 vfio_iommu_spapr_tce");