/* * Fake VME bridge support. * * This drive provides a fake VME bridge chip, this enables debugging of the * VME framework in the absence of a VME system. * * This driver has to do a number of things in software that would be driven * by hardware if it was available, it will also result in extra overhead at * times when compared with driving actual hardware. * * Author: Martyn Welch * Copyright (c) 2014 Martyn Welch * * Based on vme_tsi148.c: * * Author: Martyn Welch * Copyright 2008 GE Intelligent Platforms Embedded Systems, Inc. * * Based on work by Tom Armistead and Ajit Prem * Copyright 2004 Motorola Inc. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. */ #include #include #include #include #include #include #include #include #include #include "../vme_bridge.h" /* * Define the number of each that the fake driver supports. */ #define FAKE_MAX_MASTER 8 /* Max Master Windows */ #define FAKE_MAX_SLAVE 8 /* Max Slave Windows */ /* Structures to hold information normally held in device registers */ struct fake_slave_window { int enabled; unsigned long long vme_base; unsigned long long size; void *buf_base; u32 aspace; u32 cycle; }; struct fake_master_window { int enabled; unsigned long long vme_base; unsigned long long size; u32 aspace; u32 cycle; u32 dwidth; }; /* Structure used to hold driver specific information */ struct fake_driver { struct vme_bridge *parent; struct fake_slave_window slaves[FAKE_MAX_SLAVE]; struct fake_master_window masters[FAKE_MAX_MASTER]; u32 lm_enabled; unsigned long long lm_base; u32 lm_aspace; u32 lm_cycle; void (*lm_callback[4])(void *); void *lm_data[4]; struct tasklet_struct int_tasklet; int int_level; int int_statid; void *crcsr_kernel; dma_addr_t crcsr_bus; /* Only one VME interrupt can be generated at a time, provide locking */ struct mutex vme_int; }; /* Module parameter */ static int geoid; static const char driver_name[] = "vme_fake"; static struct vme_bridge *exit_pointer; static struct device *vme_root; /* * Calling VME bus interrupt callback if provided. */ static void fake_VIRQ_tasklet(unsigned long data) { struct vme_bridge *fake_bridge; struct fake_driver *bridge; fake_bridge = (struct vme_bridge *) data; bridge = fake_bridge->driver_priv; vme_irq_handler(fake_bridge, bridge->int_level, bridge->int_statid); } /* * Configure VME interrupt */ static void fake_irq_set(struct vme_bridge *fake_bridge, int level, int state, int sync) { /* Nothing to do */ } static void *fake_pci_to_ptr(dma_addr_t addr) { return (void *)(uintptr_t)addr; } static dma_addr_t fake_ptr_to_pci(void *addr) { return (dma_addr_t)(uintptr_t)addr; } /* * Generate a VME bus interrupt at the requested level & vector. Wait for * interrupt to be acked. */ static int fake_irq_generate(struct vme_bridge *fake_bridge, int level, int statid) { struct fake_driver *bridge; bridge = fake_bridge->driver_priv; mutex_lock(&bridge->vme_int); bridge->int_level = level; bridge->int_statid = statid; /* * Schedule tasklet to run VME handler to emulate normal VME interrupt * handler behaviour. */ tasklet_schedule(&bridge->int_tasklet); mutex_unlock(&bridge->vme_int); return 0; } /* * Initialize a slave window with the requested attributes. */ static int fake_slave_set(struct vme_slave_resource *image, int enabled, unsigned long long vme_base, unsigned long long size, dma_addr_t buf_base, u32 aspace, u32 cycle) { unsigned int i, granularity = 0; unsigned long long vme_bound; struct vme_bridge *fake_bridge; struct fake_driver *bridge; fake_bridge = image->parent; bridge = fake_bridge->driver_priv; i = image->number; switch (aspace) { case VME_A16: granularity = 0x10; break; case VME_A24: granularity = 0x1000; break; case VME_A32: granularity = 0x10000; break; case VME_A64: granularity = 0x10000; break; case VME_CRCSR: case VME_USER1: case VME_USER2: case VME_USER3: case VME_USER4: default: pr_err("Invalid address space\n"); return -EINVAL; } /* * Bound address is a valid address for the window, adjust * accordingly */ vme_bound = vme_base + size - granularity; if (vme_base & (granularity - 1)) { pr_err("Invalid VME base alignment\n"); return -EINVAL; } if (vme_bound & (granularity - 1)) { pr_err("Invalid VME bound alignment\n"); return -EINVAL; } mutex_lock(&image->mtx); bridge->slaves[i].enabled = enabled; bridge->slaves[i].vme_base = vme_base; bridge->slaves[i].size = size; bridge->slaves[i].buf_base = fake_pci_to_ptr(buf_base); bridge->slaves[i].aspace = aspace; bridge->slaves[i].cycle = cycle; mutex_unlock(&image->mtx); return 0; } /* * Get slave window configuration. */ static int fake_slave_get(struct vme_slave_resource *image, int *enabled, unsigned long long *vme_base, unsigned long long *size, dma_addr_t *buf_base, u32 *aspace, u32 *cycle) { unsigned int i; struct fake_driver *bridge; bridge = image->parent->driver_priv; i = image->number; mutex_lock(&image->mtx); *enabled = bridge->slaves[i].enabled; *vme_base = bridge->slaves[i].vme_base; *size = bridge->slaves[i].size; *buf_base = fake_ptr_to_pci(bridge->slaves[i].buf_base); *aspace = bridge->slaves[i].aspace; *cycle = bridge->slaves[i].cycle; mutex_unlock(&image->mtx); return 0; } /* * Set the attributes of an outbound window. */ static int fake_master_set(struct vme_master_resource *image, int enabled, unsigned long long vme_base, unsigned long long size, u32 aspace, u32 cycle, u32 dwidth) { int retval = 0; unsigned int i; struct vme_bridge *fake_bridge; struct fake_driver *bridge; fake_bridge = image->parent; bridge = fake_bridge->driver_priv; /* Verify input data */ if (vme_base & 0xFFFF) { pr_err("Invalid VME Window alignment\n"); retval = -EINVAL; goto err_window; } if (size & 0xFFFF) { pr_err("Invalid size alignment\n"); retval = -EINVAL; goto err_window; } if ((size == 0) && (enabled != 0)) { pr_err("Size must be non-zero for enabled windows\n"); retval = -EINVAL; goto err_window; } /* Setup data width */ switch (dwidth) { case VME_D8: case VME_D16: case VME_D32: break; default: pr_err("Invalid data width\n"); retval = -EINVAL; goto err_dwidth; } /* Setup address space */ switch (aspace) { case VME_A16: case VME_A24: case VME_A32: case VME_A64: case VME_CRCSR: case VME_USER1: case VME_USER2: case VME_USER3: case VME_USER4: break; default: pr_err("Invalid address space\n"); retval = -EINVAL; goto err_aspace; } spin_lock(&image->lock); i = image->number; bridge->masters[i].enabled = enabled; bridge->masters[i].vme_base = vme_base; bridge->masters[i].size = size; bridge->masters[i].aspace = aspace; bridge->masters[i].cycle = cycle; bridge->masters[i].dwidth = dwidth; spin_unlock(&image->lock); return 0; err_aspace: err_dwidth: err_window: return retval; } /* * Set the attributes of an outbound window. */ static int __fake_master_get(struct vme_master_resource *image, int *enabled, unsigned long long *vme_base, unsigned long long *size, u32 *aspace, u32 *cycle, u32 *dwidth) { unsigned int i; struct fake_driver *bridge; bridge = image->parent->driver_priv; i = image->number; *enabled = bridge->masters[i].enabled; *vme_base = bridge->masters[i].vme_base; *size = bridge->masters[i].size; *aspace = bridge->masters[i].aspace; *cycle = bridge->masters[i].cycle; *dwidth = bridge->masters[i].dwidth; return 0; } static int fake_master_get(struct vme_master_resource *image, int *enabled, unsigned long long *vme_base, unsigned long long *size, u32 *aspace, u32 *cycle, u32 *dwidth) { int retval; spin_lock(&image->lock); retval = __fake_master_get(image, enabled, vme_base, size, aspace, cycle, dwidth); spin_unlock(&image->lock); return retval; } static void fake_lm_check(struct fake_driver *bridge, unsigned long long addr, u32 aspace, u32 cycle) { struct vme_bridge *fake_bridge; unsigned long long lm_base; u32 lm_aspace, lm_cycle; int i; struct vme_lm_resource *lm; struct list_head *pos = NULL, *n; /* Get vme_bridge */ fake_bridge = bridge->parent; /* Loop through each location monitor resource */ list_for_each_safe(pos, n, &fake_bridge->lm_resources) { lm = list_entry(pos, struct vme_lm_resource, list); /* If disabled, we're done */ if (bridge->lm_enabled == 0) return; lm_base = bridge->lm_base; lm_aspace = bridge->lm_aspace; lm_cycle = bridge->lm_cycle; /* First make sure that the cycle and address space match */ if ((lm_aspace == aspace) && (lm_cycle == cycle)) { for (i = 0; i < lm->monitors; i++) { /* Each location monitor covers 8 bytes */ if (((lm_base + (8 * i)) <= addr) && ((lm_base + (8 * i) + 8) > addr)) { if (bridge->lm_callback[i] != NULL) bridge->lm_callback[i]( bridge->lm_data[i]); } } } } } static u8 fake_vmeread8(struct fake_driver *bridge, unsigned long long addr, u32 aspace, u32 cycle) { u8 retval = 0xff; int i; unsigned long long start, end, offset; u8 *loc; for (i = 0; i < FAKE_MAX_SLAVE; i++) { start = bridge->slaves[i].vme_base; end = bridge->slaves[i].vme_base + bridge->slaves[i].size; if (aspace != bridge->slaves[i].aspace) continue; if (cycle != bridge->slaves[i].cycle) continue; if ((addr >= start) && (addr < end)) { offset = addr - bridge->slaves[i].vme_base; loc = (u8 *)(bridge->slaves[i].buf_base + offset); retval = *loc; break; } } fake_lm_check(bridge, addr, aspace, cycle); return retval; } static u16 fake_vmeread16(struct fake_driver *bridge, unsigned long long addr, u32 aspace, u32 cycle) { u16 retval = 0xffff; int i; unsigned long long start, end, offset; u16 *loc; for (i = 0; i < FAKE_MAX_SLAVE; i++) { if (aspace != bridge->slaves[i].aspace) continue; if (cycle != bridge->slaves[i].cycle) continue; start = bridge->slaves[i].vme_base; end = bridge->slaves[i].vme_base + bridge->slaves[i].size; if ((addr >= start) && ((addr + 1) < end)) { offset = addr - bridge->slaves[i].vme_base; loc = (u16 *)(bridge->slaves[i].buf_base + offset); retval = *loc; break; } } fake_lm_check(bridge, addr, aspace, cycle); return retval; } static u32 fake_vmeread32(struct fake_driver *bridge, unsigned long long addr, u32 aspace, u32 cycle) { u32 retval = 0xffffffff; int i; unsigned long long start, end, offset; u32 *loc; for (i = 0; i < FAKE_MAX_SLAVE; i++) { if (aspace != bridge->slaves[i].aspace) continue; if (cycle != bridge->slaves[i].cycle) continue; start = bridge->slaves[i].vme_base; end = bridge->slaves[i].vme_base + bridge->slaves[i].size; if ((addr >= start) && ((addr + 3) < end)) { offset = addr - bridge->slaves[i].vme_base; loc = (u32 *)(bridge->slaves[i].buf_base + offset); retval = *loc; break; } } fake_lm_check(bridge, addr, aspace, cycle); return retval; } static ssize_t fake_master_read(struct vme_master_resource *image, void *buf, size_t count, loff_t offset) { int retval; u32 aspace, cycle, dwidth; struct vme_bridge *fake_bridge; struct fake_driver *priv; int i; unsigned long long addr; unsigned int done = 0; unsigned int count32; fake_bridge = image->parent; priv = fake_bridge->driver_priv; i = image->number; addr = (unsigned long long)priv->masters[i].vme_base + offset; aspace = priv->masters[i].aspace; cycle = priv->masters[i].cycle; dwidth = priv->masters[i].dwidth; spin_lock(&image->lock); /* The following code handles VME address alignment. We cannot use * memcpy_xxx here because it may cut data transfers in to 8-bit * cycles when D16 or D32 cycles are required on the VME bus. * On the other hand, the bridge itself assures that the maximum data * cycle configured for the transfer is used and splits it * automatically for non-aligned addresses, so we don't want the * overhead of needlessly forcing small transfers for the entire cycle. */ if (addr & 0x1) { *(u8 *)buf = fake_vmeread8(priv, addr, aspace, cycle); done += 1; if (done == count) goto out; } if ((dwidth == VME_D16) || (dwidth == VME_D32)) { if ((addr + done) & 0x2) { if ((count - done) < 2) { *(u8 *)(buf + done) = fake_vmeread8(priv, addr + done, aspace, cycle); done += 1; goto out; } else { *(u16 *)(buf + done) = fake_vmeread16(priv, addr + done, aspace, cycle); done += 2; } } } if (dwidth == VME_D32) { count32 = (count - done) & ~0x3; while (done < count32) { *(u32 *)(buf + done) = fake_vmeread32(priv, addr + done, aspace, cycle); done += 4; } } else if (dwidth == VME_D16) { count32 = (count - done) & ~0x3; while (done < count32) { *(u16 *)(buf + done) = fake_vmeread16(priv, addr + done, aspace, cycle); done += 2; } } else if (dwidth == VME_D8) { count32 = (count - done); while (done < count32) { *(u8 *)(buf + done) = fake_vmeread8(priv, addr + done, aspace, cycle); done += 1; } } if ((dwidth == VME_D16) || (dwidth == VME_D32)) { if ((count - done) & 0x2) { *(u16 *)(buf + done) = fake_vmeread16(priv, addr + done, aspace, cycle); done += 2; } } if ((count - done) & 0x1) { *(u8 *)(buf + done) = fake_vmeread8(priv, addr + done, aspace, cycle); done += 1; } out: retval = count; spin_unlock(&image->lock); return retval; } static void fake_vmewrite8(struct fake_driver *bridge, u8 *buf, unsigned long long addr, u32 aspace, u32 cycle) { int i; unsigned long long start, end, offset; u8 *loc; for (i = 0; i < FAKE_MAX_SLAVE; i++) { if (aspace != bridge->slaves[i].aspace) continue; if (cycle != bridge->slaves[i].cycle) continue; start = bridge->slaves[i].vme_base; end = bridge->slaves[i].vme_base + bridge->slaves[i].size; if ((addr >= start) && (addr < end)) { offset = addr - bridge->slaves[i].vme_base; loc = (u8 *)((void *)bridge->slaves[i].buf_base + offset); *loc = *buf; break; } } fake_lm_check(bridge, addr, aspace, cycle); } static void fake_vmewrite16(struct fake_driver *bridge, u16 *buf, unsigned long long addr, u32 aspace, u32 cycle) { int i; unsigned long long start, end, offset; u16 *loc; for (i = 0; i < FAKE_MAX_SLAVE; i++) { if (aspace != bridge->slaves[i].aspace) continue; if (cycle != bridge->slaves[i].cycle) continue; start = bridge->slaves[i].vme_base; end = bridge->slaves[i].vme_base + bridge->slaves[i].size; if ((addr >= start) && ((addr + 1) < end)) { offset = addr - bridge->slaves[i].vme_base; loc = (u16 *)((void *)bridge->slaves[i].buf_base + offset); *loc = *buf; break; } } fake_lm_check(bridge, addr, aspace, cycle); } static void fake_vmewrite32(struct fake_driver *bridge, u32 *buf, unsigned long long addr, u32 aspace, u32 cycle) { int i; unsigned long long start, end, offset; u32 *loc; for (i = 0; i < FAKE_MAX_SLAVE; i++) { if (aspace != bridge->slaves[i].aspace) continue; if (cycle != bridge->slaves[i].cycle) continue; start = bridge->slaves[i].vme_base; end = bridge->slaves[i].vme_base + bridge->slaves[i].size; if ((addr >= start) && ((addr + 3) < end)) { offset = addr - bridge->slaves[i].vme_base; loc = (u32 *)((void *)bridge->slaves[i].buf_base + offset); *loc = *buf; break; } } fake_lm_check(bridge, addr, aspace, cycle); } static ssize_t fake_master_write(struct vme_master_resource *image, void *buf, size_t count, loff_t offset) { int retval = 0; u32 aspace, cycle, dwidth; unsigned long long addr; int i; unsigned int done = 0; unsigned int count32; struct vme_bridge *fake_bridge; struct fake_driver *bridge; fake_bridge = image->parent; bridge = fake_bridge->driver_priv; i = image->number; addr = bridge->masters[i].vme_base + offset; aspace = bridge->masters[i].aspace; cycle = bridge->masters[i].cycle; dwidth = bridge->masters[i].dwidth; spin_lock(&image->lock); /* Here we apply for the same strategy we do in master_read * function in order to assure the correct cycles. */ if (addr & 0x1) { fake_vmewrite8(bridge, (u8 *)buf, addr, aspace, cycle); done += 1; if (done == count) goto out; } if ((dwidth == VME_D16) || (dwidth == VME_D32)) { if ((addr + done) & 0x2) { if ((count - done) < 2) { fake_vmewrite8(bridge, (u8 *)(buf + done), addr + done, aspace, cycle); done += 1; goto out; } else { fake_vmewrite16(bridge, (u16 *)(buf + done), addr + done, aspace, cycle); done += 2; } } } if (dwidth == VME_D32) { count32 = (count - done) & ~0x3; while (done < count32) { fake_vmewrite32(bridge, (u32 *)(buf + done), addr + done, aspace, cycle); done += 4; } } else if (dwidth == VME_D16) { count32 = (count - done) & ~0x3; while (done < count32) { fake_vmewrite16(bridge, (u16 *)(buf + done), addr + done, aspace, cycle); done += 2; } } else if (dwidth == VME_D8) { count32 = (count - done); while (done < count32) { fake_vmewrite8(bridge, (u8 *)(buf + done), addr + done, aspace, cycle); done += 1; } } if ((dwidth == VME_D16) || (dwidth == VME_D32)) { if ((count - done) & 0x2) { fake_vmewrite16(bridge, (u16 *)(buf + done), addr + done, aspace, cycle); done += 2; } } if ((count - done) & 0x1) { fake_vmewrite8(bridge, (u8 *)(buf + done), addr + done, aspace, cycle); done += 1; } out: retval = count; spin_unlock(&image->lock); return retval; } /* * Perform an RMW cycle on the VME bus. * * Requires a previously configured master window, returns final value. */ static unsigned int fake_master_rmw(struct vme_master_resource *image, unsigned int mask, unsigned int compare, unsigned int swap, loff_t offset) { u32 tmp, base; u32 aspace, cycle; int i; struct fake_driver *bridge; bridge = image->parent->driver_priv; /* Find the PCI address that maps to the desired VME address */ i = image->number; base = bridge->masters[i].vme_base; aspace = bridge->masters[i].aspace; cycle = bridge->masters[i].cycle; /* Lock image */ spin_lock(&image->lock); /* Read existing value */ tmp = fake_vmeread32(bridge, base + offset, aspace, cycle); /* Perform check */ if ((tmp && mask) == (compare && mask)) { tmp = tmp | (mask | swap); tmp = tmp & (~mask | swap); /* Write back */ fake_vmewrite32(bridge, &tmp, base + offset, aspace, cycle); } /* Unlock image */ spin_unlock(&image->lock); return tmp; } /* * All 4 location monitors reside at the same base - this is therefore a * system wide configuration. * * This does not enable the LM monitor - that should be done when the first * callback is attached and disabled when the last callback is removed. */ static int fake_lm_set(struct vme_lm_resource *lm, unsigned long long lm_base, u32 aspace, u32 cycle) { int i; struct vme_bridge *fake_bridge; struct fake_driver *bridge; fake_bridge = lm->parent; bridge = fake_bridge->driver_priv; mutex_lock(&lm->mtx); /* If we already have a callback attached, we can't move it! */ for (i = 0; i < lm->monitors; i++) { if (bridge->lm_callback[i] != NULL) { mutex_unlock(&lm->mtx); pr_err("Location monitor callback attached, can't reset\n"); return -EBUSY; } } switch (aspace) { case VME_A16: case VME_A24: case VME_A32: case VME_A64: break; default: mutex_unlock(&lm->mtx); pr_err("Invalid address space\n"); return -EINVAL; } bridge->lm_base = lm_base; bridge->lm_aspace = aspace; bridge->lm_cycle = cycle; mutex_unlock(&lm->mtx); return 0; } /* Get configuration of the callback monitor and return whether it is enabled * or disabled. */ static int fake_lm_get(struct vme_lm_resource *lm, unsigned long long *lm_base, u32 *aspace, u32 *cycle) { struct fake_driver *bridge; bridge = lm->parent->driver_priv; mutex_lock(&lm->mtx); *lm_base = bridge->lm_base; *aspace = bridge->lm_aspace; *cycle = bridge->lm_cycle; mutex_unlock(&lm->mtx); return bridge->lm_enabled; } /* * Attach a callback to a specific location monitor. * * Callback will be passed the monitor triggered. */ static int fake_lm_attach(struct vme_lm_resource *lm, int monitor, void (*callback)(void *), void *data) { struct vme_bridge *fake_bridge; struct fake_driver *bridge; fake_bridge = lm->parent; bridge = fake_bridge->driver_priv; mutex_lock(&lm->mtx); /* Ensure that the location monitor is configured - need PGM or DATA */ if (bridge->lm_cycle == 0) { mutex_unlock(&lm->mtx); pr_err("Location monitor not properly configured\n"); return -EINVAL; } /* Check that a callback isn't already attached */ if (bridge->lm_callback[monitor] != NULL) { mutex_unlock(&lm->mtx); pr_err("Existing callback attached\n"); return -EBUSY; } /* Attach callback */ bridge->lm_callback[monitor] = callback; bridge->lm_data[monitor] = data; /* Ensure that global Location Monitor Enable set */ bridge->lm_enabled = 1; mutex_unlock(&lm->mtx); return 0; } /* * Detach a callback function forn a specific location monitor. */ static int fake_lm_detach(struct vme_lm_resource *lm, int monitor) { u32 tmp; int i; struct fake_driver *bridge; bridge = lm->parent->driver_priv; mutex_lock(&lm->mtx); /* Detach callback */ bridge->lm_callback[monitor] = NULL; bridge->lm_data[monitor] = NULL; /* If all location monitors disabled, disable global Location Monitor */ tmp = 0; for (i = 0; i < lm->monitors; i++) { if (bridge->lm_callback[i] != NULL) tmp = 1; } if (tmp == 0) bridge->lm_enabled = 0; mutex_unlock(&lm->mtx); return 0; } /* * Determine Geographical Addressing */ static int fake_slot_get(struct vme_bridge *fake_bridge) { return geoid; } static void *fake_alloc_consistent(struct device *parent, size_t size, dma_addr_t *dma) { void *alloc = kmalloc(size, GFP_KERNEL); if (alloc != NULL) *dma = fake_ptr_to_pci(alloc); return alloc; } static void fake_free_consistent(struct device *parent, size_t size, void *vaddr, dma_addr_t dma) { kfree(vaddr); /* dma_free_coherent(parent, size, vaddr, dma); */ } /* * Configure CR/CSR space * * Access to the CR/CSR can be configured at power-up. The location of the * CR/CSR registers in the CR/CSR address space is determined by the boards * Geographic address. * * Each board has a 512kB window, with the highest 4kB being used for the * boards registers, this means there is a fix length 508kB window which must * be mapped onto PCI memory. */ static int fake_crcsr_init(struct vme_bridge *fake_bridge) { u32 vstat; struct fake_driver *bridge; bridge = fake_bridge->driver_priv; /* Allocate mem for CR/CSR image */ bridge->crcsr_kernel = kzalloc(VME_CRCSR_BUF_SIZE, GFP_KERNEL); bridge->crcsr_bus = fake_ptr_to_pci(bridge->crcsr_kernel); if (bridge->crcsr_kernel == NULL) return -ENOMEM; vstat = fake_slot_get(fake_bridge); pr_info("CR/CSR Offset: %d\n", vstat); return 0; } static void fake_crcsr_exit(struct vme_bridge *fake_bridge) { struct fake_driver *bridge; bridge = fake_bridge->driver_priv; kfree(bridge->crcsr_kernel); } static int __init fake_init(void) { int retval, i; struct list_head *pos = NULL, *n; struct vme_bridge *fake_bridge; struct fake_driver *fake_device; struct vme_master_resource *master_image; struct vme_slave_resource *slave_image; struct vme_lm_resource *lm; /* We need a fake parent device */ vme_root = __root_device_register("vme", THIS_MODULE); /* If we want to support more than one bridge at some point, we need to * dynamically allocate this so we get one per device. */ fake_bridge = kzalloc(sizeof(struct vme_bridge), GFP_KERNEL); if (fake_bridge == NULL) { retval = -ENOMEM; goto err_struct; } fake_device = kzalloc(sizeof(struct fake_driver), GFP_KERNEL); if (fake_device == NULL) { retval = -ENOMEM; goto err_driver; } fake_bridge->driver_priv = fake_device; fake_bridge->parent = vme_root; fake_device->parent = fake_bridge; /* Initialize wait queues & mutual exclusion flags */ mutex_init(&fake_device->vme_int); mutex_init(&fake_bridge->irq_mtx); tasklet_init(&fake_device->int_tasklet, fake_VIRQ_tasklet, (unsigned long) fake_bridge); strcpy(fake_bridge->name, driver_name); /* Add master windows to list */ INIT_LIST_HEAD(&fake_bridge->master_resources); for (i = 0; i < FAKE_MAX_MASTER; i++) { master_image = kmalloc(sizeof(struct vme_master_resource), GFP_KERNEL); if (master_image == NULL) { retval = -ENOMEM; goto err_master; } master_image->parent = fake_bridge; spin_lock_init(&master_image->lock); master_image->locked = 0; master_image->number = i; master_image->address_attr = VME_A16 | VME_A24 | VME_A32 | VME_A64; master_image->cycle_attr = VME_SCT | VME_BLT | VME_MBLT | VME_2eVME | VME_2eSST | VME_2eSSTB | VME_2eSST160 | VME_2eSST267 | VME_2eSST320 | VME_SUPER | VME_USER | VME_PROG | VME_DATA; master_image->width_attr = VME_D16 | VME_D32; memset(&master_image->bus_resource, 0, sizeof(struct resource)); master_image->kern_base = NULL; list_add_tail(&master_image->list, &fake_bridge->master_resources); } /* Add slave windows to list */ INIT_LIST_HEAD(&fake_bridge->slave_resources); for (i = 0; i < FAKE_MAX_SLAVE; i++) { slave_image = kmalloc(sizeof(struct vme_slave_resource), GFP_KERNEL); if (slave_image == NULL) { retval = -ENOMEM; goto err_slave; } slave_image->parent = fake_bridge; mutex_init(&slave_image->mtx); slave_image->locked = 0; slave_image->number = i; slave_image->address_attr = VME_A16 | VME_A24 | VME_A32 | VME_A64 | VME_CRCSR | VME_USER1 | VME_USER2 | VME_USER3 | VME_USER4; slave_image->cycle_attr = VME_SCT | VME_BLT | VME_MBLT | VME_2eVME | VME_2eSST | VME_2eSSTB | VME_2eSST160 | VME_2eSST267 | VME_2eSST320 | VME_SUPER | VME_USER | VME_PROG | VME_DATA; list_add_tail(&slave_image->list, &fake_bridge->slave_resources); } /* Add location monitor to list */ INIT_LIST_HEAD(&fake_bridge->lm_resources); lm = kmalloc(sizeof(struct vme_lm_resource), GFP_KERNEL); if (lm == NULL) { retval = -ENOMEM; goto err_lm; } lm->parent = fake_bridge; mutex_init(&lm->mtx); lm->locked = 0; lm->number = 1; lm->monitors = 4; list_add_tail(&lm->list, &fake_bridge->lm_resources); fake_bridge->slave_get = fake_slave_get; fake_bridge->slave_set = fake_slave_set; fake_bridge->master_get = fake_master_get; fake_bridge->master_set = fake_master_set; fake_bridge->master_read = fake_master_read; fake_bridge->master_write = fake_master_write; fake_bridge->master_rmw = fake_master_rmw; fake_bridge->irq_set = fake_irq_set; fake_bridge->irq_generate = fake_irq_generate; fake_bridge->lm_set = fake_lm_set; fake_bridge->lm_get = fake_lm_get; fake_bridge->lm_attach = fake_lm_attach; fake_bridge->lm_detach = fake_lm_detach; fake_bridge->slot_get = fake_slot_get; fake_bridge->alloc_consistent = fake_alloc_consistent; fake_bridge->free_consistent = fake_free_consistent; pr_info("Board is%s the VME system controller\n", (geoid == 1) ? "" : " not"); pr_info("VME geographical address is set to %d\n", geoid); retval = fake_crcsr_init(fake_bridge); if (retval) { pr_err("CR/CSR configuration failed.\n"); goto err_crcsr; } retval = vme_register_bridge(fake_bridge); if (retval != 0) { pr_err("Chip Registration failed.\n"); goto err_reg; } exit_pointer = fake_bridge; return 0; err_reg: fake_crcsr_exit(fake_bridge); err_crcsr: err_lm: /* resources are stored in link list */ list_for_each_safe(pos, n, &fake_bridge->lm_resources) { lm = list_entry(pos, struct vme_lm_resource, list); list_del(pos); kfree(lm); } err_slave: /* resources are stored in link list */ list_for_each_safe(pos, n, &fake_bridge->slave_resources) { slave_image = list_entry(pos, struct vme_slave_resource, list); list_del(pos); kfree(slave_image); } err_master: /* resources are stored in link list */ list_for_each_safe(pos, n, &fake_bridge->master_resources) { master_image = list_entry(pos, struct vme_master_resource, list); list_del(pos); kfree(master_image); } kfree(fake_device); err_driver: kfree(fake_bridge); err_struct: return retval; } static void __exit fake_exit(void) { struct list_head *pos = NULL; struct list_head *tmplist; struct vme_master_resource *master_image; struct vme_slave_resource *slave_image; int i; struct vme_bridge *fake_bridge; struct fake_driver *bridge; fake_bridge = exit_pointer; bridge = fake_bridge->driver_priv; pr_debug("Driver is being unloaded.\n"); /* * Shutdown all inbound and outbound windows. */ for (i = 0; i < FAKE_MAX_MASTER; i++) bridge->masters[i].enabled = 0; for (i = 0; i < FAKE_MAX_SLAVE; i++) bridge->slaves[i].enabled = 0; /* * Shutdown Location monitor. */ bridge->lm_enabled = 0; vme_unregister_bridge(fake_bridge); fake_crcsr_exit(fake_bridge); /* resources are stored in link list */ list_for_each_safe(pos, tmplist, &fake_bridge->slave_resources) { slave_image = list_entry(pos, struct vme_slave_resource, list); list_del(pos); kfree(slave_image); } /* resources are stored in link list */ list_for_each_safe(pos, tmplist, &fake_bridge->master_resources) { master_image = list_entry(pos, struct vme_master_resource, list); list_del(pos); kfree(master_image); } kfree(fake_bridge->driver_priv); kfree(fake_bridge); root_device_unregister(vme_root); } MODULE_PARM_DESC(geoid, "Set geographical addressing"); module_param(geoid, int, 0); MODULE_DESCRIPTION("Fake VME bridge driver"); MODULE_LICENSE("GPL"); module_init(fake_init); module_exit(fake_exit);