/* * linux/drivers/video/fbmon.c * * Copyright (C) 2002 James Simmons <jsimmons@users.sf.net> * * Credits: * * The EDID Parser is a conglomeration from the following sources: * * 1. SciTech SNAP Graphics Architecture * Copyright (C) 1991-2002 SciTech Software, Inc. All rights reserved. * * 2. XFree86 4.3.0, interpret_edid.c * Copyright 1998 by Egbert Eich <Egbert.Eich@Physik.TU-Darmstadt.DE> * * 3. John Fremlin <vii@users.sourceforge.net> and * Ani Joshi <ajoshi@unixbox.com> * * Generalized Timing Formula is derived from: * * GTF Spreadsheet by Andy Morrish (1/5/97) * available at http://www.vesa.org * * This file is subject to the terms and conditions of the GNU General Public * License. See the file COPYING in the main directory of this archive * for more details. * */ #include <linux/fb.h> #include <linux/module.h> #include <linux/pci.h> #include <video/edid.h> #ifdef CONFIG_PPC_OF #include <asm/prom.h> #include <asm/pci-bridge.h> #endif #include "edid.h" /* * EDID parser */ #undef DEBUG /* define this for verbose EDID parsing output */ #ifdef DEBUG #define DPRINTK(fmt, args...) printk(fmt,## args) #else #define DPRINTK(fmt, args...) #endif #define FBMON_FIX_HEADER 1 #define FBMON_FIX_INPUT 2 #define FBMON_FIX_TIMINGS 3 #ifdef CONFIG_FB_MODE_HELPERS struct broken_edid { u8 manufacturer[4]; u32 model; u32 fix; }; static const struct broken_edid brokendb[] = { /* DEC FR-PCXAV-YZ */ { .manufacturer = "DEC", .model = 0x073a, .fix = FBMON_FIX_HEADER, }, /* ViewSonic PF775a */ { .manufacturer = "VSC", .model = 0x5a44, .fix = FBMON_FIX_INPUT, }, /* Sharp UXGA? */ { .manufacturer = "SHP", .model = 0x138e, .fix = FBMON_FIX_TIMINGS, }, }; static const unsigned char edid_v1_header[] = { 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00 }; static void copy_string(unsigned char *c, unsigned char *s) { int i; c = c + 5; for (i = 0; (i < 13 && *c != 0x0A); i++) *(s++) = *(c++); *s = 0; while (i-- && (*--s == 0x20)) *s = 0; } static int edid_is_serial_block(unsigned char *block) { if ((block[0] == 0x00) && (block[1] == 0x00) && (block[2] == 0x00) && (block[3] == 0xff) && (block[4] == 0x00)) return 1; else return 0; } static int edid_is_ascii_block(unsigned char *block) { if ((block[0] == 0x00) && (block[1] == 0x00) && (block[2] == 0x00) && (block[3] == 0xfe) && (block[4] == 0x00)) return 1; else return 0; } static int edid_is_limits_block(unsigned char *block) { if ((block[0] == 0x00) && (block[1] == 0x00) && (block[2] == 0x00) && (block[3] == 0xfd) && (block[4] == 0x00)) return 1; else return 0; } static int edid_is_monitor_block(unsigned char *block) { if ((block[0] == 0x00) && (block[1] == 0x00) && (block[2] == 0x00) && (block[3] == 0xfc) && (block[4] == 0x00)) return 1; else return 0; } static int edid_is_timing_block(unsigned char *block) { if ((block[0] != 0x00) || (block[1] != 0x00) || (block[2] != 0x00) || (block[4] != 0x00)) return 1; else return 0; } static int check_edid(unsigned char *edid) { unsigned char *block = edid + ID_MANUFACTURER_NAME, manufacturer[4]; unsigned char *b; u32 model; int i, fix = 0, ret = 0; manufacturer[0] = ((block[0] & 0x7c) >> 2) + '@'; manufacturer[1] = ((block[0] & 0x03) << 3) + ((block[1] & 0xe0) >> 5) + '@'; manufacturer[2] = (block[1] & 0x1f) + '@'; manufacturer[3] = 0; model = block[2] + (block[3] << 8); for (i = 0; i < ARRAY_SIZE(brokendb); i++) { if (!strncmp(manufacturer, brokendb[i].manufacturer, 4) && brokendb[i].model == model) { fix = brokendb[i].fix; break; } } switch (fix) { case FBMON_FIX_HEADER: for (i = 0; i < 8; i++) { if (edid[i] != edid_v1_header[i]) { ret = fix; break; } } break; case FBMON_FIX_INPUT: b = edid + EDID_STRUCT_DISPLAY; /* Only if display is GTF capable will the input type be reset to analog */ if (b[4] & 0x01 && b[0] & 0x80) ret = fix; break; case FBMON_FIX_TIMINGS: b = edid + DETAILED_TIMING_DESCRIPTIONS_START; ret = fix; for (i = 0; i < 4; i++) { if (edid_is_limits_block(b)) { ret = 0; break; } b += DETAILED_TIMING_DESCRIPTION_SIZE; } break; } if (ret) printk("fbmon: The EDID Block of " "Manufacturer: %s Model: 0x%x is known to " "be broken,\n", manufacturer, model); return ret; } static void fix_edid(unsigned char *edid, int fix) { int i; unsigned char *b, csum = 0; switch (fix) { case FBMON_FIX_HEADER: printk("fbmon: trying a header reconstruct\n"); memcpy(edid, edid_v1_header, 8); break; case FBMON_FIX_INPUT: printk("fbmon: trying to fix input type\n"); b = edid + EDID_STRUCT_DISPLAY; b[0] &= ~0x80; edid[127] += 0x80; break; case FBMON_FIX_TIMINGS: printk("fbmon: trying to fix monitor timings\n"); b = edid + DETAILED_TIMING_DESCRIPTIONS_START; for (i = 0; i < 4; i++) { if (!(edid_is_serial_block(b) || edid_is_ascii_block(b) || edid_is_monitor_block(b) || edid_is_timing_block(b))) { b[0] = 0x00; b[1] = 0x00; b[2] = 0x00; b[3] = 0xfd; b[4] = 0x00; b[5] = 60; /* vfmin */ b[6] = 60; /* vfmax */ b[7] = 30; /* hfmin */ b[8] = 75; /* hfmax */ b[9] = 17; /* pixclock - 170 MHz*/ b[10] = 0; /* GTF */ break; } b += DETAILED_TIMING_DESCRIPTION_SIZE; } for (i = 0; i < EDID_LENGTH - 1; i++) csum += edid[i]; edid[127] = 256 - csum; break; } } static int edid_checksum(unsigned char *edid) { unsigned char i, csum = 0, all_null = 0; int err = 0, fix = check_edid(edid); if (fix) fix_edid(edid, fix); for (i = 0; i < EDID_LENGTH; i++) { csum += edid[i]; all_null |= edid[i]; } if (csum == 0x00 && all_null) { /* checksum passed, everything's good */ err = 1; } return err; } static int edid_check_header(unsigned char *edid) { int i, err = 1, fix = check_edid(edid); if (fix) fix_edid(edid, fix); for (i = 0; i < 8; i++) { if (edid[i] != edid_v1_header[i]) err = 0; } return err; } static void parse_vendor_block(unsigned char *block, struct fb_monspecs *specs) { specs->manufacturer[0] = ((block[0] & 0x7c) >> 2) + '@'; specs->manufacturer[1] = ((block[0] & 0x03) << 3) + ((block[1] & 0xe0) >> 5) + '@'; specs->manufacturer[2] = (block[1] & 0x1f) + '@'; specs->manufacturer[3] = 0; specs->model = block[2] + (block[3] << 8); specs->serial = block[4] + (block[5] << 8) + (block[6] << 16) + (block[7] << 24); specs->year = block[9] + 1990; specs->week = block[8]; DPRINTK(" Manufacturer: %s\n", specs->manufacturer); DPRINTK(" Model: %x\n", specs->model); DPRINTK(" Serial#: %u\n", specs->serial); DPRINTK(" Year: %u Week %u\n", specs->year, specs->week); } static void get_dpms_capabilities(unsigned char flags, struct fb_monspecs *specs) { specs->dpms = 0; if (flags & DPMS_ACTIVE_OFF) specs->dpms |= FB_DPMS_ACTIVE_OFF; if (flags & DPMS_SUSPEND) specs->dpms |= FB_DPMS_SUSPEND; if (flags & DPMS_STANDBY) specs->dpms |= FB_DPMS_STANDBY; DPRINTK(" DPMS: Active %s, Suspend %s, Standby %s\n", (flags & DPMS_ACTIVE_OFF) ? "yes" : "no", (flags & DPMS_SUSPEND) ? "yes" : "no", (flags & DPMS_STANDBY) ? "yes" : "no"); } static void get_chroma(unsigned char *block, struct fb_monspecs *specs) { int tmp; DPRINTK(" Chroma\n"); /* Chromaticity data */ tmp = ((block[5] & (3 << 6)) >> 6) | (block[0x7] << 2); tmp *= 1000; tmp += 512; specs->chroma.redx = tmp/1024; DPRINTK(" RedX: 0.%03d ", specs->chroma.redx); tmp = ((block[5] & (3 << 4)) >> 4) | (block[0x8] << 2); tmp *= 1000; tmp += 512; specs->chroma.redy = tmp/1024; DPRINTK("RedY: 0.%03d\n", specs->chroma.redy); tmp = ((block[5] & (3 << 2)) >> 2) | (block[0x9] << 2); tmp *= 1000; tmp += 512; specs->chroma.greenx = tmp/1024; DPRINTK(" GreenX: 0.%03d ", specs->chroma.greenx); tmp = (block[5] & 3) | (block[0xa] << 2); tmp *= 1000; tmp += 512; specs->chroma.greeny = tmp/1024; DPRINTK("GreenY: 0.%03d\n", specs->chroma.greeny); tmp = ((block[6] & (3 << 6)) >> 6) | (block[0xb] << 2); tmp *= 1000; tmp += 512; specs->chroma.bluex = tmp/1024; DPRINTK(" BlueX: 0.%03d ", specs->chroma.bluex); tmp = ((block[6] & (3 << 4)) >> 4) | (block[0xc] << 2); tmp *= 1000; tmp += 512; specs->chroma.bluey = tmp/1024; DPRINTK("BlueY: 0.%03d\n", specs->chroma.bluey); tmp = ((block[6] & (3 << 2)) >> 2) | (block[0xd] << 2); tmp *= 1000; tmp += 512; specs->chroma.whitex = tmp/1024; DPRINTK(" WhiteX: 0.%03d ", specs->chroma.whitex); tmp = (block[6] & 3) | (block[0xe] << 2); tmp *= 1000; tmp += 512; specs->chroma.whitey = tmp/1024; DPRINTK("WhiteY: 0.%03d\n", specs->chroma.whitey); } static void calc_mode_timings(int xres, int yres, int refresh, struct fb_videomode *mode) { struct fb_var_screeninfo *var; var = kzalloc(sizeof(struct fb_var_screeninfo), GFP_KERNEL); if (var) { var->xres = xres; var->yres = yres; fb_get_mode(FB_VSYNCTIMINGS | FB_IGNOREMON, refresh, var, NULL); mode->xres = xres; mode->yres = yres; mode->pixclock = var->pixclock; mode->refresh = refresh; mode->left_margin = var->left_margin; mode->right_margin = var->right_margin; mode->upper_margin = var->upper_margin; mode->lower_margin = var->lower_margin; mode->hsync_len = var->hsync_len; mode->vsync_len = var->vsync_len; mode->vmode = 0; mode->sync = 0; kfree(var); } } static int get_est_timing(unsigned char *block, struct fb_videomode *mode) { int num = 0; unsigned char c; c = block[0]; if (c&0x80) { calc_mode_timings(720, 400, 70, &mode[num]); mode[num++].flag = FB_MODE_IS_CALCULATED; DPRINTK(" 720x400@70Hz\n"); } if (c&0x40) { calc_mode_timings(720, 400, 88, &mode[num]); mode[num++].flag = FB_MODE_IS_CALCULATED; DPRINTK(" 720x400@88Hz\n"); } if (c&0x20) { mode[num++] = vesa_modes[3]; DPRINTK(" 640x480@60Hz\n"); } if (c&0x10) { calc_mode_timings(640, 480, 67, &mode[num]); mode[num++].flag = FB_MODE_IS_CALCULATED; DPRINTK(" 640x480@67Hz\n"); } if (c&0x08) { mode[num++] = vesa_modes[4]; DPRINTK(" 640x480@72Hz\n"); } if (c&0x04) { mode[num++] = vesa_modes[5]; DPRINTK(" 640x480@75Hz\n"); } if (c&0x02) { mode[num++] = vesa_modes[7]; DPRINTK(" 800x600@56Hz\n"); } if (c&0x01) { mode[num++] = vesa_modes[8]; DPRINTK(" 800x600@60Hz\n"); } c = block[1]; if (c&0x80) { mode[num++] = vesa_modes[9]; DPRINTK(" 800x600@72Hz\n"); } if (c&0x40) { mode[num++] = vesa_modes[10]; DPRINTK(" 800x600@75Hz\n"); } if (c&0x20) { calc_mode_timings(832, 624, 75, &mode[num]); mode[num++].flag = FB_MODE_IS_CALCULATED; DPRINTK(" 832x624@75Hz\n"); } if (c&0x10) { mode[num++] = vesa_modes[12]; DPRINTK(" 1024x768@87Hz Interlaced\n"); } if (c&0x08) { mode[num++] = vesa_modes[13]; DPRINTK(" 1024x768@60Hz\n"); } if (c&0x04) { mode[num++] = vesa_modes[14]; DPRINTK(" 1024x768@70Hz\n"); } if (c&0x02) { mode[num++] = vesa_modes[15]; DPRINTK(" 1024x768@75Hz\n"); } if (c&0x01) { mode[num++] = vesa_modes[21]; DPRINTK(" 1280x1024@75Hz\n"); } c = block[2]; if (c&0x80) { mode[num++] = vesa_modes[17]; DPRINTK(" 1152x870@75Hz\n"); } DPRINTK(" Manufacturer's mask: %x\n",c&0x7F); return num; } static int get_std_timing(unsigned char *block, struct fb_videomode *mode) { int xres, yres = 0, refresh, ratio, i; xres = (block[0] + 31) * 8; if (xres <= 256) return 0; ratio = (block[1] & 0xc0) >> 6; switch (ratio) { case 0: yres = xres; break; case 1: yres = (xres * 3)/4; break; case 2: yres = (xres * 4)/5; break; case 3: yres = (xres * 9)/16; break; } refresh = (block[1] & 0x3f) + 60; DPRINTK(" %dx%d@%dHz\n", xres, yres, refresh); for (i = 0; i < VESA_MODEDB_SIZE; i++) { if (vesa_modes[i].xres == xres && vesa_modes[i].yres == yres && vesa_modes[i].refresh == refresh) { *mode = vesa_modes[i]; mode->flag |= FB_MODE_IS_STANDARD; return 1; } } calc_mode_timings(xres, yres, refresh, mode); return 1; } static int get_dst_timing(unsigned char *block, struct fb_videomode *mode) { int j, num = 0; for (j = 0; j < 6; j++, block += STD_TIMING_DESCRIPTION_SIZE) num += get_std_timing(block, &mode[num]); return num; } static void get_detailed_timing(unsigned char *block, struct fb_videomode *mode) { mode->xres = H_ACTIVE; mode->yres = V_ACTIVE; mode->pixclock = PIXEL_CLOCK; mode->pixclock /= 1000; mode->pixclock = KHZ2PICOS(mode->pixclock); mode->right_margin = H_SYNC_OFFSET; mode->left_margin = (H_ACTIVE + H_BLANKING) - (H_ACTIVE + H_SYNC_OFFSET + H_SYNC_WIDTH); mode->upper_margin = V_BLANKING - V_SYNC_OFFSET - V_SYNC_WIDTH; mode->lower_margin = V_SYNC_OFFSET; mode->hsync_len = H_SYNC_WIDTH; mode->vsync_len = V_SYNC_WIDTH; if (HSYNC_POSITIVE) mode->sync |= FB_SYNC_HOR_HIGH_ACT; if (VSYNC_POSITIVE) mode->sync |= FB_SYNC_VERT_HIGH_ACT; mode->refresh = PIXEL_CLOCK/((H_ACTIVE + H_BLANKING) * (V_ACTIVE + V_BLANKING)); mode->vmode = 0; mode->flag = FB_MODE_IS_DETAILED; DPRINTK(" %d MHz ", PIXEL_CLOCK/1000000); DPRINTK("%d %d %d %d ", H_ACTIVE, H_ACTIVE + H_SYNC_OFFSET, H_ACTIVE + H_SYNC_OFFSET + H_SYNC_WIDTH, H_ACTIVE + H_BLANKING); DPRINTK("%d %d %d %d ", V_ACTIVE, V_ACTIVE + V_SYNC_OFFSET, V_ACTIVE + V_SYNC_OFFSET + V_SYNC_WIDTH, V_ACTIVE + V_BLANKING); DPRINTK("%sHSync %sVSync\n\n", (HSYNC_POSITIVE) ? "+" : "-", (VSYNC_POSITIVE) ? "+" : "-"); } /** * fb_create_modedb - create video mode database * @edid: EDID data * @dbsize: database size * * RETURNS: struct fb_videomode, @dbsize contains length of database * * DESCRIPTION: * This function builds a mode database using the contents of the EDID * data */ static struct fb_videomode *fb_create_modedb(unsigned char *edid, int *dbsize) { struct fb_videomode *mode, *m; unsigned char *block; int num = 0, i, first = 1; mode = kzalloc(50 * sizeof(struct fb_videomode), GFP_KERNEL); if (mode == NULL) return NULL; if (edid == NULL || !edid_checksum(edid) || !edid_check_header(edid)) { kfree(mode); return NULL; } *dbsize = 0; DPRINTK(" Detailed Timings\n"); block = edid + DETAILED_TIMING_DESCRIPTIONS_START; for (i = 0; i < 4; i++, block+= DETAILED_TIMING_DESCRIPTION_SIZE) { if (!(block[0] == 0x00 && block[1] == 0x00)) { get_detailed_timing(block, &mode[num]); if (first) { mode[num].flag |= FB_MODE_IS_FIRST; first = 0; } num++; } } DPRINTK(" Supported VESA Modes\n"); block = edid + ESTABLISHED_TIMING_1; num += get_est_timing(block, &mode[num]); DPRINTK(" Standard Timings\n"); block = edid + STD_TIMING_DESCRIPTIONS_START; for (i = 0; i < STD_TIMING; i++, block += STD_TIMING_DESCRIPTION_SIZE) num += get_std_timing(block, &mode[num]); block = edid + DETAILED_TIMING_DESCRIPTIONS_START; for (i = 0; i < 4; i++, block+= DETAILED_TIMING_DESCRIPTION_SIZE) { if (block[0] == 0x00 && block[1] == 0x00 && block[3] == 0xfa) num += get_dst_timing(block + 5, &mode[num]); } /* Yikes, EDID data is totally useless */ if (!num) { kfree(mode); return NULL; } *dbsize = num; m = kmalloc(num * sizeof(struct fb_videomode), GFP_KERNEL); if (!m) return mode; memmove(m, mode, num * sizeof(struct fb_videomode)); kfree(mode); return m; } /** * fb_destroy_modedb - destroys mode database * @modedb: mode database to destroy * * DESCRIPTION: * Destroy mode database created by fb_create_modedb */ void fb_destroy_modedb(struct fb_videomode *modedb) { kfree(modedb); } static int fb_get_monitor_limits(unsigned char *edid, struct fb_monspecs *specs) { int i, retval = 1; unsigned char *block; block = edid + DETAILED_TIMING_DESCRIPTIONS_START; DPRINTK(" Monitor Operating Limits: "); for (i = 0; i < 4; i++, block += DETAILED_TIMING_DESCRIPTION_SIZE) { if (edid_is_limits_block(block)) { specs->hfmin = H_MIN_RATE * 1000; specs->hfmax = H_MAX_RATE * 1000; specs->vfmin = V_MIN_RATE; specs->vfmax = V_MAX_RATE; specs->dclkmax = MAX_PIXEL_CLOCK * 1000000; specs->gtf = (GTF_SUPPORT) ? 1 : 0; retval = 0; DPRINTK("From EDID\n"); break; } } /* estimate monitor limits based on modes supported */ if (retval) { struct fb_videomode *modes, *mode; int num_modes, hz, hscan, pixclock; int vtotal, htotal; modes = fb_create_modedb(edid, &num_modes); if (!modes) { DPRINTK("None Available\n"); return 1; } retval = 0; for (i = 0; i < num_modes; i++) { mode = &modes[i]; pixclock = PICOS2KHZ(modes[i].pixclock) * 1000; htotal = mode->xres + mode->right_margin + mode->hsync_len + mode->left_margin; vtotal = mode->yres + mode->lower_margin + mode->vsync_len + mode->upper_margin; if (mode->vmode & FB_VMODE_INTERLACED) vtotal /= 2; if (mode->vmode & FB_VMODE_DOUBLE) vtotal *= 2; hscan = (pixclock + htotal / 2) / htotal; hscan = (hscan + 500) / 1000 * 1000; hz = (hscan + vtotal / 2) / vtotal; if (specs->dclkmax == 0 || specs->dclkmax < pixclock) specs->dclkmax = pixclock; if (specs->dclkmin == 0 || specs->dclkmin > pixclock) specs->dclkmin = pixclock; if (specs->hfmax == 0 || specs->hfmax < hscan) specs->hfmax = hscan; if (specs->hfmin == 0 || specs->hfmin > hscan) specs->hfmin = hscan; if (specs->vfmax == 0 || specs->vfmax < hz) specs->vfmax = hz; if (specs->vfmin == 0 || specs->vfmin > hz) specs->vfmin = hz; } DPRINTK("Extrapolated\n"); fb_destroy_modedb(modes); } DPRINTK(" H: %d-%dKHz V: %d-%dHz DCLK: %dMHz\n", specs->hfmin/1000, specs->hfmax/1000, specs->vfmin, specs->vfmax, specs->dclkmax/1000000); return retval; } static void get_monspecs(unsigned char *edid, struct fb_monspecs *specs) { unsigned char c, *block; block = edid + EDID_STRUCT_DISPLAY; fb_get_monitor_limits(edid, specs); c = block[0] & 0x80; specs->input = 0; if (c) { specs->input |= FB_DISP_DDI; DPRINTK(" Digital Display Input"); } else { DPRINTK(" Analog Display Input: Input Voltage - "); switch ((block[0] & 0x60) >> 5) { case 0: DPRINTK("0.700V/0.300V"); specs->input |= FB_DISP_ANA_700_300; break; case 1: DPRINTK("0.714V/0.286V"); specs->input |= FB_DISP_ANA_714_286; break; case 2: DPRINTK("1.000V/0.400V"); specs->input |= FB_DISP_ANA_1000_400; break; case 3: DPRINTK("0.700V/0.000V"); specs->input |= FB_DISP_ANA_700_000; break; } } DPRINTK("\n Sync: "); c = block[0] & 0x10; if (c) DPRINTK(" Configurable signal level\n"); c = block[0] & 0x0f; specs->signal = 0; if (c & 0x10) { DPRINTK("Blank to Blank "); specs->signal |= FB_SIGNAL_BLANK_BLANK; } if (c & 0x08) { DPRINTK("Separate "); specs->signal |= FB_SIGNAL_SEPARATE; } if (c & 0x04) { DPRINTK("Composite "); specs->signal |= FB_SIGNAL_COMPOSITE; } if (c & 0x02) { DPRINTK("Sync on Green "); specs->signal |= FB_SIGNAL_SYNC_ON_GREEN; } if (c & 0x01) { DPRINTK("Serration on "); specs->signal |= FB_SIGNAL_SERRATION_ON; } DPRINTK("\n"); specs->max_x = block[1]; specs->max_y = block[2]; DPRINTK(" Max H-size in cm: "); if (specs->max_x) DPRINTK("%d\n", specs->max_x); else DPRINTK("variable\n"); DPRINTK(" Max V-size in cm: "); if (specs->max_y) DPRINTK("%d\n", specs->max_y); else DPRINTK("variable\n"); c = block[3]; specs->gamma = c+100; DPRINTK(" Gamma: "); DPRINTK("%d.%d\n", specs->gamma/100, specs->gamma % 100); get_dpms_capabilities(block[4], specs); switch ((block[4] & 0x18) >> 3) { case 0: DPRINTK(" Monochrome/Grayscale\n"); specs->input |= FB_DISP_MONO; break; case 1: DPRINTK(" RGB Color Display\n"); specs->input |= FB_DISP_RGB; break; case 2: DPRINTK(" Non-RGB Multicolor Display\n"); specs->input |= FB_DISP_MULTI; break; default: DPRINTK(" Unknown\n"); specs->input |= FB_DISP_UNKNOWN; break; } get_chroma(block, specs); specs->misc = 0; c = block[4] & 0x7; if (c & 0x04) { DPRINTK(" Default color format is primary\n"); specs->misc |= FB_MISC_PRIM_COLOR; } if (c & 0x02) { DPRINTK(" First DETAILED Timing is preferred\n"); specs->misc |= FB_MISC_1ST_DETAIL; } if (c & 0x01) { printk(" Display is GTF capable\n"); specs->gtf = 1; } } int fb_parse_edid(unsigned char *edid, struct fb_var_screeninfo *var) { int i; unsigned char *block; if (edid == NULL || var == NULL) return 1; if (!(edid_checksum(edid))) return 1; if (!(edid_check_header(edid))) return 1; block = edid + DETAILED_TIMING_DESCRIPTIONS_START; for (i = 0; i < 4; i++, block += DETAILED_TIMING_DESCRIPTION_SIZE) { if (edid_is_timing_block(block)) { var->xres = var->xres_virtual = H_ACTIVE; var->yres = var->yres_virtual = V_ACTIVE; var->height = var->width = -1; var->right_margin = H_SYNC_OFFSET; var->left_margin = (H_ACTIVE + H_BLANKING) - (H_ACTIVE + H_SYNC_OFFSET + H_SYNC_WIDTH); var->upper_margin = V_BLANKING - V_SYNC_OFFSET - V_SYNC_WIDTH; var->lower_margin = V_SYNC_OFFSET; var->hsync_len = H_SYNC_WIDTH; var->vsync_len = V_SYNC_WIDTH; var->pixclock = PIXEL_CLOCK; var->pixclock /= 1000; var->pixclock = KHZ2PICOS(var->pixclock); if (HSYNC_POSITIVE) var->sync |= FB_SYNC_HOR_HIGH_ACT; if (VSYNC_POSITIVE) var->sync |= FB_SYNC_VERT_HIGH_ACT; return 0; } } return 1; } void fb_edid_to_monspecs(unsigned char *edid, struct fb_monspecs *specs) { unsigned char *block; int i, found = 0; if (edid == NULL) return; if (!(edid_checksum(edid))) return; if (!(edid_check_header(edid))) return; memset(specs, 0, sizeof(struct fb_monspecs)); specs->version = edid[EDID_STRUCT_VERSION]; specs->revision = edid[EDID_STRUCT_REVISION]; DPRINTK("========================================\n"); DPRINTK("Display Information (EDID)\n"); DPRINTK("========================================\n"); DPRINTK(" EDID Version %d.%d\n", (int) specs->version, (int) specs->revision); parse_vendor_block(edid + ID_MANUFACTURER_NAME, specs); block = edid + DETAILED_TIMING_DESCRIPTIONS_START; for (i = 0; i < 4; i++, block += DETAILED_TIMING_DESCRIPTION_SIZE) { if (edid_is_serial_block(block)) { copy_string(block, specs->serial_no); DPRINTK(" Serial Number: %s\n", specs->serial_no); } else if (edid_is_ascii_block(block)) { copy_string(block, specs->ascii); DPRINTK(" ASCII Block: %s\n", specs->ascii); } else if (edid_is_monitor_block(block)) { copy_string(block, specs->monitor); DPRINTK(" Monitor Name: %s\n", specs->monitor); } } DPRINTK(" Display Characteristics:\n"); get_monspecs(edid, specs); specs->modedb = fb_create_modedb(edid, &specs->modedb_len); /* * Workaround for buggy EDIDs that sets that the first * detailed timing is preferred but has not detailed * timing specified */ for (i = 0; i < specs->modedb_len; i++) { if (specs->modedb[i].flag & FB_MODE_IS_DETAILED) { found = 1; break; } } if (!found) specs->misc &= ~FB_MISC_1ST_DETAIL; DPRINTK("========================================\n"); } /* * VESA Generalized Timing Formula (GTF) */ #define FLYBACK 550 #define V_FRONTPORCH 1 #define H_OFFSET 40 #define H_SCALEFACTOR 20 #define H_BLANKSCALE 128 #define H_GRADIENT 600 #define C_VAL 30 #define M_VAL 300 struct __fb_timings { u32 dclk; u32 hfreq; u32 vfreq; u32 hactive; u32 vactive; u32 hblank; u32 vblank; u32 htotal; u32 vtotal; }; /** * fb_get_vblank - get vertical blank time * @hfreq: horizontal freq * * DESCRIPTION: * vblank = right_margin + vsync_len + left_margin * * given: right_margin = 1 (V_FRONTPORCH) * vsync_len = 3 * flyback = 550 * * flyback * hfreq * left_margin = --------------- - vsync_len * 1000000 */ static u32 fb_get_vblank(u32 hfreq) { u32 vblank; vblank = (hfreq * FLYBACK)/1000; vblank = (vblank + 500)/1000; return (vblank + V_FRONTPORCH); } /** * fb_get_hblank_by_freq - get horizontal blank time given hfreq * @hfreq: horizontal freq * @xres: horizontal resolution in pixels * * DESCRIPTION: * * xres * duty_cycle * hblank = ------------------ * 100 - duty_cycle * * duty cycle = percent of htotal assigned to inactive display * duty cycle = C - (M/Hfreq) * * where: C = ((offset - scale factor) * blank_scale) * -------------------------------------- + scale factor * 256 * M = blank_scale * gradient * */ static u32 fb_get_hblank_by_hfreq(u32 hfreq, u32 xres) { u32 c_val, m_val, duty_cycle, hblank; c_val = (((H_OFFSET - H_SCALEFACTOR) * H_BLANKSCALE)/256 + H_SCALEFACTOR) * 1000; m_val = (H_BLANKSCALE * H_GRADIENT)/256; m_val = (m_val * 1000000)/hfreq; duty_cycle = c_val - m_val; hblank = (xres * duty_cycle)/(100000 - duty_cycle); return (hblank); } /** * fb_get_hblank_by_dclk - get horizontal blank time given pixelclock * @dclk: pixelclock in Hz * @xres: horizontal resolution in pixels * * DESCRIPTION: * * xres * duty_cycle * hblank = ------------------ * 100 - duty_cycle * * duty cycle = percent of htotal assigned to inactive display * duty cycle = C - (M * h_period) * * where: h_period = SQRT(100 - C + (0.4 * xres * M)/dclk) + C - 100 * ----------------------------------------------- * 2 * M * M = 300; * C = 30; */ static u32 fb_get_hblank_by_dclk(u32 dclk, u32 xres) { u32 duty_cycle, h_period, hblank; dclk /= 1000; h_period = 100 - C_VAL; h_period *= h_period; h_period += (M_VAL * xres * 2 * 1000)/(5 * dclk); h_period *= 10000; h_period = int_sqrt(h_period); h_period -= (100 - C_VAL) * 100; h_period *= 1000; h_period /= 2 * M_VAL; duty_cycle = C_VAL * 1000 - (M_VAL * h_period)/100; hblank = (xres * duty_cycle)/(100000 - duty_cycle) + 8; hblank &= ~15; return (hblank); } /** * fb_get_hfreq - estimate hsync * @vfreq: vertical refresh rate * @yres: vertical resolution * * DESCRIPTION: * * (yres + front_port) * vfreq * 1000000 * hfreq = ------------------------------------- * (1000000 - (vfreq * FLYBACK) * */ static u32 fb_get_hfreq(u32 vfreq, u32 yres) { u32 divisor, hfreq; divisor = (1000000 - (vfreq * FLYBACK))/1000; hfreq = (yres + V_FRONTPORCH) * vfreq * 1000; return (hfreq/divisor); } static void fb_timings_vfreq(struct __fb_timings *timings) { timings->hfreq = fb_get_hfreq(timings->vfreq, timings->vactive); timings->vblank = fb_get_vblank(timings->hfreq); timings->vtotal = timings->vactive + timings->vblank; timings->hblank = fb_get_hblank_by_hfreq(timings->hfreq, timings->hactive); timings->htotal = timings->hactive + timings->hblank; timings->dclk = timings->htotal * timings->hfreq; } static void fb_timings_hfreq(struct __fb_timings *timings) { timings->vblank = fb_get_vblank(timings->hfreq); timings->vtotal = timings->vactive + timings->vblank; timings->vfreq = timings->hfreq/timings->vtotal; timings->hblank = fb_get_hblank_by_hfreq(timings->hfreq, timings->hactive); timings->htotal = timings->hactive + timings->hblank; timings->dclk = timings->htotal * timings->hfreq; } static void fb_timings_dclk(struct __fb_timings *timings) { timings->hblank = fb_get_hblank_by_dclk(timings->dclk, timings->hactive); timings->htotal = timings->hactive + timings->hblank; timings->hfreq = timings->dclk/timings->htotal; timings->vblank = fb_get_vblank(timings->hfreq); timings->vtotal = timings->vactive + timings->vblank; timings->vfreq = timings->hfreq/timings->vtotal; } /* * fb_get_mode - calculates video mode using VESA GTF * @flags: if: 0 - maximize vertical refresh rate * 1 - vrefresh-driven calculation; * 2 - hscan-driven calculation; * 3 - pixelclock-driven calculation; * @val: depending on @flags, ignored, vrefresh, hsync or pixelclock * @var: pointer to fb_var_screeninfo * @info: pointer to fb_info * * DESCRIPTION: * Calculates video mode based on monitor specs using VESA GTF. * The GTF is best for VESA GTF compliant monitors but is * specifically formulated to work for older monitors as well. * * If @flag==0, the function will attempt to maximize the * refresh rate. Otherwise, it will calculate timings based on * the flag and accompanying value. * * If FB_IGNOREMON bit is set in @flags, monitor specs will be * ignored and @var will be filled with the calculated timings. * * All calculations are based on the VESA GTF Spreadsheet * available at VESA's public ftp (http://www.vesa.org). * * NOTES: * The timings generated by the GTF will be different from VESA * DMT. It might be a good idea to keep a table of standard * VESA modes as well. The GTF may also not work for some displays, * such as, and especially, analog TV. * * REQUIRES: * A valid info->monspecs, otherwise 'safe numbers' will be used. */ int fb_get_mode(int flags, u32 val, struct fb_var_screeninfo *var, struct fb_info *info) { struct __fb_timings *timings; u32 interlace = 1, dscan = 1; u32 hfmin, hfmax, vfmin, vfmax, dclkmin, dclkmax, err = 0; timings = kzalloc(sizeof(struct __fb_timings), GFP_KERNEL); if (!timings) return -ENOMEM; /* * If monspecs are invalid, use values that are enough * for 640x480@60 */ if (!info || !info->monspecs.hfmax || !info->monspecs.vfmax || !info->monspecs.dclkmax || info->monspecs.hfmax < info->monspecs.hfmin || info->monspecs.vfmax < info->monspecs.vfmin || info->monspecs.dclkmax < info->monspecs.dclkmin) { hfmin = 29000; hfmax = 30000; vfmin = 60; vfmax = 60; dclkmin = 0; dclkmax = 25000000; } else { hfmin = info->monspecs.hfmin; hfmax = info->monspecs.hfmax; vfmin = info->monspecs.vfmin; vfmax = info->monspecs.vfmax; dclkmin = info->monspecs.dclkmin; dclkmax = info->monspecs.dclkmax; } timings->hactive = var->xres; timings->vactive = var->yres; if (var->vmode & FB_VMODE_INTERLACED) { timings->vactive /= 2; interlace = 2; } if (var->vmode & FB_VMODE_DOUBLE) { timings->vactive *= 2; dscan = 2; } switch (flags & ~FB_IGNOREMON) { case FB_MAXTIMINGS: /* maximize refresh rate */ timings->hfreq = hfmax; fb_timings_hfreq(timings); if (timings->vfreq > vfmax) { timings->vfreq = vfmax; fb_timings_vfreq(timings); } if (timings->dclk > dclkmax) { timings->dclk = dclkmax; fb_timings_dclk(timings); } break; case FB_VSYNCTIMINGS: /* vrefresh driven */ timings->vfreq = val; fb_timings_vfreq(timings); break; case FB_HSYNCTIMINGS: /* hsync driven */ timings->hfreq = val; fb_timings_hfreq(timings); break; case FB_DCLKTIMINGS: /* pixelclock driven */ timings->dclk = PICOS2KHZ(val) * 1000; fb_timings_dclk(timings); break; default: err = -EINVAL; } if (err || (!(flags & FB_IGNOREMON) && (timings->vfreq < vfmin || timings->vfreq > vfmax || timings->hfreq < hfmin || timings->hfreq > hfmax || timings->dclk < dclkmin || timings->dclk > dclkmax))) { err = -EINVAL; } else { var->pixclock = KHZ2PICOS(timings->dclk/1000); var->hsync_len = (timings->htotal * 8)/100; var->right_margin = (timings->hblank/2) - var->hsync_len; var->left_margin = timings->hblank - var->right_margin - var->hsync_len; var->vsync_len = (3 * interlace)/dscan; var->lower_margin = (1 * interlace)/dscan; var->upper_margin = (timings->vblank * interlace)/dscan - (var->vsync_len + var->lower_margin); } kfree(timings); return err; } #else int fb_parse_edid(unsigned char *edid, struct fb_var_screeninfo *var) { return 1; } void fb_edid_to_monspecs(unsigned char *edid, struct fb_monspecs *specs) { specs = NULL; } void fb_destroy_modedb(struct fb_videomode *modedb) { } int fb_get_mode(int flags, u32 val, struct fb_var_screeninfo *var, struct fb_info *info) { return -EINVAL; } #endif /* CONFIG_FB_MODE_HELPERS */ /* * fb_validate_mode - validates var against monitor capabilities * @var: pointer to fb_var_screeninfo * @info: pointer to fb_info * * DESCRIPTION: * Validates video mode against monitor capabilities specified in * info->monspecs. * * REQUIRES: * A valid info->monspecs. */ int fb_validate_mode(const struct fb_var_screeninfo *var, struct fb_info *info) { u32 hfreq, vfreq, htotal, vtotal, pixclock; u32 hfmin, hfmax, vfmin, vfmax, dclkmin, dclkmax; /* * If monspecs are invalid, use values that are enough * for 640x480@60 */ if (!info->monspecs.hfmax || !info->monspecs.vfmax || !info->monspecs.dclkmax || info->monspecs.hfmax < info->monspecs.hfmin || info->monspecs.vfmax < info->monspecs.vfmin || info->monspecs.dclkmax < info->monspecs.dclkmin) { hfmin = 29000; hfmax = 30000; vfmin = 60; vfmax = 60; dclkmin = 0; dclkmax = 25000000; } else { hfmin = info->monspecs.hfmin; hfmax = info->monspecs.hfmax; vfmin = info->monspecs.vfmin; vfmax = info->monspecs.vfmax; dclkmin = info->monspecs.dclkmin; dclkmax = info->monspecs.dclkmax; } if (!var->pixclock) return -EINVAL; pixclock = PICOS2KHZ(var->pixclock) * 1000; htotal = var->xres + var->right_margin + var->hsync_len + var->left_margin; vtotal = var->yres + var->lower_margin + var->vsync_len + var->upper_margin; if (var->vmode & FB_VMODE_INTERLACED) vtotal /= 2; if (var->vmode & FB_VMODE_DOUBLE) vtotal *= 2; hfreq = pixclock/htotal; hfreq = (hfreq + 500) / 1000 * 1000; vfreq = hfreq/vtotal; return (vfreq < vfmin || vfreq > vfmax || hfreq < hfmin || hfreq > hfmax || pixclock < dclkmin || pixclock > dclkmax) ? -EINVAL : 0; } #if defined(CONFIG_FIRMWARE_EDID) && defined(CONFIG_X86) /* * We need to ensure that the EDID block is only returned for * the primary graphics adapter. */ const unsigned char *fb_firmware_edid(struct device *device) { struct pci_dev *dev = NULL; struct resource *res = NULL; unsigned char *edid = NULL; if (device) dev = to_pci_dev(device); if (dev) res = &dev->resource[PCI_ROM_RESOURCE]; if (res && res->flags & IORESOURCE_ROM_SHADOW) edid = edid_info.dummy; return edid; } #else const unsigned char *fb_firmware_edid(struct device *device) { return NULL; } #endif EXPORT_SYMBOL(fb_firmware_edid); EXPORT_SYMBOL(fb_parse_edid); EXPORT_SYMBOL(fb_edid_to_monspecs); EXPORT_SYMBOL(fb_get_mode); EXPORT_SYMBOL(fb_validate_mode); EXPORT_SYMBOL(fb_destroy_modedb);