// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2012 Google, Inc. * * Foreground allocator code: allocate buckets from freelist, and allocate in * sector granularity from writepoints. * * bch2_bucket_alloc() allocates a single bucket from a specific device. * * bch2_bucket_alloc_set() allocates one or more buckets from different devices * in a given filesystem. */ #include "bcachefs.h" #include "alloc_background.h" #include "alloc_foreground.h" #include "backpointers.h" #include "btree_iter.h" #include "btree_update.h" #include "btree_gc.h" #include "buckets.h" #include "buckets_waiting_for_journal.h" #include "clock.h" #include "debug.h" #include "disk_groups.h" #include "ec.h" #include "error.h" #include "io_write.h" #include "journal.h" #include "movinggc.h" #include "nocow_locking.h" #include "trace.h" #include #include #include static void bch2_trans_mutex_lock_norelock(struct btree_trans *trans, struct mutex *lock) { if (!mutex_trylock(lock)) { bch2_trans_unlock(trans); mutex_lock(lock); } } const char * const bch2_watermarks[] = { #define x(t) #t, BCH_WATERMARKS() #undef x NULL }; /* * Open buckets represent a bucket that's currently being allocated from. They * serve two purposes: * * - They track buckets that have been partially allocated, allowing for * sub-bucket sized allocations - they're used by the sector allocator below * * - They provide a reference to the buckets they own that mark and sweep GC * can find, until the new allocation has a pointer to it inserted into the * btree * * When allocating some space with the sector allocator, the allocation comes * with a reference to an open bucket - the caller is required to put that * reference _after_ doing the index update that makes its allocation reachable. */ void bch2_reset_alloc_cursors(struct bch_fs *c) { rcu_read_lock(); for_each_member_device_rcu(c, ca, NULL) memset(ca->alloc_cursor, 0, sizeof(ca->alloc_cursor)); rcu_read_unlock(); } static void bch2_open_bucket_hash_add(struct bch_fs *c, struct open_bucket *ob) { open_bucket_idx_t idx = ob - c->open_buckets; open_bucket_idx_t *slot = open_bucket_hashslot(c, ob->dev, ob->bucket); ob->hash = *slot; *slot = idx; } static void bch2_open_bucket_hash_remove(struct bch_fs *c, struct open_bucket *ob) { open_bucket_idx_t idx = ob - c->open_buckets; open_bucket_idx_t *slot = open_bucket_hashslot(c, ob->dev, ob->bucket); while (*slot != idx) { BUG_ON(!*slot); slot = &c->open_buckets[*slot].hash; } *slot = ob->hash; ob->hash = 0; } void __bch2_open_bucket_put(struct bch_fs *c, struct open_bucket *ob) { struct bch_dev *ca = ob_dev(c, ob); if (ob->ec) { ec_stripe_new_put(c, ob->ec, STRIPE_REF_io); return; } percpu_down_read(&c->mark_lock); spin_lock(&ob->lock); ob->valid = false; ob->data_type = 0; spin_unlock(&ob->lock); percpu_up_read(&c->mark_lock); spin_lock(&c->freelist_lock); bch2_open_bucket_hash_remove(c, ob); ob->freelist = c->open_buckets_freelist; c->open_buckets_freelist = ob - c->open_buckets; c->open_buckets_nr_free++; ca->nr_open_buckets--; spin_unlock(&c->freelist_lock); closure_wake_up(&c->open_buckets_wait); } void bch2_open_bucket_write_error(struct bch_fs *c, struct open_buckets *obs, unsigned dev) { struct open_bucket *ob; unsigned i; open_bucket_for_each(c, obs, ob, i) if (ob->dev == dev && ob->ec) bch2_ec_bucket_cancel(c, ob); } static struct open_bucket *bch2_open_bucket_alloc(struct bch_fs *c) { struct open_bucket *ob; BUG_ON(!c->open_buckets_freelist || !c->open_buckets_nr_free); ob = c->open_buckets + c->open_buckets_freelist; c->open_buckets_freelist = ob->freelist; atomic_set(&ob->pin, 1); ob->data_type = 0; c->open_buckets_nr_free--; return ob; } static void open_bucket_free_unused(struct bch_fs *c, struct open_bucket *ob) { BUG_ON(c->open_buckets_partial_nr >= ARRAY_SIZE(c->open_buckets_partial)); spin_lock(&c->freelist_lock); ob->on_partial_list = true; c->open_buckets_partial[c->open_buckets_partial_nr++] = ob - c->open_buckets; spin_unlock(&c->freelist_lock); closure_wake_up(&c->open_buckets_wait); closure_wake_up(&c->freelist_wait); } /* _only_ for allocating the journal on a new device: */ long bch2_bucket_alloc_new_fs(struct bch_dev *ca) { while (ca->new_fs_bucket_idx < ca->mi.nbuckets) { u64 b = ca->new_fs_bucket_idx++; if (!is_superblock_bucket(ca, b) && (!ca->buckets_nouse || !test_bit(b, ca->buckets_nouse))) return b; } return -1; } static inline unsigned open_buckets_reserved(enum bch_watermark watermark) { switch (watermark) { case BCH_WATERMARK_interior_updates: return 0; case BCH_WATERMARK_reclaim: return OPEN_BUCKETS_COUNT / 6; case BCH_WATERMARK_btree: case BCH_WATERMARK_btree_copygc: return OPEN_BUCKETS_COUNT / 4; case BCH_WATERMARK_copygc: return OPEN_BUCKETS_COUNT / 3; default: return OPEN_BUCKETS_COUNT / 2; } } static struct open_bucket *__try_alloc_bucket(struct bch_fs *c, struct bch_dev *ca, u64 bucket, enum bch_watermark watermark, const struct bch_alloc_v4 *a, struct bucket_alloc_state *s, struct closure *cl) { struct open_bucket *ob; if (unlikely(ca->buckets_nouse && test_bit(bucket, ca->buckets_nouse))) { s->skipped_nouse++; return NULL; } if (bch2_bucket_is_open(c, ca->dev_idx, bucket)) { s->skipped_open++; return NULL; } if (bch2_bucket_needs_journal_commit(&c->buckets_waiting_for_journal, c->journal.flushed_seq_ondisk, ca->dev_idx, bucket)) { s->skipped_need_journal_commit++; return NULL; } if (bch2_bucket_nocow_is_locked(&c->nocow_locks, POS(ca->dev_idx, bucket))) { s->skipped_nocow++; return NULL; } spin_lock(&c->freelist_lock); if (unlikely(c->open_buckets_nr_free <= open_buckets_reserved(watermark))) { if (cl) closure_wait(&c->open_buckets_wait, cl); track_event_change(&c->times[BCH_TIME_blocked_allocate_open_bucket], true); spin_unlock(&c->freelist_lock); return ERR_PTR(-BCH_ERR_open_buckets_empty); } /* Recheck under lock: */ if (bch2_bucket_is_open(c, ca->dev_idx, bucket)) { spin_unlock(&c->freelist_lock); s->skipped_open++; return NULL; } ob = bch2_open_bucket_alloc(c); spin_lock(&ob->lock); ob->valid = true; ob->sectors_free = ca->mi.bucket_size; ob->dev = ca->dev_idx; ob->gen = a->gen; ob->bucket = bucket; spin_unlock(&ob->lock); ca->nr_open_buckets++; bch2_open_bucket_hash_add(c, ob); track_event_change(&c->times[BCH_TIME_blocked_allocate_open_bucket], false); track_event_change(&c->times[BCH_TIME_blocked_allocate], false); spin_unlock(&c->freelist_lock); return ob; } static struct open_bucket *try_alloc_bucket(struct btree_trans *trans, struct bch_dev *ca, enum bch_watermark watermark, u64 free_entry, struct bucket_alloc_state *s, struct bkey_s_c freespace_k, struct closure *cl) { struct bch_fs *c = trans->c; struct btree_iter iter = { NULL }; struct bkey_s_c k; struct open_bucket *ob; struct bch_alloc_v4 a_convert; const struct bch_alloc_v4 *a; u64 b = free_entry & ~(~0ULL << 56); unsigned genbits = free_entry >> 56; struct printbuf buf = PRINTBUF; int ret; if (b < ca->mi.first_bucket || b >= ca->mi.nbuckets) { prt_printf(&buf, "freespace btree has bucket outside allowed range %u-%llu\n" " freespace key ", ca->mi.first_bucket, ca->mi.nbuckets); bch2_bkey_val_to_text(&buf, c, freespace_k); bch2_trans_inconsistent(trans, "%s", buf.buf); ob = ERR_PTR(-EIO); goto err; } k = bch2_bkey_get_iter(trans, &iter, BTREE_ID_alloc, POS(ca->dev_idx, b), BTREE_ITER_cached); ret = bkey_err(k); if (ret) { ob = ERR_PTR(ret); goto err; } a = bch2_alloc_to_v4(k, &a_convert); if (a->data_type != BCH_DATA_free) { if (c->curr_recovery_pass <= BCH_RECOVERY_PASS_check_alloc_info) { ob = NULL; goto err; } prt_printf(&buf, "non free bucket in freespace btree\n" " freespace key "); bch2_bkey_val_to_text(&buf, c, freespace_k); prt_printf(&buf, "\n "); bch2_bkey_val_to_text(&buf, c, k); bch2_trans_inconsistent(trans, "%s", buf.buf); ob = ERR_PTR(-EIO); goto err; } if (genbits != (alloc_freespace_genbits(*a) >> 56) && c->curr_recovery_pass > BCH_RECOVERY_PASS_check_alloc_info) { prt_printf(&buf, "bucket in freespace btree with wrong genbits (got %u should be %llu)\n" " freespace key ", genbits, alloc_freespace_genbits(*a) >> 56); bch2_bkey_val_to_text(&buf, c, freespace_k); prt_printf(&buf, "\n "); bch2_bkey_val_to_text(&buf, c, k); bch2_trans_inconsistent(trans, "%s", buf.buf); ob = ERR_PTR(-EIO); goto err; } if (c->curr_recovery_pass <= BCH_RECOVERY_PASS_check_extents_to_backpointers) { struct bch_backpointer bp; struct bpos bp_pos = POS_MIN; ret = bch2_get_next_backpointer(trans, ca, POS(ca->dev_idx, b), -1, &bp_pos, &bp, BTREE_ITER_nopreserve); if (ret) { ob = ERR_PTR(ret); goto err; } if (!bkey_eq(bp_pos, POS_MAX)) { /* * Bucket may have data in it - we don't call * bc2h_trans_inconnsistent() because fsck hasn't * finished yet */ ob = NULL; goto err; } } ob = __try_alloc_bucket(c, ca, b, watermark, a, s, cl); if (!ob) bch2_set_btree_iter_dontneed(&iter); err: if (iter.path) bch2_set_btree_iter_dontneed(&iter); bch2_trans_iter_exit(trans, &iter); printbuf_exit(&buf); return ob; } /* * This path is for before the freespace btree is initialized: * * If ca->new_fs_bucket_idx is nonzero, we haven't yet marked superblock & * journal buckets - journal buckets will be < ca->new_fs_bucket_idx */ static noinline struct open_bucket * bch2_bucket_alloc_early(struct btree_trans *trans, struct bch_dev *ca, enum bch_watermark watermark, struct bucket_alloc_state *s, struct closure *cl) { struct btree_iter iter, citer; struct bkey_s_c k, ck; struct open_bucket *ob = NULL; u64 first_bucket = max_t(u64, ca->mi.first_bucket, ca->new_fs_bucket_idx); u64 *dev_alloc_cursor = &ca->alloc_cursor[s->btree_bitmap]; u64 alloc_start = max(first_bucket, *dev_alloc_cursor); u64 alloc_cursor = alloc_start; int ret; /* * Scan with an uncached iterator to avoid polluting the key cache. An * uncached iter will return a cached key if one exists, but if not * there is no other underlying protection for the associated key cache * slot. To avoid racing bucket allocations, look up the cached key slot * of any likely allocation candidate before attempting to proceed with * the allocation. This provides proper exclusion on the associated * bucket. */ again: for_each_btree_key_norestart(trans, iter, BTREE_ID_alloc, POS(ca->dev_idx, alloc_cursor), BTREE_ITER_slots, k, ret) { u64 bucket = k.k->p.offset; if (bkey_ge(k.k->p, POS(ca->dev_idx, ca->mi.nbuckets))) break; if (ca->new_fs_bucket_idx && is_superblock_bucket(ca, k.k->p.offset)) continue; if (s->btree_bitmap != BTREE_BITMAP_ANY && s->btree_bitmap != bch2_dev_btree_bitmap_marked_sectors(ca, bucket_to_sector(ca, bucket), ca->mi.bucket_size)) { if (s->btree_bitmap == BTREE_BITMAP_YES && bucket_to_sector(ca, bucket) > 64ULL << ca->mi.btree_bitmap_shift) break; bucket = sector_to_bucket(ca, round_up(bucket_to_sector(ca, bucket) + 1, 1ULL << ca->mi.btree_bitmap_shift)); bch2_btree_iter_set_pos(&iter, POS(ca->dev_idx, bucket)); s->buckets_seen++; s->skipped_mi_btree_bitmap++; continue; } struct bch_alloc_v4 a_convert; const struct bch_alloc_v4 *a = bch2_alloc_to_v4(k, &a_convert); if (a->data_type != BCH_DATA_free) continue; /* now check the cached key to serialize concurrent allocs of the bucket */ ck = bch2_bkey_get_iter(trans, &citer, BTREE_ID_alloc, k.k->p, BTREE_ITER_cached); ret = bkey_err(ck); if (ret) break; a = bch2_alloc_to_v4(ck, &a_convert); if (a->data_type != BCH_DATA_free) goto next; s->buckets_seen++; ob = __try_alloc_bucket(trans->c, ca, k.k->p.offset, watermark, a, s, cl); next: bch2_set_btree_iter_dontneed(&citer); bch2_trans_iter_exit(trans, &citer); if (ob) break; } bch2_trans_iter_exit(trans, &iter); alloc_cursor = iter.pos.offset; if (!ob && ret) ob = ERR_PTR(ret); if (!ob && alloc_start > first_bucket) { alloc_cursor = alloc_start = first_bucket; goto again; } *dev_alloc_cursor = alloc_cursor; return ob; } static struct open_bucket *bch2_bucket_alloc_freelist(struct btree_trans *trans, struct bch_dev *ca, enum bch_watermark watermark, struct bucket_alloc_state *s, struct closure *cl) { struct btree_iter iter; struct bkey_s_c k; struct open_bucket *ob = NULL; u64 *dev_alloc_cursor = &ca->alloc_cursor[s->btree_bitmap]; u64 alloc_start = max_t(u64, ca->mi.first_bucket, READ_ONCE(*dev_alloc_cursor)); u64 alloc_cursor = alloc_start; int ret; BUG_ON(ca->new_fs_bucket_idx); again: for_each_btree_key_norestart(trans, iter, BTREE_ID_freespace, POS(ca->dev_idx, alloc_cursor), 0, k, ret) { if (k.k->p.inode != ca->dev_idx) break; for (alloc_cursor = max(alloc_cursor, bkey_start_offset(k.k)); alloc_cursor < k.k->p.offset; alloc_cursor++) { s->buckets_seen++; u64 bucket = alloc_cursor & ~(~0ULL << 56); if (s->btree_bitmap != BTREE_BITMAP_ANY && s->btree_bitmap != bch2_dev_btree_bitmap_marked_sectors(ca, bucket_to_sector(ca, bucket), ca->mi.bucket_size)) { if (s->btree_bitmap == BTREE_BITMAP_YES && bucket_to_sector(ca, bucket) > 64ULL << ca->mi.btree_bitmap_shift) goto fail; bucket = sector_to_bucket(ca, round_up(bucket_to_sector(ca, bucket) + 1, 1ULL << ca->mi.btree_bitmap_shift)); u64 genbits = alloc_cursor >> 56; alloc_cursor = bucket | (genbits << 56); if (alloc_cursor > k.k->p.offset) bch2_btree_iter_set_pos(&iter, POS(ca->dev_idx, alloc_cursor)); s->skipped_mi_btree_bitmap++; continue; } ob = try_alloc_bucket(trans, ca, watermark, alloc_cursor, s, k, cl); if (ob) { bch2_set_btree_iter_dontneed(&iter); break; } } if (ob || ret) break; } fail: bch2_trans_iter_exit(trans, &iter); if (!ob && ret) ob = ERR_PTR(ret); if (!ob && alloc_start > ca->mi.first_bucket) { alloc_cursor = alloc_start = ca->mi.first_bucket; goto again; } *dev_alloc_cursor = alloc_cursor; return ob; } static noinline void trace_bucket_alloc2(struct bch_fs *c, struct bch_dev *ca, enum bch_watermark watermark, enum bch_data_type data_type, struct closure *cl, struct bch_dev_usage *usage, struct bucket_alloc_state *s, struct open_bucket *ob) { struct printbuf buf = PRINTBUF; printbuf_tabstop_push(&buf, 24); prt_printf(&buf, "dev\t%s (%u)\n", ca->name, ca->dev_idx); prt_printf(&buf, "watermark\t%s\n", bch2_watermarks[watermark]); prt_printf(&buf, "data type\t%s\n", __bch2_data_types[data_type]); prt_printf(&buf, "blocking\t%u\n", cl != NULL); prt_printf(&buf, "free\t%llu\n", usage->d[BCH_DATA_free].buckets); prt_printf(&buf, "avail\t%llu\n", dev_buckets_free(ca, *usage, watermark)); prt_printf(&buf, "copygc_wait\t%lu/%lli\n", bch2_copygc_wait_amount(c), c->copygc_wait - atomic64_read(&c->io_clock[WRITE].now)); prt_printf(&buf, "seen\t%llu\n", s->buckets_seen); prt_printf(&buf, "open\t%llu\n", s->skipped_open); prt_printf(&buf, "need journal commit\t%llu\n", s->skipped_need_journal_commit); prt_printf(&buf, "nocow\t%llu\n", s->skipped_nocow); prt_printf(&buf, "nouse\t%llu\n", s->skipped_nouse); prt_printf(&buf, "mi_btree_bitmap\t%llu\n", s->skipped_mi_btree_bitmap); if (!IS_ERR(ob)) { prt_printf(&buf, "allocated\t%llu\n", ob->bucket); trace_bucket_alloc(c, buf.buf); } else { prt_printf(&buf, "err\t%s\n", bch2_err_str(PTR_ERR(ob))); trace_bucket_alloc_fail(c, buf.buf); } printbuf_exit(&buf); } /** * bch2_bucket_alloc_trans - allocate a single bucket from a specific device * @trans: transaction object * @ca: device to allocate from * @watermark: how important is this allocation? * @data_type: BCH_DATA_journal, btree, user... * @cl: if not NULL, closure to be used to wait if buckets not available * @usage: for secondarily also returning the current device usage * * Returns: an open_bucket on success, or an ERR_PTR() on failure. */ static struct open_bucket *bch2_bucket_alloc_trans(struct btree_trans *trans, struct bch_dev *ca, enum bch_watermark watermark, enum bch_data_type data_type, struct closure *cl, struct bch_dev_usage *usage) { struct bch_fs *c = trans->c; struct open_bucket *ob = NULL; bool freespace = READ_ONCE(ca->mi.freespace_initialized); u64 avail; struct bucket_alloc_state s = { .btree_bitmap = data_type == BCH_DATA_btree, }; bool waiting = false; again: bch2_dev_usage_read_fast(ca, usage); avail = dev_buckets_free(ca, *usage, watermark); if (usage->d[BCH_DATA_need_discard].buckets > avail) bch2_dev_do_discards(ca); if (usage->d[BCH_DATA_need_gc_gens].buckets > avail) bch2_gc_gens_async(c); if (should_invalidate_buckets(ca, *usage)) bch2_dev_do_invalidates(ca); if (!avail) { if (cl && !waiting) { closure_wait(&c->freelist_wait, cl); waiting = true; goto again; } track_event_change(&c->times[BCH_TIME_blocked_allocate], true); ob = ERR_PTR(-BCH_ERR_freelist_empty); goto err; } if (waiting) closure_wake_up(&c->freelist_wait); alloc: ob = likely(freespace) ? bch2_bucket_alloc_freelist(trans, ca, watermark, &s, cl) : bch2_bucket_alloc_early(trans, ca, watermark, &s, cl); if (s.skipped_need_journal_commit * 2 > avail) bch2_journal_flush_async(&c->journal, NULL); if (!ob && s.btree_bitmap != BTREE_BITMAP_ANY) { s.btree_bitmap = BTREE_BITMAP_ANY; goto alloc; } if (!ob && freespace && c->curr_recovery_pass <= BCH_RECOVERY_PASS_check_alloc_info) { freespace = false; goto alloc; } err: if (!ob) ob = ERR_PTR(-BCH_ERR_no_buckets_found); if (!IS_ERR(ob)) ob->data_type = data_type; if (!IS_ERR(ob)) count_event(c, bucket_alloc); else if (!bch2_err_matches(PTR_ERR(ob), BCH_ERR_transaction_restart)) count_event(c, bucket_alloc_fail); if (!IS_ERR(ob) ? trace_bucket_alloc_enabled() : trace_bucket_alloc_fail_enabled()) trace_bucket_alloc2(c, ca, watermark, data_type, cl, usage, &s, ob); return ob; } struct open_bucket *bch2_bucket_alloc(struct bch_fs *c, struct bch_dev *ca, enum bch_watermark watermark, enum bch_data_type data_type, struct closure *cl) { struct bch_dev_usage usage; struct open_bucket *ob; bch2_trans_do(c, NULL, NULL, 0, PTR_ERR_OR_ZERO(ob = bch2_bucket_alloc_trans(trans, ca, watermark, data_type, cl, &usage))); return ob; } static int __dev_stripe_cmp(struct dev_stripe_state *stripe, unsigned l, unsigned r) { return ((stripe->next_alloc[l] > stripe->next_alloc[r]) - (stripe->next_alloc[l] < stripe->next_alloc[r])); } #define dev_stripe_cmp(l, r) __dev_stripe_cmp(stripe, l, r) struct dev_alloc_list bch2_dev_alloc_list(struct bch_fs *c, struct dev_stripe_state *stripe, struct bch_devs_mask *devs) { struct dev_alloc_list ret = { .nr = 0 }; unsigned i; for_each_set_bit(i, devs->d, BCH_SB_MEMBERS_MAX) ret.devs[ret.nr++] = i; bubble_sort(ret.devs, ret.nr, dev_stripe_cmp); return ret; } static inline void bch2_dev_stripe_increment_inlined(struct bch_dev *ca, struct dev_stripe_state *stripe, struct bch_dev_usage *usage) { u64 *v = stripe->next_alloc + ca->dev_idx; u64 free_space = dev_buckets_available(ca, BCH_WATERMARK_normal); u64 free_space_inv = free_space ? div64_u64(1ULL << 48, free_space) : 1ULL << 48; u64 scale = *v / 4; if (*v + free_space_inv >= *v) *v += free_space_inv; else *v = U64_MAX; for (v = stripe->next_alloc; v < stripe->next_alloc + ARRAY_SIZE(stripe->next_alloc); v++) *v = *v < scale ? 0 : *v - scale; } void bch2_dev_stripe_increment(struct bch_dev *ca, struct dev_stripe_state *stripe) { struct bch_dev_usage usage; bch2_dev_usage_read_fast(ca, &usage); bch2_dev_stripe_increment_inlined(ca, stripe, &usage); } static int add_new_bucket(struct bch_fs *c, struct open_buckets *ptrs, struct bch_devs_mask *devs_may_alloc, unsigned nr_replicas, unsigned *nr_effective, bool *have_cache, unsigned flags, struct open_bucket *ob) { unsigned durability = ob_dev(c, ob)->mi.durability; BUG_ON(*nr_effective >= nr_replicas); __clear_bit(ob->dev, devs_may_alloc->d); *nr_effective += durability; *have_cache |= !durability; ob_push(c, ptrs, ob); if (*nr_effective >= nr_replicas) return 1; if (ob->ec) return 1; return 0; } int bch2_bucket_alloc_set_trans(struct btree_trans *trans, struct open_buckets *ptrs, struct dev_stripe_state *stripe, struct bch_devs_mask *devs_may_alloc, unsigned nr_replicas, unsigned *nr_effective, bool *have_cache, unsigned flags, enum bch_data_type data_type, enum bch_watermark watermark, struct closure *cl) { struct bch_fs *c = trans->c; struct dev_alloc_list devs_sorted = bch2_dev_alloc_list(c, stripe, devs_may_alloc); int ret = -BCH_ERR_insufficient_devices; BUG_ON(*nr_effective >= nr_replicas); for (unsigned i = 0; i < devs_sorted.nr; i++) { struct bch_dev_usage usage; struct open_bucket *ob; unsigned dev = devs_sorted.devs[i]; struct bch_dev *ca = bch2_dev_tryget_noerror(c, dev); if (!ca) continue; if (!ca->mi.durability && *have_cache) { bch2_dev_put(ca); continue; } ob = bch2_bucket_alloc_trans(trans, ca, watermark, data_type, cl, &usage); if (!IS_ERR(ob)) bch2_dev_stripe_increment_inlined(ca, stripe, &usage); bch2_dev_put(ca); if (IS_ERR(ob)) { ret = PTR_ERR(ob); if (bch2_err_matches(ret, BCH_ERR_transaction_restart) || cl) break; continue; } if (add_new_bucket(c, ptrs, devs_may_alloc, nr_replicas, nr_effective, have_cache, flags, ob)) { ret = 0; break; } } return ret; } /* Allocate from stripes: */ /* * if we can't allocate a new stripe because there are already too many * partially filled stripes, force allocating from an existing stripe even when * it's to a device we don't want: */ static int bucket_alloc_from_stripe(struct btree_trans *trans, struct open_buckets *ptrs, struct write_point *wp, struct bch_devs_mask *devs_may_alloc, u16 target, unsigned nr_replicas, unsigned *nr_effective, bool *have_cache, enum bch_watermark watermark, unsigned flags, struct closure *cl) { struct bch_fs *c = trans->c; struct dev_alloc_list devs_sorted; struct ec_stripe_head *h; struct open_bucket *ob; unsigned i, ec_idx; int ret = 0; if (nr_replicas < 2) return 0; if (ec_open_bucket(c, ptrs)) return 0; h = bch2_ec_stripe_head_get(trans, target, 0, nr_replicas - 1, watermark, cl); if (IS_ERR(h)) return PTR_ERR(h); if (!h) return 0; devs_sorted = bch2_dev_alloc_list(c, &wp->stripe, devs_may_alloc); for (i = 0; i < devs_sorted.nr; i++) for (ec_idx = 0; ec_idx < h->s->nr_data; ec_idx++) { if (!h->s->blocks[ec_idx]) continue; ob = c->open_buckets + h->s->blocks[ec_idx]; if (ob->dev == devs_sorted.devs[i] && !test_and_set_bit(ec_idx, h->s->blocks_allocated)) goto got_bucket; } goto out_put_head; got_bucket: ob->ec_idx = ec_idx; ob->ec = h->s; ec_stripe_new_get(h->s, STRIPE_REF_io); ret = add_new_bucket(c, ptrs, devs_may_alloc, nr_replicas, nr_effective, have_cache, flags, ob); out_put_head: bch2_ec_stripe_head_put(c, h); return ret; } /* Sector allocator */ static bool want_bucket(struct bch_fs *c, struct write_point *wp, struct bch_devs_mask *devs_may_alloc, bool *have_cache, bool ec, struct open_bucket *ob) { struct bch_dev *ca = ob_dev(c, ob); if (!test_bit(ob->dev, devs_may_alloc->d)) return false; if (ob->data_type != wp->data_type) return false; if (!ca->mi.durability && (wp->data_type == BCH_DATA_btree || ec || *have_cache)) return false; if (ec != (ob->ec != NULL)) return false; return true; } static int bucket_alloc_set_writepoint(struct bch_fs *c, struct open_buckets *ptrs, struct write_point *wp, struct bch_devs_mask *devs_may_alloc, unsigned nr_replicas, unsigned *nr_effective, bool *have_cache, bool ec, unsigned flags) { struct open_buckets ptrs_skip = { .nr = 0 }; struct open_bucket *ob; unsigned i; int ret = 0; open_bucket_for_each(c, &wp->ptrs, ob, i) { if (!ret && want_bucket(c, wp, devs_may_alloc, have_cache, ec, ob)) ret = add_new_bucket(c, ptrs, devs_may_alloc, nr_replicas, nr_effective, have_cache, flags, ob); else ob_push(c, &ptrs_skip, ob); } wp->ptrs = ptrs_skip; return ret; } static int bucket_alloc_set_partial(struct bch_fs *c, struct open_buckets *ptrs, struct write_point *wp, struct bch_devs_mask *devs_may_alloc, unsigned nr_replicas, unsigned *nr_effective, bool *have_cache, bool ec, enum bch_watermark watermark, unsigned flags) { int i, ret = 0; if (!c->open_buckets_partial_nr) return 0; spin_lock(&c->freelist_lock); if (!c->open_buckets_partial_nr) goto unlock; for (i = c->open_buckets_partial_nr - 1; i >= 0; --i) { struct open_bucket *ob = c->open_buckets + c->open_buckets_partial[i]; if (want_bucket(c, wp, devs_may_alloc, have_cache, ec, ob)) { struct bch_dev *ca = ob_dev(c, ob); struct bch_dev_usage usage; u64 avail; bch2_dev_usage_read_fast(ca, &usage); avail = dev_buckets_free(ca, usage, watermark); if (!avail) continue; array_remove_item(c->open_buckets_partial, c->open_buckets_partial_nr, i); ob->on_partial_list = false; ret = add_new_bucket(c, ptrs, devs_may_alloc, nr_replicas, nr_effective, have_cache, flags, ob); if (ret) break; } } unlock: spin_unlock(&c->freelist_lock); return ret; } static int __open_bucket_add_buckets(struct btree_trans *trans, struct open_buckets *ptrs, struct write_point *wp, struct bch_devs_list *devs_have, u16 target, bool erasure_code, unsigned nr_replicas, unsigned *nr_effective, bool *have_cache, enum bch_watermark watermark, unsigned flags, struct closure *_cl) { struct bch_fs *c = trans->c; struct bch_devs_mask devs; struct open_bucket *ob; struct closure *cl = NULL; unsigned i; int ret; devs = target_rw_devs(c, wp->data_type, target); /* Don't allocate from devices we already have pointers to: */ darray_for_each(*devs_have, i) __clear_bit(*i, devs.d); open_bucket_for_each(c, ptrs, ob, i) __clear_bit(ob->dev, devs.d); if (erasure_code && ec_open_bucket(c, ptrs)) return 0; ret = bucket_alloc_set_writepoint(c, ptrs, wp, &devs, nr_replicas, nr_effective, have_cache, erasure_code, flags); if (ret) return ret; ret = bucket_alloc_set_partial(c, ptrs, wp, &devs, nr_replicas, nr_effective, have_cache, erasure_code, watermark, flags); if (ret) return ret; if (erasure_code) { ret = bucket_alloc_from_stripe(trans, ptrs, wp, &devs, target, nr_replicas, nr_effective, have_cache, watermark, flags, _cl); } else { retry_blocking: /* * Try nonblocking first, so that if one device is full we'll try from * other devices: */ ret = bch2_bucket_alloc_set_trans(trans, ptrs, &wp->stripe, &devs, nr_replicas, nr_effective, have_cache, flags, wp->data_type, watermark, cl); if (ret && !bch2_err_matches(ret, BCH_ERR_transaction_restart) && !bch2_err_matches(ret, BCH_ERR_insufficient_devices) && !cl && _cl) { cl = _cl; goto retry_blocking; } } return ret; } static int open_bucket_add_buckets(struct btree_trans *trans, struct open_buckets *ptrs, struct write_point *wp, struct bch_devs_list *devs_have, u16 target, unsigned erasure_code, unsigned nr_replicas, unsigned *nr_effective, bool *have_cache, enum bch_watermark watermark, unsigned flags, struct closure *cl) { int ret; if (erasure_code) { ret = __open_bucket_add_buckets(trans, ptrs, wp, devs_have, target, erasure_code, nr_replicas, nr_effective, have_cache, watermark, flags, cl); if (bch2_err_matches(ret, BCH_ERR_transaction_restart) || bch2_err_matches(ret, BCH_ERR_operation_blocked) || bch2_err_matches(ret, BCH_ERR_freelist_empty) || bch2_err_matches(ret, BCH_ERR_open_buckets_empty)) return ret; if (*nr_effective >= nr_replicas) return 0; } ret = __open_bucket_add_buckets(trans, ptrs, wp, devs_have, target, false, nr_replicas, nr_effective, have_cache, watermark, flags, cl); return ret < 0 ? ret : 0; } /** * should_drop_bucket - check if this is open_bucket should go away * @ob: open_bucket to predicate on * @c: filesystem handle * @ca: if set, we're killing buckets for a particular device * @ec: if true, we're shutting down erasure coding and killing all ec * open_buckets * otherwise, return true * Returns: true if we should kill this open_bucket * * We're killing open_buckets because we're shutting down a device, erasure * coding, or the entire filesystem - check if this open_bucket matches: */ static bool should_drop_bucket(struct open_bucket *ob, struct bch_fs *c, struct bch_dev *ca, bool ec) { if (ec) { return ob->ec != NULL; } else if (ca) { bool drop = ob->dev == ca->dev_idx; struct open_bucket *ob2; unsigned i; if (!drop && ob->ec) { unsigned nr_blocks; mutex_lock(&ob->ec->lock); nr_blocks = bkey_i_to_stripe(&ob->ec->new_stripe.key)->v.nr_blocks; for (i = 0; i < nr_blocks; i++) { if (!ob->ec->blocks[i]) continue; ob2 = c->open_buckets + ob->ec->blocks[i]; drop |= ob2->dev == ca->dev_idx; } mutex_unlock(&ob->ec->lock); } return drop; } else { return true; } } static void bch2_writepoint_stop(struct bch_fs *c, struct bch_dev *ca, bool ec, struct write_point *wp) { struct open_buckets ptrs = { .nr = 0 }; struct open_bucket *ob; unsigned i; mutex_lock(&wp->lock); open_bucket_for_each(c, &wp->ptrs, ob, i) if (should_drop_bucket(ob, c, ca, ec)) bch2_open_bucket_put(c, ob); else ob_push(c, &ptrs, ob); wp->ptrs = ptrs; mutex_unlock(&wp->lock); } void bch2_open_buckets_stop(struct bch_fs *c, struct bch_dev *ca, bool ec) { unsigned i; /* Next, close write points that point to this device... */ for (i = 0; i < ARRAY_SIZE(c->write_points); i++) bch2_writepoint_stop(c, ca, ec, &c->write_points[i]); bch2_writepoint_stop(c, ca, ec, &c->copygc_write_point); bch2_writepoint_stop(c, ca, ec, &c->rebalance_write_point); bch2_writepoint_stop(c, ca, ec, &c->btree_write_point); mutex_lock(&c->btree_reserve_cache_lock); while (c->btree_reserve_cache_nr) { struct btree_alloc *a = &c->btree_reserve_cache[--c->btree_reserve_cache_nr]; bch2_open_buckets_put(c, &a->ob); } mutex_unlock(&c->btree_reserve_cache_lock); spin_lock(&c->freelist_lock); i = 0; while (i < c->open_buckets_partial_nr) { struct open_bucket *ob = c->open_buckets + c->open_buckets_partial[i]; if (should_drop_bucket(ob, c, ca, ec)) { --c->open_buckets_partial_nr; swap(c->open_buckets_partial[i], c->open_buckets_partial[c->open_buckets_partial_nr]); ob->on_partial_list = false; spin_unlock(&c->freelist_lock); bch2_open_bucket_put(c, ob); spin_lock(&c->freelist_lock); } else { i++; } } spin_unlock(&c->freelist_lock); bch2_ec_stop_dev(c, ca); } static inline struct hlist_head *writepoint_hash(struct bch_fs *c, unsigned long write_point) { unsigned hash = hash_long(write_point, ilog2(ARRAY_SIZE(c->write_points_hash))); return &c->write_points_hash[hash]; } static struct write_point *__writepoint_find(struct hlist_head *head, unsigned long write_point) { struct write_point *wp; rcu_read_lock(); hlist_for_each_entry_rcu(wp, head, node) if (wp->write_point == write_point) goto out; wp = NULL; out: rcu_read_unlock(); return wp; } static inline bool too_many_writepoints(struct bch_fs *c, unsigned factor) { u64 stranded = c->write_points_nr * c->bucket_size_max; u64 free = bch2_fs_usage_read_short(c).free; return stranded * factor > free; } static bool try_increase_writepoints(struct bch_fs *c) { struct write_point *wp; if (c->write_points_nr == ARRAY_SIZE(c->write_points) || too_many_writepoints(c, 32)) return false; wp = c->write_points + c->write_points_nr++; hlist_add_head_rcu(&wp->node, writepoint_hash(c, wp->write_point)); return true; } static bool try_decrease_writepoints(struct btree_trans *trans, unsigned old_nr) { struct bch_fs *c = trans->c; struct write_point *wp; struct open_bucket *ob; unsigned i; mutex_lock(&c->write_points_hash_lock); if (c->write_points_nr < old_nr) { mutex_unlock(&c->write_points_hash_lock); return true; } if (c->write_points_nr == 1 || !too_many_writepoints(c, 8)) { mutex_unlock(&c->write_points_hash_lock); return false; } wp = c->write_points + --c->write_points_nr; hlist_del_rcu(&wp->node); mutex_unlock(&c->write_points_hash_lock); bch2_trans_mutex_lock_norelock(trans, &wp->lock); open_bucket_for_each(c, &wp->ptrs, ob, i) open_bucket_free_unused(c, ob); wp->ptrs.nr = 0; mutex_unlock(&wp->lock); return true; } static struct write_point *writepoint_find(struct btree_trans *trans, unsigned long write_point) { struct bch_fs *c = trans->c; struct write_point *wp, *oldest; struct hlist_head *head; if (!(write_point & 1UL)) { wp = (struct write_point *) write_point; bch2_trans_mutex_lock_norelock(trans, &wp->lock); return wp; } head = writepoint_hash(c, write_point); restart_find: wp = __writepoint_find(head, write_point); if (wp) { lock_wp: bch2_trans_mutex_lock_norelock(trans, &wp->lock); if (wp->write_point == write_point) goto out; mutex_unlock(&wp->lock); goto restart_find; } restart_find_oldest: oldest = NULL; for (wp = c->write_points; wp < c->write_points + c->write_points_nr; wp++) if (!oldest || time_before64(wp->last_used, oldest->last_used)) oldest = wp; bch2_trans_mutex_lock_norelock(trans, &oldest->lock); bch2_trans_mutex_lock_norelock(trans, &c->write_points_hash_lock); if (oldest >= c->write_points + c->write_points_nr || try_increase_writepoints(c)) { mutex_unlock(&c->write_points_hash_lock); mutex_unlock(&oldest->lock); goto restart_find_oldest; } wp = __writepoint_find(head, write_point); if (wp && wp != oldest) { mutex_unlock(&c->write_points_hash_lock); mutex_unlock(&oldest->lock); goto lock_wp; } wp = oldest; hlist_del_rcu(&wp->node); wp->write_point = write_point; hlist_add_head_rcu(&wp->node, head); mutex_unlock(&c->write_points_hash_lock); out: wp->last_used = local_clock(); return wp; } static noinline void deallocate_extra_replicas(struct bch_fs *c, struct open_buckets *ptrs, struct open_buckets *ptrs_no_use, unsigned extra_replicas) { struct open_buckets ptrs2 = { 0 }; struct open_bucket *ob; unsigned i; open_bucket_for_each(c, ptrs, ob, i) { unsigned d = ob_dev(c, ob)->mi.durability; if (d && d <= extra_replicas) { extra_replicas -= d; ob_push(c, ptrs_no_use, ob); } else { ob_push(c, &ptrs2, ob); } } *ptrs = ptrs2; } /* * Get us an open_bucket we can allocate from, return with it locked: */ int bch2_alloc_sectors_start_trans(struct btree_trans *trans, unsigned target, unsigned erasure_code, struct write_point_specifier write_point, struct bch_devs_list *devs_have, unsigned nr_replicas, unsigned nr_replicas_required, enum bch_watermark watermark, unsigned flags, struct closure *cl, struct write_point **wp_ret) { struct bch_fs *c = trans->c; struct write_point *wp; struct open_bucket *ob; struct open_buckets ptrs; unsigned nr_effective, write_points_nr; bool have_cache; int ret; int i; if (!IS_ENABLED(CONFIG_BCACHEFS_ERASURE_CODING)) erasure_code = false; BUG_ON(flags & BCH_WRITE_ONLY_SPECIFIED_DEVS); BUG_ON(!nr_replicas || !nr_replicas_required); retry: ptrs.nr = 0; nr_effective = 0; write_points_nr = c->write_points_nr; have_cache = false; *wp_ret = wp = writepoint_find(trans, write_point.v); ret = bch2_trans_relock(trans); if (ret) goto err; /* metadata may not allocate on cache devices: */ if (wp->data_type != BCH_DATA_user) have_cache = true; if (target && !(flags & BCH_WRITE_ONLY_SPECIFIED_DEVS)) { ret = open_bucket_add_buckets(trans, &ptrs, wp, devs_have, target, erasure_code, nr_replicas, &nr_effective, &have_cache, watermark, flags, NULL); if (!ret || bch2_err_matches(ret, BCH_ERR_transaction_restart)) goto alloc_done; /* Don't retry from all devices if we're out of open buckets: */ if (bch2_err_matches(ret, BCH_ERR_open_buckets_empty)) { int ret2 = open_bucket_add_buckets(trans, &ptrs, wp, devs_have, target, erasure_code, nr_replicas, &nr_effective, &have_cache, watermark, flags, cl); if (!ret2 || bch2_err_matches(ret2, BCH_ERR_transaction_restart) || bch2_err_matches(ret2, BCH_ERR_open_buckets_empty)) { ret = ret2; goto alloc_done; } } /* * Only try to allocate cache (durability = 0 devices) from the * specified target: */ have_cache = true; ret = open_bucket_add_buckets(trans, &ptrs, wp, devs_have, 0, erasure_code, nr_replicas, &nr_effective, &have_cache, watermark, flags, cl); } else { ret = open_bucket_add_buckets(trans, &ptrs, wp, devs_have, target, erasure_code, nr_replicas, &nr_effective, &have_cache, watermark, flags, cl); } alloc_done: BUG_ON(!ret && nr_effective < nr_replicas); if (erasure_code && !ec_open_bucket(c, &ptrs)) pr_debug("failed to get ec bucket: ret %u", ret); if (ret == -BCH_ERR_insufficient_devices && nr_effective >= nr_replicas_required) ret = 0; if (ret) goto err; if (nr_effective > nr_replicas) deallocate_extra_replicas(c, &ptrs, &wp->ptrs, nr_effective - nr_replicas); /* Free buckets we didn't use: */ open_bucket_for_each(c, &wp->ptrs, ob, i) open_bucket_free_unused(c, ob); wp->ptrs = ptrs; wp->sectors_free = UINT_MAX; open_bucket_for_each(c, &wp->ptrs, ob, i) wp->sectors_free = min(wp->sectors_free, ob->sectors_free); BUG_ON(!wp->sectors_free || wp->sectors_free == UINT_MAX); return 0; err: open_bucket_for_each(c, &wp->ptrs, ob, i) if (ptrs.nr < ARRAY_SIZE(ptrs.v)) ob_push(c, &ptrs, ob); else open_bucket_free_unused(c, ob); wp->ptrs = ptrs; mutex_unlock(&wp->lock); if (bch2_err_matches(ret, BCH_ERR_freelist_empty) && try_decrease_writepoints(trans, write_points_nr)) goto retry; if (bch2_err_matches(ret, BCH_ERR_open_buckets_empty) || bch2_err_matches(ret, BCH_ERR_freelist_empty)) return cl ? -BCH_ERR_bucket_alloc_blocked : -BCH_ERR_ENOSPC_bucket_alloc; return ret; } struct bch_extent_ptr bch2_ob_ptr(struct bch_fs *c, struct open_bucket *ob) { struct bch_dev *ca = ob_dev(c, ob); return (struct bch_extent_ptr) { .type = 1 << BCH_EXTENT_ENTRY_ptr, .gen = ob->gen, .dev = ob->dev, .offset = bucket_to_sector(ca, ob->bucket) + ca->mi.bucket_size - ob->sectors_free, }; } void bch2_alloc_sectors_append_ptrs(struct bch_fs *c, struct write_point *wp, struct bkey_i *k, unsigned sectors, bool cached) { bch2_alloc_sectors_append_ptrs_inlined(c, wp, k, sectors, cached); } /* * Append pointers to the space we just allocated to @k, and mark @sectors space * as allocated out of @ob */ void bch2_alloc_sectors_done(struct bch_fs *c, struct write_point *wp) { bch2_alloc_sectors_done_inlined(c, wp); } static inline void writepoint_init(struct write_point *wp, enum bch_data_type type) { mutex_init(&wp->lock); wp->data_type = type; INIT_WORK(&wp->index_update_work, bch2_write_point_do_index_updates); INIT_LIST_HEAD(&wp->writes); spin_lock_init(&wp->writes_lock); } void bch2_fs_allocator_foreground_init(struct bch_fs *c) { struct open_bucket *ob; struct write_point *wp; mutex_init(&c->write_points_hash_lock); c->write_points_nr = ARRAY_SIZE(c->write_points); /* open bucket 0 is a sentinal NULL: */ spin_lock_init(&c->open_buckets[0].lock); for (ob = c->open_buckets + 1; ob < c->open_buckets + ARRAY_SIZE(c->open_buckets); ob++) { spin_lock_init(&ob->lock); c->open_buckets_nr_free++; ob->freelist = c->open_buckets_freelist; c->open_buckets_freelist = ob - c->open_buckets; } writepoint_init(&c->btree_write_point, BCH_DATA_btree); writepoint_init(&c->rebalance_write_point, BCH_DATA_user); writepoint_init(&c->copygc_write_point, BCH_DATA_user); for (wp = c->write_points; wp < c->write_points + c->write_points_nr; wp++) { writepoint_init(wp, BCH_DATA_user); wp->last_used = local_clock(); wp->write_point = (unsigned long) wp; hlist_add_head_rcu(&wp->node, writepoint_hash(c, wp->write_point)); } } void bch2_open_bucket_to_text(struct printbuf *out, struct bch_fs *c, struct open_bucket *ob) { struct bch_dev *ca = ob_dev(c, ob); unsigned data_type = ob->data_type; barrier(); /* READ_ONCE() doesn't work on bitfields */ prt_printf(out, "%zu ref %u ", ob - c->open_buckets, atomic_read(&ob->pin)); bch2_prt_data_type(out, data_type); prt_printf(out, " %u:%llu gen %u allocated %u/%u", ob->dev, ob->bucket, ob->gen, ca->mi.bucket_size - ob->sectors_free, ca->mi.bucket_size); if (ob->ec) prt_printf(out, " ec idx %llu", ob->ec->idx); if (ob->on_partial_list) prt_str(out, " partial"); prt_newline(out); } void bch2_open_buckets_to_text(struct printbuf *out, struct bch_fs *c) { struct open_bucket *ob; out->atomic++; for (ob = c->open_buckets; ob < c->open_buckets + ARRAY_SIZE(c->open_buckets); ob++) { spin_lock(&ob->lock); if (ob->valid && !ob->on_partial_list) bch2_open_bucket_to_text(out, c, ob); spin_unlock(&ob->lock); } --out->atomic; } void bch2_open_buckets_partial_to_text(struct printbuf *out, struct bch_fs *c) { unsigned i; out->atomic++; spin_lock(&c->freelist_lock); for (i = 0; i < c->open_buckets_partial_nr; i++) bch2_open_bucket_to_text(out, c, c->open_buckets + c->open_buckets_partial[i]); spin_unlock(&c->freelist_lock); --out->atomic; } static const char * const bch2_write_point_states[] = { #define x(n) #n, WRITE_POINT_STATES() #undef x NULL }; static void bch2_write_point_to_text(struct printbuf *out, struct bch_fs *c, struct write_point *wp) { struct open_bucket *ob; unsigned i; prt_printf(out, "%lu: ", wp->write_point); prt_human_readable_u64(out, wp->sectors_allocated); prt_printf(out, " last wrote: "); bch2_pr_time_units(out, sched_clock() - wp->last_used); for (i = 0; i < WRITE_POINT_STATE_NR; i++) { prt_printf(out, " %s: ", bch2_write_point_states[i]); bch2_pr_time_units(out, wp->time[i]); } prt_newline(out); printbuf_indent_add(out, 2); open_bucket_for_each(c, &wp->ptrs, ob, i) bch2_open_bucket_to_text(out, c, ob); printbuf_indent_sub(out, 2); } void bch2_write_points_to_text(struct printbuf *out, struct bch_fs *c) { struct write_point *wp; prt_str(out, "Foreground write points\n"); for (wp = c->write_points; wp < c->write_points + ARRAY_SIZE(c->write_points); wp++) bch2_write_point_to_text(out, c, wp); prt_str(out, "Copygc write point\n"); bch2_write_point_to_text(out, c, &c->copygc_write_point); prt_str(out, "Rebalance write point\n"); bch2_write_point_to_text(out, c, &c->rebalance_write_point); prt_str(out, "Btree write point\n"); bch2_write_point_to_text(out, c, &c->btree_write_point); } void bch2_fs_alloc_debug_to_text(struct printbuf *out, struct bch_fs *c) { unsigned nr[BCH_DATA_NR]; memset(nr, 0, sizeof(nr)); for (unsigned i = 0; i < ARRAY_SIZE(c->open_buckets); i++) nr[c->open_buckets[i].data_type]++; printbuf_tabstops_reset(out); printbuf_tabstop_push(out, 24); prt_printf(out, "capacity\t%llu\n", c->capacity); prt_printf(out, "reserved\t%llu\n", c->reserved); prt_printf(out, "hidden\t%llu\n", percpu_u64_get(&c->usage->hidden)); prt_printf(out, "btree\t%llu\n", percpu_u64_get(&c->usage->btree)); prt_printf(out, "data\t%llu\n", percpu_u64_get(&c->usage->data)); prt_printf(out, "cached\t%llu\n", percpu_u64_get(&c->usage->cached)); prt_printf(out, "reserved\t%llu\n", percpu_u64_get(&c->usage->reserved)); prt_printf(out, "online_reserved\t%llu\n", percpu_u64_get(c->online_reserved)); prt_printf(out, "nr_inodes\t%llu\n", percpu_u64_get(&c->usage->nr_inodes)); prt_newline(out); prt_printf(out, "freelist_wait\t%s\n", c->freelist_wait.list.first ? "waiting" : "empty"); prt_printf(out, "open buckets allocated\t%i\n", OPEN_BUCKETS_COUNT - c->open_buckets_nr_free); prt_printf(out, "open buckets total\t%u\n", OPEN_BUCKETS_COUNT); prt_printf(out, "open_buckets_wait\t%s\n", c->open_buckets_wait.list.first ? "waiting" : "empty"); prt_printf(out, "open_buckets_btree\t%u\n", nr[BCH_DATA_btree]); prt_printf(out, "open_buckets_user\t%u\n", nr[BCH_DATA_user]); prt_printf(out, "btree reserve cache\t%u\n", c->btree_reserve_cache_nr); } void bch2_dev_alloc_debug_to_text(struct printbuf *out, struct bch_dev *ca) { struct bch_fs *c = ca->fs; struct bch_dev_usage stats = bch2_dev_usage_read(ca); unsigned nr[BCH_DATA_NR]; memset(nr, 0, sizeof(nr)); for (unsigned i = 0; i < ARRAY_SIZE(c->open_buckets); i++) nr[c->open_buckets[i].data_type]++; printbuf_tabstops_reset(out); printbuf_tabstop_push(out, 12); printbuf_tabstop_push(out, 16); printbuf_tabstop_push(out, 16); printbuf_tabstop_push(out, 16); printbuf_tabstop_push(out, 16); bch2_dev_usage_to_text(out, &stats); prt_newline(out); prt_printf(out, "reserves:\n"); for (unsigned i = 0; i < BCH_WATERMARK_NR; i++) prt_printf(out, "%s\t%llu\r\n", bch2_watermarks[i], bch2_dev_buckets_reserved(ca, i)); prt_newline(out); printbuf_tabstops_reset(out); printbuf_tabstop_push(out, 12); printbuf_tabstop_push(out, 16); prt_printf(out, "open buckets\t%i\r\n", ca->nr_open_buckets); prt_printf(out, "buckets to invalidate\t%llu\r\n", should_invalidate_buckets(ca, stats)); } void bch2_print_allocator_stuck(struct bch_fs *c) { struct printbuf buf = PRINTBUF; prt_printf(&buf, "Allocator stuck? Waited for 10 seconds\n"); prt_printf(&buf, "Allocator debug:\n"); printbuf_indent_add(&buf, 2); bch2_fs_alloc_debug_to_text(&buf, c); printbuf_indent_sub(&buf, 2); prt_newline(&buf); for_each_online_member(c, ca) { prt_printf(&buf, "Dev %u:\n", ca->dev_idx); printbuf_indent_add(&buf, 2); bch2_dev_alloc_debug_to_text(&buf, ca); printbuf_indent_sub(&buf, 2); prt_newline(&buf); } prt_printf(&buf, "Copygc debug:\n"); printbuf_indent_add(&buf, 2); bch2_copygc_wait_to_text(&buf, c); printbuf_indent_sub(&buf, 2); prt_newline(&buf); prt_printf(&buf, "Journal debug:\n"); printbuf_indent_add(&buf, 2); bch2_journal_debug_to_text(&buf, &c->journal); printbuf_indent_sub(&buf, 2); bch2_print_string_as_lines(KERN_ERR, buf.buf); printbuf_exit(&buf); }