/* Copyright (C) 2009 Red Hat, Inc. * Author: Michael S. Tsirkin * * This work is licensed under the terms of the GNU GPL, version 2. * * virtio-net server in host kernel. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "vhost.h" static int experimental_zcopytx = 1; module_param(experimental_zcopytx, int, 0444); MODULE_PARM_DESC(experimental_zcopytx, "Enable Zero Copy TX;" " 1 -Enable; 0 - Disable"); /* Max number of bytes transferred before requeueing the job. * Using this limit prevents one virtqueue from starving others. */ #define VHOST_NET_WEIGHT 0x80000 /* MAX number of TX used buffers for outstanding zerocopy */ #define VHOST_MAX_PEND 128 #define VHOST_GOODCOPY_LEN 256 /* * For transmit, used buffer len is unused; we override it to track buffer * status internally; used for zerocopy tx only. */ /* Lower device DMA failed */ #define VHOST_DMA_FAILED_LEN 3 /* Lower device DMA done */ #define VHOST_DMA_DONE_LEN 2 /* Lower device DMA in progress */ #define VHOST_DMA_IN_PROGRESS 1 /* Buffer unused */ #define VHOST_DMA_CLEAR_LEN 0 #define VHOST_DMA_IS_DONE(len) ((len) >= VHOST_DMA_DONE_LEN) enum { VHOST_NET_FEATURES = VHOST_FEATURES | (1ULL << VHOST_NET_F_VIRTIO_NET_HDR) | (1ULL << VIRTIO_NET_F_MRG_RXBUF), }; enum { VHOST_NET_VQ_RX = 0, VHOST_NET_VQ_TX = 1, VHOST_NET_VQ_MAX = 2, }; struct vhost_ubuf_ref { struct kref kref; wait_queue_head_t wait; struct vhost_virtqueue *vq; }; struct vhost_net_virtqueue { struct vhost_virtqueue vq; /* hdr is used to store the virtio header. * Since each iovec has >= 1 byte length, we never need more than * header length entries to store the header. */ struct iovec hdr[sizeof(struct virtio_net_hdr_mrg_rxbuf)]; size_t vhost_hlen; size_t sock_hlen; /* vhost zerocopy support fields below: */ /* last used idx for outstanding DMA zerocopy buffers */ int upend_idx; /* first used idx for DMA done zerocopy buffers */ int done_idx; /* an array of userspace buffers info */ struct ubuf_info *ubuf_info; /* Reference counting for outstanding ubufs. * Protected by vq mutex. Writers must also take device mutex. */ struct vhost_ubuf_ref *ubufs; }; struct vhost_net { struct vhost_dev dev; struct vhost_net_virtqueue vqs[VHOST_NET_VQ_MAX]; struct vhost_poll poll[VHOST_NET_VQ_MAX]; /* Number of TX recently submitted. * Protected by tx vq lock. */ unsigned tx_packets; /* Number of times zerocopy TX recently failed. * Protected by tx vq lock. */ unsigned tx_zcopy_err; /* Flush in progress. Protected by tx vq lock. */ bool tx_flush; }; static unsigned vhost_zcopy_mask __read_mostly; void vhost_enable_zcopy(int vq) { vhost_zcopy_mask |= 0x1 << vq; } static void vhost_zerocopy_done_signal(struct kref *kref) { struct vhost_ubuf_ref *ubufs = container_of(kref, struct vhost_ubuf_ref, kref); wake_up(&ubufs->wait); } struct vhost_ubuf_ref *vhost_ubuf_alloc(struct vhost_virtqueue *vq, bool zcopy) { struct vhost_ubuf_ref *ubufs; /* No zero copy backend? Nothing to count. */ if (!zcopy) return NULL; ubufs = kmalloc(sizeof(*ubufs), GFP_KERNEL); if (!ubufs) return ERR_PTR(-ENOMEM); kref_init(&ubufs->kref); init_waitqueue_head(&ubufs->wait); ubufs->vq = vq; return ubufs; } void vhost_ubuf_put(struct vhost_ubuf_ref *ubufs) { kref_put(&ubufs->kref, vhost_zerocopy_done_signal); } void vhost_ubuf_put_and_wait(struct vhost_ubuf_ref *ubufs) { kref_put(&ubufs->kref, vhost_zerocopy_done_signal); wait_event(ubufs->wait, !atomic_read(&ubufs->kref.refcount)); kfree(ubufs); } static void vhost_net_clear_ubuf_info(struct vhost_net *n) { bool zcopy; int i; for (i = 0; i < n->dev.nvqs; ++i) { zcopy = vhost_zcopy_mask & (0x1 << i); if (zcopy) kfree(n->vqs[i].ubuf_info); } } int vhost_net_set_ubuf_info(struct vhost_net *n) { bool zcopy; int i; for (i = 0; i < n->dev.nvqs; ++i) { zcopy = vhost_zcopy_mask & (0x1 << i); if (!zcopy) continue; n->vqs[i].ubuf_info = kmalloc(sizeof(*n->vqs[i].ubuf_info) * UIO_MAXIOV, GFP_KERNEL); if (!n->vqs[i].ubuf_info) goto err; } return 0; err: while (i--) { zcopy = vhost_zcopy_mask & (0x1 << i); if (!zcopy) continue; kfree(n->vqs[i].ubuf_info); } return -ENOMEM; } void vhost_net_vq_reset(struct vhost_net *n) { int i; for (i = 0; i < VHOST_NET_VQ_MAX; i++) { n->vqs[i].done_idx = 0; n->vqs[i].upend_idx = 0; n->vqs[i].ubufs = NULL; kfree(n->vqs[i].ubuf_info); n->vqs[i].ubuf_info = NULL; n->vqs[i].vhost_hlen = 0; n->vqs[i].sock_hlen = 0; } } static void vhost_net_tx_packet(struct vhost_net *net) { ++net->tx_packets; if (net->tx_packets < 1024) return; net->tx_packets = 0; net->tx_zcopy_err = 0; } static void vhost_net_tx_err(struct vhost_net *net) { ++net->tx_zcopy_err; } static bool vhost_net_tx_select_zcopy(struct vhost_net *net) { /* TX flush waits for outstanding DMAs to be done. * Don't start new DMAs. */ return !net->tx_flush && net->tx_packets / 64 >= net->tx_zcopy_err; } static bool vhost_sock_zcopy(struct socket *sock) { return unlikely(experimental_zcopytx) && sock_flag(sock->sk, SOCK_ZEROCOPY); } /* Pop first len bytes from iovec. Return number of segments used. */ static int move_iovec_hdr(struct iovec *from, struct iovec *to, size_t len, int iov_count) { int seg = 0; size_t size; while (len && seg < iov_count) { size = min(from->iov_len, len); to->iov_base = from->iov_base; to->iov_len = size; from->iov_len -= size; from->iov_base += size; len -= size; ++from; ++to; ++seg; } return seg; } /* Copy iovec entries for len bytes from iovec. */ static void copy_iovec_hdr(const struct iovec *from, struct iovec *to, size_t len, int iovcount) { int seg = 0; size_t size; while (len && seg < iovcount) { size = min(from->iov_len, len); to->iov_base = from->iov_base; to->iov_len = size; len -= size; ++from; ++to; ++seg; } } /* In case of DMA done not in order in lower device driver for some reason. * upend_idx is used to track end of used idx, done_idx is used to track head * of used idx. Once lower device DMA done contiguously, we will signal KVM * guest used idx. */ static int vhost_zerocopy_signal_used(struct vhost_net *net, struct vhost_virtqueue *vq) { struct vhost_net_virtqueue *nvq = container_of(vq, struct vhost_net_virtqueue, vq); int i; int j = 0; for (i = nvq->done_idx; i != nvq->upend_idx; i = (i + 1) % UIO_MAXIOV) { if (vq->heads[i].len == VHOST_DMA_FAILED_LEN) vhost_net_tx_err(net); if (VHOST_DMA_IS_DONE(vq->heads[i].len)) { vq->heads[i].len = VHOST_DMA_CLEAR_LEN; vhost_add_used_and_signal(vq->dev, vq, vq->heads[i].id, 0); ++j; } else break; } if (j) nvq->done_idx = i; return j; } static void vhost_zerocopy_callback(struct ubuf_info *ubuf, bool success) { struct vhost_ubuf_ref *ubufs = ubuf->ctx; struct vhost_virtqueue *vq = ubufs->vq; int cnt = atomic_read(&ubufs->kref.refcount); /* * Trigger polling thread if guest stopped submitting new buffers: * in this case, the refcount after decrement will eventually reach 1 * so here it is 2. * We also trigger polling periodically after each 16 packets * (the value 16 here is more or less arbitrary, it's tuned to trigger * less than 10% of times). */ if (cnt <= 2 || !(cnt % 16)) vhost_poll_queue(&vq->poll); /* set len to mark this desc buffers done DMA */ vq->heads[ubuf->desc].len = success ? VHOST_DMA_DONE_LEN : VHOST_DMA_FAILED_LEN; vhost_ubuf_put(ubufs); } /* Expects to be always run from workqueue - which acts as * read-size critical section for our kind of RCU. */ static void handle_tx(struct vhost_net *net) { struct vhost_net_virtqueue *nvq = &net->vqs[VHOST_NET_VQ_TX]; struct vhost_virtqueue *vq = &nvq->vq; unsigned out, in, s; int head; struct msghdr msg = { .msg_name = NULL, .msg_namelen = 0, .msg_control = NULL, .msg_controllen = 0, .msg_iov = vq->iov, .msg_flags = MSG_DONTWAIT, }; size_t len, total_len = 0; int err; size_t hdr_size; struct socket *sock; struct vhost_ubuf_ref *uninitialized_var(ubufs); bool zcopy, zcopy_used; /* TODO: check that we are running from vhost_worker? */ sock = rcu_dereference_check(vq->private_data, 1); if (!sock) return; mutex_lock(&vq->mutex); vhost_disable_notify(&net->dev, vq); hdr_size = nvq->vhost_hlen; zcopy = nvq->ubufs; for (;;) { /* Release DMAs done buffers first */ if (zcopy) vhost_zerocopy_signal_used(net, vq); head = vhost_get_vq_desc(&net->dev, vq, vq->iov, ARRAY_SIZE(vq->iov), &out, &in, NULL, NULL); /* On error, stop handling until the next kick. */ if (unlikely(head < 0)) break; /* Nothing new? Wait for eventfd to tell us they refilled. */ if (head == vq->num) { int num_pends; /* If more outstanding DMAs, queue the work. * Handle upend_idx wrap around */ num_pends = likely(nvq->upend_idx >= nvq->done_idx) ? (nvq->upend_idx - nvq->done_idx) : (nvq->upend_idx + UIO_MAXIOV - nvq->done_idx); if (unlikely(num_pends > VHOST_MAX_PEND)) break; if (unlikely(vhost_enable_notify(&net->dev, vq))) { vhost_disable_notify(&net->dev, vq); continue; } break; } if (in) { vq_err(vq, "Unexpected descriptor format for TX: " "out %d, int %d\n", out, in); break; } /* Skip header. TODO: support TSO. */ s = move_iovec_hdr(vq->iov, nvq->hdr, hdr_size, out); msg.msg_iovlen = out; len = iov_length(vq->iov, out); /* Sanity check */ if (!len) { vq_err(vq, "Unexpected header len for TX: " "%zd expected %zd\n", iov_length(nvq->hdr, s), hdr_size); break; } zcopy_used = zcopy && (len >= VHOST_GOODCOPY_LEN || nvq->upend_idx != nvq->done_idx); /* use msg_control to pass vhost zerocopy ubuf info to skb */ if (zcopy_used) { vq->heads[nvq->upend_idx].id = head; if (!vhost_net_tx_select_zcopy(net) || len < VHOST_GOODCOPY_LEN) { /* copy don't need to wait for DMA done */ vq->heads[nvq->upend_idx].len = VHOST_DMA_DONE_LEN; msg.msg_control = NULL; msg.msg_controllen = 0; ubufs = NULL; } else { struct ubuf_info *ubuf; ubuf = nvq->ubuf_info + nvq->upend_idx; vq->heads[nvq->upend_idx].len = VHOST_DMA_IN_PROGRESS; ubuf->callback = vhost_zerocopy_callback; ubuf->ctx = nvq->ubufs; ubuf->desc = nvq->upend_idx; msg.msg_control = ubuf; msg.msg_controllen = sizeof(ubuf); ubufs = nvq->ubufs; kref_get(&ubufs->kref); } nvq->upend_idx = (nvq->upend_idx + 1) % UIO_MAXIOV; } /* TODO: Check specific error and bomb out unless ENOBUFS? */ err = sock->ops->sendmsg(NULL, sock, &msg, len); if (unlikely(err < 0)) { if (zcopy_used) { if (ubufs) vhost_ubuf_put(ubufs); nvq->upend_idx = ((unsigned)nvq->upend_idx - 1) % UIO_MAXIOV; } vhost_discard_vq_desc(vq, 1); break; } if (err != len) pr_debug("Truncated TX packet: " " len %d != %zd\n", err, len); if (!zcopy_used) vhost_add_used_and_signal(&net->dev, vq, head, 0); else vhost_zerocopy_signal_used(net, vq); total_len += len; vhost_net_tx_packet(net); if (unlikely(total_len >= VHOST_NET_WEIGHT)) { vhost_poll_queue(&vq->poll); break; } } mutex_unlock(&vq->mutex); } static int peek_head_len(struct sock *sk) { struct sk_buff *head; int len = 0; unsigned long flags; spin_lock_irqsave(&sk->sk_receive_queue.lock, flags); head = skb_peek(&sk->sk_receive_queue); if (likely(head)) { len = head->len; if (vlan_tx_tag_present(head)) len += VLAN_HLEN; } spin_unlock_irqrestore(&sk->sk_receive_queue.lock, flags); return len; } /* This is a multi-buffer version of vhost_get_desc, that works if * vq has read descriptors only. * @vq - the relevant virtqueue * @datalen - data length we'll be reading * @iovcount - returned count of io vectors we fill * @log - vhost log * @log_num - log offset * @quota - headcount quota, 1 for big buffer * returns number of buffer heads allocated, negative on error */ static int get_rx_bufs(struct vhost_virtqueue *vq, struct vring_used_elem *heads, int datalen, unsigned *iovcount, struct vhost_log *log, unsigned *log_num, unsigned int quota) { unsigned int out, in; int seg = 0; int headcount = 0; unsigned d; int r, nlogs = 0; while (datalen > 0 && headcount < quota) { if (unlikely(seg >= UIO_MAXIOV)) { r = -ENOBUFS; goto err; } d = vhost_get_vq_desc(vq->dev, vq, vq->iov + seg, ARRAY_SIZE(vq->iov) - seg, &out, &in, log, log_num); if (d == vq->num) { r = 0; goto err; } if (unlikely(out || in <= 0)) { vq_err(vq, "unexpected descriptor format for RX: " "out %d, in %d\n", out, in); r = -EINVAL; goto err; } if (unlikely(log)) { nlogs += *log_num; log += *log_num; } heads[headcount].id = d; heads[headcount].len = iov_length(vq->iov + seg, in); datalen -= heads[headcount].len; ++headcount; seg += in; } heads[headcount - 1].len += datalen; *iovcount = seg; if (unlikely(log)) *log_num = nlogs; return headcount; err: vhost_discard_vq_desc(vq, headcount); return r; } /* Expects to be always run from workqueue - which acts as * read-size critical section for our kind of RCU. */ static void handle_rx(struct vhost_net *net) { struct vhost_net_virtqueue *nvq = &net->vqs[VHOST_NET_VQ_RX]; struct vhost_virtqueue *vq = &nvq->vq; unsigned uninitialized_var(in), log; struct vhost_log *vq_log; struct msghdr msg = { .msg_name = NULL, .msg_namelen = 0, .msg_control = NULL, /* FIXME: get and handle RX aux data. */ .msg_controllen = 0, .msg_iov = vq->iov, .msg_flags = MSG_DONTWAIT, }; struct virtio_net_hdr_mrg_rxbuf hdr = { .hdr.flags = 0, .hdr.gso_type = VIRTIO_NET_HDR_GSO_NONE }; size_t total_len = 0; int err, mergeable; s16 headcount; size_t vhost_hlen, sock_hlen; size_t vhost_len, sock_len; /* TODO: check that we are running from vhost_worker? */ struct socket *sock = rcu_dereference_check(vq->private_data, 1); if (!sock) return; mutex_lock(&vq->mutex); vhost_disable_notify(&net->dev, vq); vhost_hlen = nvq->vhost_hlen; sock_hlen = nvq->sock_hlen; vq_log = unlikely(vhost_has_feature(&net->dev, VHOST_F_LOG_ALL)) ? vq->log : NULL; mergeable = vhost_has_feature(&net->dev, VIRTIO_NET_F_MRG_RXBUF); while ((sock_len = peek_head_len(sock->sk))) { sock_len += sock_hlen; vhost_len = sock_len + vhost_hlen; headcount = get_rx_bufs(vq, vq->heads, vhost_len, &in, vq_log, &log, likely(mergeable) ? UIO_MAXIOV : 1); /* On error, stop handling until the next kick. */ if (unlikely(headcount < 0)) break; /* OK, now we need to know about added descriptors. */ if (!headcount) { if (unlikely(vhost_enable_notify(&net->dev, vq))) { /* They have slipped one in as we were * doing that: check again. */ vhost_disable_notify(&net->dev, vq); continue; } /* Nothing new? Wait for eventfd to tell us * they refilled. */ break; } /* We don't need to be notified again. */ if (unlikely((vhost_hlen))) /* Skip header. TODO: support TSO. */ move_iovec_hdr(vq->iov, nvq->hdr, vhost_hlen, in); else /* Copy the header for use in VIRTIO_NET_F_MRG_RXBUF: * needed because recvmsg can modify msg_iov. */ copy_iovec_hdr(vq->iov, nvq->hdr, sock_hlen, in); msg.msg_iovlen = in; err = sock->ops->recvmsg(NULL, sock, &msg, sock_len, MSG_DONTWAIT | MSG_TRUNC); /* Userspace might have consumed the packet meanwhile: * it's not supposed to do this usually, but might be hard * to prevent. Discard data we got (if any) and keep going. */ if (unlikely(err != sock_len)) { pr_debug("Discarded rx packet: " " len %d, expected %zd\n", err, sock_len); vhost_discard_vq_desc(vq, headcount); continue; } if (unlikely(vhost_hlen) && memcpy_toiovecend(nvq->hdr, (unsigned char *)&hdr, 0, vhost_hlen)) { vq_err(vq, "Unable to write vnet_hdr at addr %p\n", vq->iov->iov_base); break; } /* TODO: Should check and handle checksum. */ if (likely(mergeable) && memcpy_toiovecend(nvq->hdr, (unsigned char *)&headcount, offsetof(typeof(hdr), num_buffers), sizeof hdr.num_buffers)) { vq_err(vq, "Failed num_buffers write"); vhost_discard_vq_desc(vq, headcount); break; } vhost_add_used_and_signal_n(&net->dev, vq, vq->heads, headcount); if (unlikely(vq_log)) vhost_log_write(vq, vq_log, log, vhost_len); total_len += vhost_len; if (unlikely(total_len >= VHOST_NET_WEIGHT)) { vhost_poll_queue(&vq->poll); break; } } mutex_unlock(&vq->mutex); } static void handle_tx_kick(struct vhost_work *work) { struct vhost_virtqueue *vq = container_of(work, struct vhost_virtqueue, poll.work); struct vhost_net *net = container_of(vq->dev, struct vhost_net, dev); handle_tx(net); } static void handle_rx_kick(struct vhost_work *work) { struct vhost_virtqueue *vq = container_of(work, struct vhost_virtqueue, poll.work); struct vhost_net *net = container_of(vq->dev, struct vhost_net, dev); handle_rx(net); } static void handle_tx_net(struct vhost_work *work) { struct vhost_net *net = container_of(work, struct vhost_net, poll[VHOST_NET_VQ_TX].work); handle_tx(net); } static void handle_rx_net(struct vhost_work *work) { struct vhost_net *net = container_of(work, struct vhost_net, poll[VHOST_NET_VQ_RX].work); handle_rx(net); } static int vhost_net_open(struct inode *inode, struct file *f) { struct vhost_net *n = kmalloc(sizeof *n, GFP_KERNEL); struct vhost_dev *dev; struct vhost_virtqueue **vqs; int r, i; if (!n) return -ENOMEM; vqs = kmalloc(VHOST_NET_VQ_MAX * sizeof(*vqs), GFP_KERNEL); if (!vqs) { kfree(n); return -ENOMEM; } dev = &n->dev; vqs[VHOST_NET_VQ_TX] = &n->vqs[VHOST_NET_VQ_TX].vq; vqs[VHOST_NET_VQ_RX] = &n->vqs[VHOST_NET_VQ_RX].vq; n->vqs[VHOST_NET_VQ_TX].vq.handle_kick = handle_tx_kick; n->vqs[VHOST_NET_VQ_RX].vq.handle_kick = handle_rx_kick; for (i = 0; i < VHOST_NET_VQ_MAX; i++) { n->vqs[i].ubufs = NULL; n->vqs[i].ubuf_info = NULL; n->vqs[i].upend_idx = 0; n->vqs[i].done_idx = 0; n->vqs[i].vhost_hlen = 0; n->vqs[i].sock_hlen = 0; } r = vhost_dev_init(dev, vqs, VHOST_NET_VQ_MAX); if (r < 0) { kfree(n); kfree(vqs); return r; } vhost_poll_init(n->poll + VHOST_NET_VQ_TX, handle_tx_net, POLLOUT, dev); vhost_poll_init(n->poll + VHOST_NET_VQ_RX, handle_rx_net, POLLIN, dev); f->private_data = n; return 0; } static void vhost_net_disable_vq(struct vhost_net *n, struct vhost_virtqueue *vq) { struct vhost_net_virtqueue *nvq = container_of(vq, struct vhost_net_virtqueue, vq); struct vhost_poll *poll = n->poll + (nvq - n->vqs); if (!vq->private_data) return; vhost_poll_stop(poll); } static int vhost_net_enable_vq(struct vhost_net *n, struct vhost_virtqueue *vq) { struct vhost_net_virtqueue *nvq = container_of(vq, struct vhost_net_virtqueue, vq); struct vhost_poll *poll = n->poll + (nvq - n->vqs); struct socket *sock; sock = rcu_dereference_protected(vq->private_data, lockdep_is_held(&vq->mutex)); if (!sock) return 0; return vhost_poll_start(poll, sock->file); } static struct socket *vhost_net_stop_vq(struct vhost_net *n, struct vhost_virtqueue *vq) { struct socket *sock; mutex_lock(&vq->mutex); sock = rcu_dereference_protected(vq->private_data, lockdep_is_held(&vq->mutex)); vhost_net_disable_vq(n, vq); rcu_assign_pointer(vq->private_data, NULL); mutex_unlock(&vq->mutex); return sock; } static void vhost_net_stop(struct vhost_net *n, struct socket **tx_sock, struct socket **rx_sock) { *tx_sock = vhost_net_stop_vq(n, &n->vqs[VHOST_NET_VQ_TX].vq); *rx_sock = vhost_net_stop_vq(n, &n->vqs[VHOST_NET_VQ_RX].vq); } static void vhost_net_flush_vq(struct vhost_net *n, int index) { vhost_poll_flush(n->poll + index); vhost_poll_flush(&n->vqs[index].vq.poll); } static void vhost_net_flush(struct vhost_net *n) { vhost_net_flush_vq(n, VHOST_NET_VQ_TX); vhost_net_flush_vq(n, VHOST_NET_VQ_RX); if (n->vqs[VHOST_NET_VQ_TX].ubufs) { mutex_lock(&n->vqs[VHOST_NET_VQ_TX].vq.mutex); n->tx_flush = true; mutex_unlock(&n->vqs[VHOST_NET_VQ_TX].vq.mutex); /* Wait for all lower device DMAs done. */ vhost_ubuf_put_and_wait(n->vqs[VHOST_NET_VQ_TX].ubufs); mutex_lock(&n->vqs[VHOST_NET_VQ_TX].vq.mutex); n->tx_flush = false; kref_init(&n->vqs[VHOST_NET_VQ_TX].ubufs->kref); mutex_unlock(&n->vqs[VHOST_NET_VQ_TX].vq.mutex); } } static int vhost_net_release(struct inode *inode, struct file *f) { struct vhost_net *n = f->private_data; struct socket *tx_sock; struct socket *rx_sock; vhost_net_stop(n, &tx_sock, &rx_sock); vhost_net_flush(n); vhost_dev_stop(&n->dev); vhost_dev_cleanup(&n->dev, false); vhost_net_vq_reset(n); if (tx_sock) fput(tx_sock->file); if (rx_sock) fput(rx_sock->file); /* We do an extra flush before freeing memory, * since jobs can re-queue themselves. */ vhost_net_flush(n); kfree(n->dev.vqs); kfree(n); return 0; } static struct socket *get_raw_socket(int fd) { struct { struct sockaddr_ll sa; char buf[MAX_ADDR_LEN]; } uaddr; int uaddr_len = sizeof uaddr, r; struct socket *sock = sockfd_lookup(fd, &r); if (!sock) return ERR_PTR(-ENOTSOCK); /* Parameter checking */ if (sock->sk->sk_type != SOCK_RAW) { r = -ESOCKTNOSUPPORT; goto err; } r = sock->ops->getname(sock, (struct sockaddr *)&uaddr.sa, &uaddr_len, 0); if (r) goto err; if (uaddr.sa.sll_family != AF_PACKET) { r = -EPFNOSUPPORT; goto err; } return sock; err: fput(sock->file); return ERR_PTR(r); } static struct socket *get_tap_socket(int fd) { struct file *file = fget(fd); struct socket *sock; if (!file) return ERR_PTR(-EBADF); sock = tun_get_socket(file); if (!IS_ERR(sock)) return sock; sock = macvtap_get_socket(file); if (IS_ERR(sock)) fput(file); return sock; } static struct socket *get_socket(int fd) { struct socket *sock; /* special case to disable backend */ if (fd == -1) return NULL; sock = get_raw_socket(fd); if (!IS_ERR(sock)) return sock; sock = get_tap_socket(fd); if (!IS_ERR(sock)) return sock; return ERR_PTR(-ENOTSOCK); } static long vhost_net_set_backend(struct vhost_net *n, unsigned index, int fd) { struct socket *sock, *oldsock; struct vhost_virtqueue *vq; struct vhost_net_virtqueue *nvq; struct vhost_ubuf_ref *ubufs, *oldubufs = NULL; int r; mutex_lock(&n->dev.mutex); r = vhost_dev_check_owner(&n->dev); if (r) goto err; if (index >= VHOST_NET_VQ_MAX) { r = -ENOBUFS; goto err; } vq = &n->vqs[index].vq; nvq = &n->vqs[index]; mutex_lock(&vq->mutex); /* Verify that ring has been setup correctly. */ if (!vhost_vq_access_ok(vq)) { r = -EFAULT; goto err_vq; } sock = get_socket(fd); if (IS_ERR(sock)) { r = PTR_ERR(sock); goto err_vq; } /* start polling new socket */ oldsock = rcu_dereference_protected(vq->private_data, lockdep_is_held(&vq->mutex)); if (sock != oldsock) { ubufs = vhost_ubuf_alloc(vq, sock && vhost_sock_zcopy(sock)); if (IS_ERR(ubufs)) { r = PTR_ERR(ubufs); goto err_ubufs; } vhost_net_disable_vq(n, vq); rcu_assign_pointer(vq->private_data, sock); r = vhost_init_used(vq); if (r) goto err_used; r = vhost_net_enable_vq(n, vq); if (r) goto err_used; oldubufs = nvq->ubufs; nvq->ubufs = ubufs; n->tx_packets = 0; n->tx_zcopy_err = 0; n->tx_flush = false; } mutex_unlock(&vq->mutex); if (oldubufs) { vhost_ubuf_put_and_wait(oldubufs); mutex_lock(&vq->mutex); vhost_zerocopy_signal_used(n, vq); mutex_unlock(&vq->mutex); } if (oldsock) { vhost_net_flush_vq(n, index); fput(oldsock->file); } mutex_unlock(&n->dev.mutex); return 0; err_used: rcu_assign_pointer(vq->private_data, oldsock); vhost_net_enable_vq(n, vq); if (ubufs) vhost_ubuf_put_and_wait(ubufs); err_ubufs: fput(sock->file); err_vq: mutex_unlock(&vq->mutex); err: mutex_unlock(&n->dev.mutex); return r; } static long vhost_net_reset_owner(struct vhost_net *n) { struct socket *tx_sock = NULL; struct socket *rx_sock = NULL; long err; struct vhost_memory *memory; mutex_lock(&n->dev.mutex); err = vhost_dev_check_owner(&n->dev); if (err) goto done; memory = vhost_dev_reset_owner_prepare(); if (!memory) { err = -ENOMEM; goto done; } vhost_net_stop(n, &tx_sock, &rx_sock); vhost_net_flush(n); vhost_dev_reset_owner(&n->dev, memory); vhost_net_vq_reset(n); done: mutex_unlock(&n->dev.mutex); if (tx_sock) fput(tx_sock->file); if (rx_sock) fput(rx_sock->file); return err; } static int vhost_net_set_features(struct vhost_net *n, u64 features) { size_t vhost_hlen, sock_hlen, hdr_len; int i; hdr_len = (features & (1 << VIRTIO_NET_F_MRG_RXBUF)) ? sizeof(struct virtio_net_hdr_mrg_rxbuf) : sizeof(struct virtio_net_hdr); if (features & (1 << VHOST_NET_F_VIRTIO_NET_HDR)) { /* vhost provides vnet_hdr */ vhost_hlen = hdr_len; sock_hlen = 0; } else { /* socket provides vnet_hdr */ vhost_hlen = 0; sock_hlen = hdr_len; } mutex_lock(&n->dev.mutex); if ((features & (1 << VHOST_F_LOG_ALL)) && !vhost_log_access_ok(&n->dev)) { mutex_unlock(&n->dev.mutex); return -EFAULT; } n->dev.acked_features = features; smp_wmb(); for (i = 0; i < VHOST_NET_VQ_MAX; ++i) { mutex_lock(&n->vqs[i].vq.mutex); n->vqs[i].vhost_hlen = vhost_hlen; n->vqs[i].sock_hlen = sock_hlen; mutex_unlock(&n->vqs[i].vq.mutex); } vhost_net_flush(n); mutex_unlock(&n->dev.mutex); return 0; } static long vhost_net_set_owner(struct vhost_net *n) { int r; mutex_lock(&n->dev.mutex); r = vhost_net_set_ubuf_info(n); if (r) goto out; r = vhost_dev_set_owner(&n->dev); if (r) vhost_net_clear_ubuf_info(n); vhost_net_flush(n); out: mutex_unlock(&n->dev.mutex); return r; } static long vhost_net_ioctl(struct file *f, unsigned int ioctl, unsigned long arg) { struct vhost_net *n = f->private_data; void __user *argp = (void __user *)arg; u64 __user *featurep = argp; struct vhost_vring_file backend; u64 features; int r; switch (ioctl) { case VHOST_NET_SET_BACKEND: if (copy_from_user(&backend, argp, sizeof backend)) return -EFAULT; return vhost_net_set_backend(n, backend.index, backend.fd); case VHOST_GET_FEATURES: features = VHOST_NET_FEATURES; if (copy_to_user(featurep, &features, sizeof features)) return -EFAULT; return 0; case VHOST_SET_FEATURES: if (copy_from_user(&features, featurep, sizeof features)) return -EFAULT; if (features & ~VHOST_NET_FEATURES) return -EOPNOTSUPP; return vhost_net_set_features(n, features); case VHOST_RESET_OWNER: return vhost_net_reset_owner(n); case VHOST_SET_OWNER: return vhost_net_set_owner(n); default: mutex_lock(&n->dev.mutex); r = vhost_dev_ioctl(&n->dev, ioctl, argp); if (r == -ENOIOCTLCMD) r = vhost_vring_ioctl(&n->dev, ioctl, argp); else vhost_net_flush(n); mutex_unlock(&n->dev.mutex); return r; } } #ifdef CONFIG_COMPAT static long vhost_net_compat_ioctl(struct file *f, unsigned int ioctl, unsigned long arg) { return vhost_net_ioctl(f, ioctl, (unsigned long)compat_ptr(arg)); } #endif static const struct file_operations vhost_net_fops = { .owner = THIS_MODULE, .release = vhost_net_release, .unlocked_ioctl = vhost_net_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = vhost_net_compat_ioctl, #endif .open = vhost_net_open, .llseek = noop_llseek, }; static struct miscdevice vhost_net_misc = { .minor = VHOST_NET_MINOR, .name = "vhost-net", .fops = &vhost_net_fops, }; static int vhost_net_init(void) { if (experimental_zcopytx) vhost_enable_zcopy(VHOST_NET_VQ_TX); return misc_register(&vhost_net_misc); } module_init(vhost_net_init); static void vhost_net_exit(void) { misc_deregister(&vhost_net_misc); } module_exit(vhost_net_exit); MODULE_VERSION("0.0.1"); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Michael S. Tsirkin"); MODULE_DESCRIPTION("Host kernel accelerator for virtio net"); MODULE_ALIAS_MISCDEV(VHOST_NET_MINOR); MODULE_ALIAS("devname:vhost-net");