/* * BRIEF MODULE DESCRIPTION * Au1100 LCD Driver. * * Rewritten for 2.6 by Embedded Alley Solutions * , based on submissions by * Karl Lessard * * * PM support added by Rodolfo Giometti * Cursor enable/disable by Rodolfo Giometti * * Copyright 2002 MontaVista Software * Author: MontaVista Software, Inc. * ppopov@mvista.com or source@mvista.com * * Copyright 2002 Alchemy Semiconductor * Author: Alchemy Semiconductor * * Based on: * linux/drivers/video/skeletonfb.c -- Skeleton for a frame buffer device * Created 28 Dec 1997 by Geert Uytterhoeven * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DEBUG 0 #include "au1100fb.h" #define DRIVER_NAME "au1100fb" #define DRIVER_DESC "LCD controller driver for AU1100 processors" #define to_au1100fb_device(_info) \ (_info ? container_of(_info, struct au1100fb_device, info) : NULL); /* Bitfields format supported by the controller. Note that the order of formats * SHOULD be the same as in the LCD_CONTROL_SBPPF field, so we can retrieve the * right pixel format by doing rgb_bitfields[LCD_CONTROL_SBPPF_XXX >> LCD_CONTROL_SBPPF] */ struct fb_bitfield rgb_bitfields[][4] = { /* Red, Green, Blue, Transp */ { { 10, 6, 0 }, { 5, 5, 0 }, { 0, 5, 0 }, { 0, 0, 0 } }, { { 11, 5, 0 }, { 5, 6, 0 }, { 0, 5, 0 }, { 0, 0, 0 } }, { { 11, 5, 0 }, { 6, 5, 0 }, { 0, 6, 0 }, { 0, 0, 0 } }, { { 10, 5, 0 }, { 5, 5, 0 }, { 0, 5, 0 }, { 15, 1, 0 } }, { { 11, 5, 0 }, { 6, 5, 0 }, { 1, 5, 0 }, { 0, 1, 0 } }, /* The last is used to describe 12bpp format */ { { 8, 4, 0 }, { 4, 4, 0 }, { 0, 4, 0 }, { 0, 0, 0 } }, }; static struct fb_fix_screeninfo au1100fb_fix = { .id = "AU1100 FB", .xpanstep = 1, .ypanstep = 1, .type = FB_TYPE_PACKED_PIXELS, .accel = FB_ACCEL_NONE, }; static struct fb_var_screeninfo au1100fb_var = { .activate = FB_ACTIVATE_NOW, .height = -1, .width = -1, .vmode = FB_VMODE_NONINTERLACED, }; /* fb_blank * Blank the screen. Depending on the mode, the screen will be * activated with the backlight color, or desactivated */ static int au1100fb_fb_blank(int blank_mode, struct fb_info *fbi) { struct au1100fb_device *fbdev = to_au1100fb_device(fbi); print_dbg("fb_blank %d %p", blank_mode, fbi); switch (blank_mode) { case VESA_NO_BLANKING: /* Turn on panel */ fbdev->regs->lcd_control |= LCD_CONTROL_GO; wmb(); /* drain writebuffer */ break; case VESA_VSYNC_SUSPEND: case VESA_HSYNC_SUSPEND: case VESA_POWERDOWN: /* Turn off panel */ fbdev->regs->lcd_control &= ~LCD_CONTROL_GO; wmb(); /* drain writebuffer */ break; default: break; } return 0; } /* * Set hardware with var settings. This will enable the controller with a specific * mode, normally validated with the fb_check_var method */ int au1100fb_setmode(struct au1100fb_device *fbdev) { struct fb_info *info = &fbdev->info; u32 words; int index; if (!fbdev) return -EINVAL; /* Update var-dependent FB info */ if (panel_is_active(fbdev->panel) || panel_is_color(fbdev->panel)) { if (info->var.bits_per_pixel <= 8) { /* palettized */ info->var.red.offset = 0; info->var.red.length = info->var.bits_per_pixel; info->var.red.msb_right = 0; info->var.green.offset = 0; info->var.green.length = info->var.bits_per_pixel; info->var.green.msb_right = 0; info->var.blue.offset = 0; info->var.blue.length = info->var.bits_per_pixel; info->var.blue.msb_right = 0; info->var.transp.offset = 0; info->var.transp.length = 0; info->var.transp.msb_right = 0; info->fix.visual = FB_VISUAL_PSEUDOCOLOR; info->fix.line_length = info->var.xres_virtual / (8/info->var.bits_per_pixel); } else { /* non-palettized */ index = (fbdev->panel->control_base & LCD_CONTROL_SBPPF_MASK) >> LCD_CONTROL_SBPPF_BIT; info->var.red = rgb_bitfields[index][0]; info->var.green = rgb_bitfields[index][1]; info->var.blue = rgb_bitfields[index][2]; info->var.transp = rgb_bitfields[index][3]; info->fix.visual = FB_VISUAL_TRUECOLOR; info->fix.line_length = info->var.xres_virtual << 1; /* depth=16 */ } } else { /* mono */ info->fix.visual = FB_VISUAL_MONO10; info->fix.line_length = info->var.xres_virtual / 8; } info->screen_size = info->fix.line_length * info->var.yres_virtual; info->var.rotate = ((fbdev->panel->control_base&LCD_CONTROL_SM_MASK) \ >> LCD_CONTROL_SM_BIT) * 90; /* Determine BPP mode and format */ fbdev->regs->lcd_control = fbdev->panel->control_base; fbdev->regs->lcd_horztiming = fbdev->panel->horztiming; fbdev->regs->lcd_verttiming = fbdev->panel->verttiming; fbdev->regs->lcd_clkcontrol = fbdev->panel->clkcontrol_base; fbdev->regs->lcd_intenable = 0; fbdev->regs->lcd_intstatus = 0; fbdev->regs->lcd_dmaaddr0 = LCD_DMA_SA_N(fbdev->fb_phys); if (panel_is_dual(fbdev->panel)) { /* Second panel display seconf half of screen if possible, * otherwise display the same as the first panel */ if (info->var.yres_virtual >= (info->var.yres << 1)) { fbdev->regs->lcd_dmaaddr1 = LCD_DMA_SA_N(fbdev->fb_phys + (info->fix.line_length * (info->var.yres_virtual >> 1))); } else { fbdev->regs->lcd_dmaaddr1 = LCD_DMA_SA_N(fbdev->fb_phys); } } words = info->fix.line_length / sizeof(u32); if (!info->var.rotate || (info->var.rotate == 180)) { words *= info->var.yres_virtual; if (info->var.rotate /* 180 */) { words -= (words % 8); /* should be divisable by 8 */ } } fbdev->regs->lcd_words = LCD_WRD_WRDS_N(words); fbdev->regs->lcd_pwmdiv = 0; fbdev->regs->lcd_pwmhi = 0; /* Resume controller */ fbdev->regs->lcd_control |= LCD_CONTROL_GO; mdelay(10); au1100fb_fb_blank(VESA_NO_BLANKING, info); return 0; } /* fb_setcolreg * Set color in LCD palette. */ int au1100fb_fb_setcolreg(unsigned regno, unsigned red, unsigned green, unsigned blue, unsigned transp, struct fb_info *fbi) { struct au1100fb_device *fbdev; u32 *palette; u32 value; fbdev = to_au1100fb_device(fbi); palette = fbdev->regs->lcd_pallettebase; if (regno > (AU1100_LCD_NBR_PALETTE_ENTRIES - 1)) return -EINVAL; if (fbi->var.grayscale) { /* Convert color to grayscale */ red = green = blue = (19595 * red + 38470 * green + 7471 * blue) >> 16; } if (fbi->fix.visual == FB_VISUAL_TRUECOLOR) { /* Place color in the pseudopalette */ if (regno > 16) return -EINVAL; palette = (u32*)fbi->pseudo_palette; red >>= (16 - fbi->var.red.length); green >>= (16 - fbi->var.green.length); blue >>= (16 - fbi->var.blue.length); value = (red << fbi->var.red.offset) | (green << fbi->var.green.offset)| (blue << fbi->var.blue.offset); value &= 0xFFFF; } else if (panel_is_active(fbdev->panel)) { /* COLOR TFT PALLETTIZED (use RGB 565) */ value = (red & 0xF800)|((green >> 5) & 0x07E0)|((blue >> 11) & 0x001F); value &= 0xFFFF; } else if (panel_is_color(fbdev->panel)) { /* COLOR STN MODE */ value = (((panel_swap_rgb(fbdev->panel) ? blue : red) >> 12) & 0x000F) | ((green >> 8) & 0x00F0) | (((panel_swap_rgb(fbdev->panel) ? red : blue) >> 4) & 0x0F00); value &= 0xFFF; } else { /* MONOCHROME MODE */ value = (green >> 12) & 0x000F; value &= 0xF; } palette[regno] = value; return 0; } /* fb_pan_display * Pan display in x and/or y as specified */ int au1100fb_fb_pan_display(struct fb_var_screeninfo *var, struct fb_info *fbi) { struct au1100fb_device *fbdev; int dy; fbdev = to_au1100fb_device(fbi); print_dbg("fb_pan_display %p %p", var, fbi); if (!var || !fbdev) { return -EINVAL; } if (var->xoffset - fbi->var.xoffset) { /* No support for X panning for now! */ return -EINVAL; } print_dbg("fb_pan_display 2 %p %p", var, fbi); dy = var->yoffset - fbi->var.yoffset; if (dy) { u32 dmaaddr; print_dbg("Panning screen of %d lines", dy); dmaaddr = fbdev->regs->lcd_dmaaddr0; dmaaddr += (fbi->fix.line_length * dy); /* TODO: Wait for current frame to finished */ fbdev->regs->lcd_dmaaddr0 = LCD_DMA_SA_N(dmaaddr); if (panel_is_dual(fbdev->panel)) { dmaaddr = fbdev->regs->lcd_dmaaddr1; dmaaddr += (fbi->fix.line_length * dy); fbdev->regs->lcd_dmaaddr0 = LCD_DMA_SA_N(dmaaddr); } } print_dbg("fb_pan_display 3 %p %p", var, fbi); return 0; } /* fb_mmap * Map video memory in user space. We don't use the generic fb_mmap method mainly * to allow the use of the TLB streaming flag (CCA=6) */ int au1100fb_fb_mmap(struct fb_info *fbi, struct vm_area_struct *vma) { struct au1100fb_device *fbdev; fbdev = to_au1100fb_device(fbi); vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); pgprot_val(vma->vm_page_prot) |= (6 << 9); //CCA=6 return vm_iomap_memory(vma, fbdev->fb_phys, fbdev->fb_len); } static struct fb_ops au1100fb_ops = { .owner = THIS_MODULE, .fb_setcolreg = au1100fb_fb_setcolreg, .fb_blank = au1100fb_fb_blank, .fb_pan_display = au1100fb_fb_pan_display, .fb_fillrect = cfb_fillrect, .fb_copyarea = cfb_copyarea, .fb_imageblit = cfb_imageblit, .fb_mmap = au1100fb_fb_mmap, }; /*-------------------------------------------------------------------------*/ static int au1100fb_setup(struct au1100fb_device *fbdev) { char *this_opt, *options; int num_panels = ARRAY_SIZE(known_lcd_panels); if (num_panels <= 0) { print_err("No LCD panels supported by driver!"); return -ENODEV; } if (fb_get_options(DRIVER_NAME, &options)) return -ENODEV; if (!options) return -ENODEV; while ((this_opt = strsep(&options, ",")) != NULL) { /* Panel option */ if (!strncmp(this_opt, "panel:", 6)) { int i; this_opt += 6; for (i = 0; i < num_panels; i++) { if (!strncmp(this_opt, known_lcd_panels[i].name, strlen(this_opt))) { fbdev->panel = &known_lcd_panels[i]; fbdev->panel_idx = i; break; } } if (i >= num_panels) { print_warn("Panel '%s' not supported!", this_opt); return -ENODEV; } } /* Unsupported option */ else print_warn("Unsupported option \"%s\"", this_opt); } print_info("Panel=%s", fbdev->panel->name); return 0; } static int au1100fb_drv_probe(struct platform_device *dev) { struct au1100fb_device *fbdev; struct resource *regs_res; unsigned long page; struct clk *c; /* Allocate new device private */ fbdev = devm_kzalloc(&dev->dev, sizeof(*fbdev), GFP_KERNEL); if (!fbdev) return -ENOMEM; if (au1100fb_setup(fbdev)) goto failed; platform_set_drvdata(dev, (void *)fbdev); /* Allocate region for our registers and map them */ regs_res = platform_get_resource(dev, IORESOURCE_MEM, 0); if (!regs_res) { print_err("fail to retrieve registers resource"); return -EFAULT; } au1100fb_fix.mmio_start = regs_res->start; au1100fb_fix.mmio_len = resource_size(regs_res); if (!devm_request_mem_region(&dev->dev, au1100fb_fix.mmio_start, au1100fb_fix.mmio_len, DRIVER_NAME)) { print_err("fail to lock memory region at 0x%08lx", au1100fb_fix.mmio_start); return -EBUSY; } fbdev->regs = (struct au1100fb_regs*)KSEG1ADDR(au1100fb_fix.mmio_start); print_dbg("Register memory map at %p", fbdev->regs); print_dbg("phys=0x%08x, size=%d", fbdev->regs_phys, fbdev->regs_len); c = clk_get(NULL, "lcd_intclk"); if (!IS_ERR(c)) { fbdev->lcdclk = c; clk_set_rate(c, 48000000); clk_prepare_enable(c); } /* Allocate the framebuffer to the maximum screen size * nbr of video buffers */ fbdev->fb_len = fbdev->panel->xres * fbdev->panel->yres * (fbdev->panel->bpp >> 3) * AU1100FB_NBR_VIDEO_BUFFERS; fbdev->fb_mem = dmam_alloc_coherent(&dev->dev, PAGE_ALIGN(fbdev->fb_len), &fbdev->fb_phys, GFP_KERNEL); if (!fbdev->fb_mem) { print_err("fail to allocate framebuffer (size: %dK))", fbdev->fb_len / 1024); return -ENOMEM; } au1100fb_fix.smem_start = fbdev->fb_phys; au1100fb_fix.smem_len = fbdev->fb_len; /* * Set page reserved so that mmap will work. This is necessary * since we'll be remapping normal memory. */ for (page = (unsigned long)fbdev->fb_mem; page < PAGE_ALIGN((unsigned long)fbdev->fb_mem + fbdev->fb_len); page += PAGE_SIZE) { #ifdef CONFIG_DMA_NONCOHERENT SetPageReserved(virt_to_page(CAC_ADDR((void *)page))); #else SetPageReserved(virt_to_page(page)); #endif } print_dbg("Framebuffer memory map at %p", fbdev->fb_mem); print_dbg("phys=0x%08x, size=%dK", fbdev->fb_phys, fbdev->fb_len / 1024); /* load the panel info into the var struct */ au1100fb_var.bits_per_pixel = fbdev->panel->bpp; au1100fb_var.xres = fbdev->panel->xres; au1100fb_var.xres_virtual = au1100fb_var.xres; au1100fb_var.yres = fbdev->panel->yres; au1100fb_var.yres_virtual = au1100fb_var.yres; fbdev->info.screen_base = fbdev->fb_mem; fbdev->info.fbops = &au1100fb_ops; fbdev->info.fix = au1100fb_fix; fbdev->info.pseudo_palette = devm_kzalloc(&dev->dev, sizeof(u32) * 16, GFP_KERNEL); if (!fbdev->info.pseudo_palette) return -ENOMEM; if (fb_alloc_cmap(&fbdev->info.cmap, AU1100_LCD_NBR_PALETTE_ENTRIES, 0) < 0) { print_err("Fail to allocate colormap (%d entries)", AU1100_LCD_NBR_PALETTE_ENTRIES); return -EFAULT; } fbdev->info.var = au1100fb_var; /* Set h/w registers */ au1100fb_setmode(fbdev); /* Register new framebuffer */ if (register_framebuffer(&fbdev->info) < 0) { print_err("cannot register new framebuffer"); goto failed; } return 0; failed: if (fbdev->lcdclk) { clk_disable_unprepare(fbdev->lcdclk); clk_put(fbdev->lcdclk); } if (fbdev->info.cmap.len != 0) { fb_dealloc_cmap(&fbdev->info.cmap); } return -ENODEV; } int au1100fb_drv_remove(struct platform_device *dev) { struct au1100fb_device *fbdev = NULL; if (!dev) return -ENODEV; fbdev = platform_get_drvdata(dev); #if !defined(CONFIG_FRAMEBUFFER_CONSOLE) && defined(CONFIG_LOGO) au1100fb_fb_blank(VESA_POWERDOWN, &fbdev->info); #endif fbdev->regs->lcd_control &= ~LCD_CONTROL_GO; /* Clean up all probe data */ unregister_framebuffer(&fbdev->info); fb_dealloc_cmap(&fbdev->info.cmap); if (fbdev->lcdclk) { clk_disable_unprepare(fbdev->lcdclk); clk_put(fbdev->lcdclk); } return 0; } #ifdef CONFIG_PM static struct au1100fb_regs fbregs; int au1100fb_drv_suspend(struct platform_device *dev, pm_message_t state) { struct au1100fb_device *fbdev = platform_get_drvdata(dev); if (!fbdev) return 0; /* Blank the LCD */ au1100fb_fb_blank(VESA_POWERDOWN, &fbdev->info); if (fbdev->lcdclk) clk_disable(fbdev->lcdclk); memcpy(&fbregs, fbdev->regs, sizeof(struct au1100fb_regs)); return 0; } int au1100fb_drv_resume(struct platform_device *dev) { struct au1100fb_device *fbdev = platform_get_drvdata(dev); if (!fbdev) return 0; memcpy(fbdev->regs, &fbregs, sizeof(struct au1100fb_regs)); if (fbdev->lcdclk) clk_enable(fbdev->lcdclk); /* Unblank the LCD */ au1100fb_fb_blank(VESA_NO_BLANKING, &fbdev->info); return 0; } #else #define au1100fb_drv_suspend NULL #define au1100fb_drv_resume NULL #endif static struct platform_driver au1100fb_driver = { .driver = { .name = "au1100-lcd", }, .probe = au1100fb_drv_probe, .remove = au1100fb_drv_remove, .suspend = au1100fb_drv_suspend, .resume = au1100fb_drv_resume, }; module_platform_driver(au1100fb_driver); MODULE_DESCRIPTION(DRIVER_DESC); MODULE_LICENSE("GPL");