// SPDX-License-Identifier: GPL-2.0 #include "bcachefs.h" #include "btree_update.h" #include "btree_iter.h" #include "btree_journal_iter.h" #include "btree_locking.h" #include "buckets.h" #include "debug.h" #include "errcode.h" #include "error.h" #include "extents.h" #include "keylist.h" #include "snapshot.h" #include "trace.h" static inline int btree_insert_entry_cmp(const struct btree_insert_entry *l, const struct btree_insert_entry *r) { return cmp_int(l->btree_id, r->btree_id) ?: cmp_int(l->cached, r->cached) ?: -cmp_int(l->level, r->level) ?: bpos_cmp(l->k->k.p, r->k->k.p); } static int __must_check bch2_trans_update_by_path(struct btree_trans *, btree_path_idx_t, struct bkey_i *, enum btree_iter_update_trigger_flags, unsigned long ip); static noinline int extent_front_merge(struct btree_trans *trans, struct btree_iter *iter, struct bkey_s_c k, struct bkey_i **insert, enum btree_iter_update_trigger_flags flags) { struct bch_fs *c = trans->c; struct bkey_i *update; int ret; if (unlikely(trans->journal_replay_not_finished)) return 0; update = bch2_bkey_make_mut_noupdate(trans, k); ret = PTR_ERR_OR_ZERO(update); if (ret) return ret; if (!bch2_bkey_merge(c, bkey_i_to_s(update), bkey_i_to_s_c(*insert))) return 0; ret = bch2_key_has_snapshot_overwrites(trans, iter->btree_id, k.k->p) ?: bch2_key_has_snapshot_overwrites(trans, iter->btree_id, (*insert)->k.p); if (ret < 0) return ret; if (ret) return 0; ret = bch2_btree_delete_at(trans, iter, flags); if (ret) return ret; *insert = update; return 0; } static noinline int extent_back_merge(struct btree_trans *trans, struct btree_iter *iter, struct bkey_i *insert, struct bkey_s_c k) { struct bch_fs *c = trans->c; int ret; if (unlikely(trans->journal_replay_not_finished)) return 0; ret = bch2_key_has_snapshot_overwrites(trans, iter->btree_id, insert->k.p) ?: bch2_key_has_snapshot_overwrites(trans, iter->btree_id, k.k->p); if (ret < 0) return ret; if (ret) return 0; bch2_bkey_merge(c, bkey_i_to_s(insert), k); return 0; } /* * When deleting, check if we need to emit a whiteout (because we're overwriting * something in an ancestor snapshot) */ static int need_whiteout_for_snapshot(struct btree_trans *trans, enum btree_id btree_id, struct bpos pos) { struct btree_iter iter; struct bkey_s_c k; u32 snapshot = pos.snapshot; int ret; if (!bch2_snapshot_parent(trans->c, pos.snapshot)) return 0; pos.snapshot++; for_each_btree_key_norestart(trans, iter, btree_id, pos, BTREE_ITER_all_snapshots| BTREE_ITER_nopreserve, k, ret) { if (!bkey_eq(k.k->p, pos)) break; if (bch2_snapshot_is_ancestor(trans->c, snapshot, k.k->p.snapshot)) { ret = !bkey_whiteout(k.k); break; } } bch2_trans_iter_exit(trans, &iter); return ret; } int __bch2_insert_snapshot_whiteouts(struct btree_trans *trans, enum btree_id id, struct bpos old_pos, struct bpos new_pos) { struct bch_fs *c = trans->c; struct btree_iter old_iter, new_iter = { NULL }; struct bkey_s_c old_k, new_k; snapshot_id_list s; struct bkey_i *update; int ret = 0; if (!bch2_snapshot_has_children(c, old_pos.snapshot)) return 0; darray_init(&s); bch2_trans_iter_init(trans, &old_iter, id, old_pos, BTREE_ITER_not_extents| BTREE_ITER_all_snapshots); while ((old_k = bch2_btree_iter_prev(&old_iter)).k && !(ret = bkey_err(old_k)) && bkey_eq(old_pos, old_k.k->p)) { struct bpos whiteout_pos = SPOS(new_pos.inode, new_pos.offset, old_k.k->p.snapshot);; if (!bch2_snapshot_is_ancestor(c, old_k.k->p.snapshot, old_pos.snapshot) || snapshot_list_has_ancestor(c, &s, old_k.k->p.snapshot)) continue; new_k = bch2_bkey_get_iter(trans, &new_iter, id, whiteout_pos, BTREE_ITER_not_extents| BTREE_ITER_intent); ret = bkey_err(new_k); if (ret) break; if (new_k.k->type == KEY_TYPE_deleted) { update = bch2_trans_kmalloc(trans, sizeof(struct bkey_i)); ret = PTR_ERR_OR_ZERO(update); if (ret) break; bkey_init(&update->k); update->k.p = whiteout_pos; update->k.type = KEY_TYPE_whiteout; ret = bch2_trans_update(trans, &new_iter, update, BTREE_UPDATE_internal_snapshot_node); } bch2_trans_iter_exit(trans, &new_iter); ret = snapshot_list_add(c, &s, old_k.k->p.snapshot); if (ret) break; } bch2_trans_iter_exit(trans, &new_iter); bch2_trans_iter_exit(trans, &old_iter); darray_exit(&s); return ret; } int bch2_trans_update_extent_overwrite(struct btree_trans *trans, struct btree_iter *iter, enum btree_iter_update_trigger_flags flags, struct bkey_s_c old, struct bkey_s_c new) { enum btree_id btree_id = iter->btree_id; struct bkey_i *update; struct bpos new_start = bkey_start_pos(new.k); unsigned front_split = bkey_lt(bkey_start_pos(old.k), new_start); unsigned back_split = bkey_gt(old.k->p, new.k->p); unsigned middle_split = (front_split || back_split) && old.k->p.snapshot != new.k->p.snapshot; unsigned nr_splits = front_split + back_split + middle_split; int ret = 0, compressed_sectors; /* * If we're going to be splitting a compressed extent, note it * so that __bch2_trans_commit() can increase our disk * reservation: */ if (nr_splits > 1 && (compressed_sectors = bch2_bkey_sectors_compressed(old))) trans->extra_disk_res += compressed_sectors * (nr_splits - 1); if (front_split) { update = bch2_bkey_make_mut_noupdate(trans, old); if ((ret = PTR_ERR_OR_ZERO(update))) return ret; bch2_cut_back(new_start, update); ret = bch2_insert_snapshot_whiteouts(trans, btree_id, old.k->p, update->k.p) ?: bch2_btree_insert_nonextent(trans, btree_id, update, BTREE_UPDATE_internal_snapshot_node|flags); if (ret) return ret; } /* If we're overwriting in a different snapshot - middle split: */ if (middle_split) { update = bch2_bkey_make_mut_noupdate(trans, old); if ((ret = PTR_ERR_OR_ZERO(update))) return ret; bch2_cut_front(new_start, update); bch2_cut_back(new.k->p, update); ret = bch2_insert_snapshot_whiteouts(trans, btree_id, old.k->p, update->k.p) ?: bch2_btree_insert_nonextent(trans, btree_id, update, BTREE_UPDATE_internal_snapshot_node|flags); if (ret) return ret; } if (bkey_le(old.k->p, new.k->p)) { update = bch2_trans_kmalloc(trans, sizeof(*update)); if ((ret = PTR_ERR_OR_ZERO(update))) return ret; bkey_init(&update->k); update->k.p = old.k->p; update->k.p.snapshot = new.k->p.snapshot; if (new.k->p.snapshot != old.k->p.snapshot) { update->k.type = KEY_TYPE_whiteout; } else if (btree_type_has_snapshots(btree_id)) { ret = need_whiteout_for_snapshot(trans, btree_id, update->k.p); if (ret < 0) return ret; if (ret) update->k.type = KEY_TYPE_whiteout; } ret = bch2_btree_insert_nonextent(trans, btree_id, update, BTREE_UPDATE_internal_snapshot_node|flags); if (ret) return ret; } if (back_split) { update = bch2_bkey_make_mut_noupdate(trans, old); if ((ret = PTR_ERR_OR_ZERO(update))) return ret; bch2_cut_front(new.k->p, update); ret = bch2_trans_update_by_path(trans, iter->path, update, BTREE_UPDATE_internal_snapshot_node| flags, _RET_IP_); if (ret) return ret; } return 0; } static int bch2_trans_update_extent(struct btree_trans *trans, struct btree_iter *orig_iter, struct bkey_i *insert, enum btree_iter_update_trigger_flags flags) { struct btree_iter iter; struct bkey_s_c k; enum btree_id btree_id = orig_iter->btree_id; int ret = 0; bch2_trans_iter_init(trans, &iter, btree_id, bkey_start_pos(&insert->k), BTREE_ITER_intent| BTREE_ITER_with_updates| BTREE_ITER_not_extents); k = bch2_btree_iter_peek_upto(&iter, POS(insert->k.p.inode, U64_MAX)); if ((ret = bkey_err(k))) goto err; if (!k.k) goto out; if (bkey_eq(k.k->p, bkey_start_pos(&insert->k))) { if (bch2_bkey_maybe_mergable(k.k, &insert->k)) { ret = extent_front_merge(trans, &iter, k, &insert, flags); if (ret) goto err; } goto next; } while (bkey_gt(insert->k.p, bkey_start_pos(k.k))) { bool done = bkey_lt(insert->k.p, k.k->p); ret = bch2_trans_update_extent_overwrite(trans, &iter, flags, k, bkey_i_to_s_c(insert)); if (ret) goto err; if (done) goto out; next: bch2_btree_iter_advance(&iter); k = bch2_btree_iter_peek_upto(&iter, POS(insert->k.p.inode, U64_MAX)); if ((ret = bkey_err(k))) goto err; if (!k.k) goto out; } if (bch2_bkey_maybe_mergable(&insert->k, k.k)) { ret = extent_back_merge(trans, &iter, insert, k); if (ret) goto err; } out: if (!bkey_deleted(&insert->k)) ret = bch2_btree_insert_nonextent(trans, btree_id, insert, flags); err: bch2_trans_iter_exit(trans, &iter); return ret; } static noinline int flush_new_cached_update(struct btree_trans *trans, struct btree_insert_entry *i, enum btree_iter_update_trigger_flags flags, unsigned long ip) { struct bkey k; int ret; btree_path_idx_t path_idx = bch2_path_get(trans, i->btree_id, i->old_k.p, 1, 0, BTREE_ITER_intent, _THIS_IP_); ret = bch2_btree_path_traverse(trans, path_idx, 0); if (ret) goto out; struct btree_path *btree_path = trans->paths + path_idx; /* * The old key in the insert entry might actually refer to an existing * key in the btree that has been deleted from cache and not yet * flushed. Check for this and skip the flush so we don't run triggers * against a stale key. */ bch2_btree_path_peek_slot_exact(btree_path, &k); if (!bkey_deleted(&k)) goto out; i->key_cache_already_flushed = true; i->flags |= BTREE_TRIGGER_norun; btree_path_set_should_be_locked(trans, btree_path); ret = bch2_trans_update_by_path(trans, path_idx, i->k, flags, ip); out: bch2_path_put(trans, path_idx, true); return ret; } static int __must_check bch2_trans_update_by_path(struct btree_trans *trans, btree_path_idx_t path_idx, struct bkey_i *k, enum btree_iter_update_trigger_flags flags, unsigned long ip) { struct bch_fs *c = trans->c; struct btree_insert_entry *i, n; int cmp; struct btree_path *path = trans->paths + path_idx; EBUG_ON(!path->should_be_locked); EBUG_ON(trans->nr_updates >= trans->nr_paths); EBUG_ON(!bpos_eq(k->k.p, path->pos)); n = (struct btree_insert_entry) { .flags = flags, .bkey_type = __btree_node_type(path->level, path->btree_id), .btree_id = path->btree_id, .level = path->level, .cached = path->cached, .path = path_idx, .k = k, .ip_allocated = ip, }; #ifdef CONFIG_BCACHEFS_DEBUG trans_for_each_update(trans, i) BUG_ON(i != trans->updates && btree_insert_entry_cmp(i - 1, i) >= 0); #endif /* * Pending updates are kept sorted: first, find position of new update, * then delete/trim any updates the new update overwrites: */ for (i = trans->updates; i < trans->updates + trans->nr_updates; i++) { cmp = btree_insert_entry_cmp(&n, i); if (cmp <= 0) break; } bool overwrite = !cmp && i < trans->updates + trans->nr_updates; if (overwrite) { EBUG_ON(i->insert_trigger_run || i->overwrite_trigger_run); bch2_path_put(trans, i->path, true); i->flags = n.flags; i->cached = n.cached; i->k = n.k; i->path = n.path; i->ip_allocated = n.ip_allocated; } else { array_insert_item(trans->updates, trans->nr_updates, i - trans->updates, n); i->old_v = bch2_btree_path_peek_slot_exact(path, &i->old_k).v; i->old_btree_u64s = !bkey_deleted(&i->old_k) ? i->old_k.u64s : 0; if (unlikely(trans->journal_replay_not_finished)) { struct bkey_i *j_k = bch2_journal_keys_peek_slot(c, n.btree_id, n.level, k->k.p); if (j_k) { i->old_k = j_k->k; i->old_v = &j_k->v; } } } __btree_path_get(trans, trans->paths + i->path, true); trace_update_by_path(trans, path, i, overwrite); /* * If a key is present in the key cache, it must also exist in the * btree - this is necessary for cache coherency. When iterating over * a btree that's cached in the key cache, the btree iter code checks * the key cache - but the key has to exist in the btree for that to * work: */ if (path->cached && !i->old_btree_u64s) return flush_new_cached_update(trans, i, flags, ip); return 0; } static noinline int bch2_trans_update_get_key_cache(struct btree_trans *trans, struct btree_iter *iter, struct btree_path *path) { struct btree_path *key_cache_path = btree_iter_key_cache_path(trans, iter); if (!key_cache_path || !key_cache_path->should_be_locked || !bpos_eq(key_cache_path->pos, iter->pos)) { struct bkey_cached *ck; int ret; if (!iter->key_cache_path) iter->key_cache_path = bch2_path_get(trans, path->btree_id, path->pos, 1, 0, BTREE_ITER_intent| BTREE_ITER_cached, _THIS_IP_); iter->key_cache_path = bch2_btree_path_set_pos(trans, iter->key_cache_path, path->pos, iter->flags & BTREE_ITER_intent, _THIS_IP_); ret = bch2_btree_path_traverse(trans, iter->key_cache_path, BTREE_ITER_cached); if (unlikely(ret)) return ret; ck = (void *) trans->paths[iter->key_cache_path].l[0].b; if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) { trace_and_count(trans->c, trans_restart_key_cache_raced, trans, _RET_IP_); return btree_trans_restart(trans, BCH_ERR_transaction_restart_key_cache_raced); } btree_path_set_should_be_locked(trans, trans->paths + iter->key_cache_path); } return 0; } int __must_check bch2_trans_update(struct btree_trans *trans, struct btree_iter *iter, struct bkey_i *k, enum btree_iter_update_trigger_flags flags) { btree_path_idx_t path_idx = iter->update_path ?: iter->path; int ret; if (iter->flags & BTREE_ITER_is_extents) return bch2_trans_update_extent(trans, iter, k, flags); if (bkey_deleted(&k->k) && !(flags & BTREE_UPDATE_key_cache_reclaim) && (iter->flags & BTREE_ITER_filter_snapshots)) { ret = need_whiteout_for_snapshot(trans, iter->btree_id, k->k.p); if (unlikely(ret < 0)) return ret; if (ret) k->k.type = KEY_TYPE_whiteout; } /* * Ensure that updates to cached btrees go to the key cache: */ struct btree_path *path = trans->paths + path_idx; if (!(flags & BTREE_UPDATE_key_cache_reclaim) && !path->cached && !path->level && btree_id_cached(trans->c, path->btree_id)) { ret = bch2_trans_update_get_key_cache(trans, iter, path); if (ret) return ret; path_idx = iter->key_cache_path; } return bch2_trans_update_by_path(trans, path_idx, k, flags, _RET_IP_); } int bch2_btree_insert_clone_trans(struct btree_trans *trans, enum btree_id btree, struct bkey_i *k) { struct bkey_i *n = bch2_trans_kmalloc(trans, bkey_bytes(&k->k)); int ret = PTR_ERR_OR_ZERO(n); if (ret) return ret; bkey_copy(n, k); return bch2_btree_insert_trans(trans, btree, n, 0); } struct jset_entry *__bch2_trans_jset_entry_alloc(struct btree_trans *trans, unsigned u64s) { unsigned new_top = trans->journal_entries_u64s + u64s; unsigned old_size = trans->journal_entries_size; if (new_top > trans->journal_entries_size) { trans->journal_entries_size = roundup_pow_of_two(new_top); btree_trans_stats(trans)->journal_entries_size = trans->journal_entries_size; } struct jset_entry *n = bch2_trans_kmalloc_nomemzero(trans, trans->journal_entries_size * sizeof(u64)); if (IS_ERR(n)) return ERR_CAST(n); if (trans->journal_entries) memcpy(n, trans->journal_entries, old_size * sizeof(u64)); trans->journal_entries = n; struct jset_entry *e = btree_trans_journal_entries_top(trans); trans->journal_entries_u64s = new_top; return e; } int bch2_bkey_get_empty_slot(struct btree_trans *trans, struct btree_iter *iter, enum btree_id btree, struct bpos end) { struct bkey_s_c k; int ret = 0; bch2_trans_iter_init(trans, iter, btree, POS_MAX, BTREE_ITER_intent); k = bch2_btree_iter_prev(iter); ret = bkey_err(k); if (ret) goto err; bch2_btree_iter_advance(iter); k = bch2_btree_iter_peek_slot(iter); ret = bkey_err(k); if (ret) goto err; BUG_ON(k.k->type != KEY_TYPE_deleted); if (bkey_gt(k.k->p, end)) { ret = -BCH_ERR_ENOSPC_btree_slot; goto err; } return 0; err: bch2_trans_iter_exit(trans, iter); return ret; } void bch2_trans_commit_hook(struct btree_trans *trans, struct btree_trans_commit_hook *h) { h->next = trans->hooks; trans->hooks = h; } int bch2_btree_insert_nonextent(struct btree_trans *trans, enum btree_id btree, struct bkey_i *k, enum btree_iter_update_trigger_flags flags) { struct btree_iter iter; int ret; bch2_trans_iter_init(trans, &iter, btree, k->k.p, BTREE_ITER_cached| BTREE_ITER_not_extents| BTREE_ITER_intent); ret = bch2_btree_iter_traverse(&iter) ?: bch2_trans_update(trans, &iter, k, flags); bch2_trans_iter_exit(trans, &iter); return ret; } int bch2_btree_insert_trans(struct btree_trans *trans, enum btree_id id, struct bkey_i *k, enum btree_iter_update_trigger_flags flags) { struct btree_iter iter; bch2_trans_iter_init(trans, &iter, id, bkey_start_pos(&k->k), BTREE_ITER_intent|flags); int ret = bch2_btree_iter_traverse(&iter) ?: bch2_trans_update(trans, &iter, k, flags); bch2_trans_iter_exit(trans, &iter); return ret; } /** * bch2_btree_insert - insert keys into the extent btree * @c: pointer to struct bch_fs * @id: btree to insert into * @k: key to insert * @disk_res: must be non-NULL whenever inserting or potentially * splitting data extents * @flags: transaction commit flags * @iter_flags: btree iter update trigger flags * * Returns: 0 on success, error code on failure */ int bch2_btree_insert(struct bch_fs *c, enum btree_id id, struct bkey_i *k, struct disk_reservation *disk_res, int flags, enum btree_iter_update_trigger_flags iter_flags) { return bch2_trans_do(c, disk_res, NULL, flags, bch2_btree_insert_trans(trans, id, k, iter_flags)); } int bch2_btree_delete_extent_at(struct btree_trans *trans, struct btree_iter *iter, unsigned len, unsigned update_flags) { struct bkey_i *k; k = bch2_trans_kmalloc(trans, sizeof(*k)); if (IS_ERR(k)) return PTR_ERR(k); bkey_init(&k->k); k->k.p = iter->pos; bch2_key_resize(&k->k, len); return bch2_trans_update(trans, iter, k, update_flags); } int bch2_btree_delete_at(struct btree_trans *trans, struct btree_iter *iter, unsigned update_flags) { return bch2_btree_delete_extent_at(trans, iter, 0, update_flags); } int bch2_btree_delete(struct btree_trans *trans, enum btree_id btree, struct bpos pos, unsigned update_flags) { struct btree_iter iter; int ret; bch2_trans_iter_init(trans, &iter, btree, pos, BTREE_ITER_cached| BTREE_ITER_intent); ret = bch2_btree_iter_traverse(&iter) ?: bch2_btree_delete_at(trans, &iter, update_flags); bch2_trans_iter_exit(trans, &iter); return ret; } int bch2_btree_delete_range_trans(struct btree_trans *trans, enum btree_id id, struct bpos start, struct bpos end, unsigned update_flags, u64 *journal_seq) { u32 restart_count = trans->restart_count; struct btree_iter iter; struct bkey_s_c k; int ret = 0; bch2_trans_iter_init(trans, &iter, id, start, BTREE_ITER_intent); while ((k = bch2_btree_iter_peek_upto(&iter, end)).k) { struct disk_reservation disk_res = bch2_disk_reservation_init(trans->c, 0); struct bkey_i delete; ret = bkey_err(k); if (ret) goto err; bkey_init(&delete.k); /* * This could probably be more efficient for extents: */ /* * For extents, iter.pos won't necessarily be the same as * bkey_start_pos(k.k) (for non extents they always will be the * same). It's important that we delete starting from iter.pos * because the range we want to delete could start in the middle * of k. * * (bch2_btree_iter_peek() does guarantee that iter.pos >= * bkey_start_pos(k.k)). */ delete.k.p = iter.pos; if (iter.flags & BTREE_ITER_is_extents) bch2_key_resize(&delete.k, bpos_min(end, k.k->p).offset - iter.pos.offset); ret = bch2_trans_update(trans, &iter, &delete, update_flags) ?: bch2_trans_commit(trans, &disk_res, journal_seq, BCH_TRANS_COMMIT_no_enospc); bch2_disk_reservation_put(trans->c, &disk_res); err: /* * the bch2_trans_begin() call is in a weird place because we * need to call it after every transaction commit, to avoid path * overflow, but don't want to call it if the delete operation * is a no-op and we have no work to do: */ bch2_trans_begin(trans); if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) ret = 0; if (ret) break; } bch2_trans_iter_exit(trans, &iter); return ret ?: trans_was_restarted(trans, restart_count); } /* * bch_btree_delete_range - delete everything within a given range * * Range is a half open interval - [start, end) */ int bch2_btree_delete_range(struct bch_fs *c, enum btree_id id, struct bpos start, struct bpos end, unsigned update_flags, u64 *journal_seq) { int ret = bch2_trans_run(c, bch2_btree_delete_range_trans(trans, id, start, end, update_flags, journal_seq)); if (ret == -BCH_ERR_transaction_restart_nested) ret = 0; return ret; } int bch2_btree_bit_mod(struct btree_trans *trans, enum btree_id btree, struct bpos pos, bool set) { struct bkey_i *k = bch2_trans_kmalloc(trans, sizeof(*k)); int ret = PTR_ERR_OR_ZERO(k); if (ret) return ret; bkey_init(&k->k); k->k.type = set ? KEY_TYPE_set : KEY_TYPE_deleted; k->k.p = pos; struct btree_iter iter; bch2_trans_iter_init(trans, &iter, btree, pos, BTREE_ITER_intent); ret = bch2_btree_iter_traverse(&iter) ?: bch2_trans_update(trans, &iter, k, 0); bch2_trans_iter_exit(trans, &iter); return ret; } int bch2_btree_bit_mod_buffered(struct btree_trans *trans, enum btree_id btree, struct bpos pos, bool set) { struct bkey_i k; bkey_init(&k.k); k.k.type = set ? KEY_TYPE_set : KEY_TYPE_deleted; k.k.p = pos; return bch2_trans_update_buffered(trans, btree, &k); } static int __bch2_trans_log_msg(struct btree_trans *trans, struct printbuf *buf, unsigned u64s) { struct jset_entry *e = bch2_trans_jset_entry_alloc(trans, jset_u64s(u64s)); int ret = PTR_ERR_OR_ZERO(e); if (ret) return ret; struct jset_entry_log *l = container_of(e, struct jset_entry_log, entry); journal_entry_init(e, BCH_JSET_ENTRY_log, 0, 1, u64s); memcpy(l->d, buf->buf, buf->pos); return 0; } __printf(3, 0) static int __bch2_fs_log_msg(struct bch_fs *c, unsigned commit_flags, const char *fmt, va_list args) { struct printbuf buf = PRINTBUF; prt_vprintf(&buf, fmt, args); unsigned u64s = DIV_ROUND_UP(buf.pos, sizeof(u64)); prt_chars(&buf, '\0', u64s * sizeof(u64) - buf.pos); int ret = buf.allocation_failure ? -BCH_ERR_ENOMEM_trans_log_msg : 0; if (ret) goto err; if (!test_bit(JOURNAL_running, &c->journal.flags)) { ret = darray_make_room(&c->journal.early_journal_entries, jset_u64s(u64s)); if (ret) goto err; struct jset_entry_log *l = (void *) &darray_top(c->journal.early_journal_entries); journal_entry_init(&l->entry, BCH_JSET_ENTRY_log, 0, 1, u64s); memcpy(l->d, buf.buf, buf.pos); c->journal.early_journal_entries.nr += jset_u64s(u64s); } else { ret = bch2_trans_do(c, NULL, NULL, BCH_TRANS_COMMIT_lazy_rw|commit_flags, __bch2_trans_log_msg(trans, &buf, u64s)); } err: printbuf_exit(&buf); return ret; } __printf(2, 3) int bch2_fs_log_msg(struct bch_fs *c, const char *fmt, ...) { va_list args; int ret; va_start(args, fmt); ret = __bch2_fs_log_msg(c, 0, fmt, args); va_end(args); return ret; } /* * Use for logging messages during recovery to enable reserved space and avoid * blocking. */ __printf(2, 3) int bch2_journal_log_msg(struct bch_fs *c, const char *fmt, ...) { va_list args; int ret; va_start(args, fmt); ret = __bch2_fs_log_msg(c, BCH_WATERMARK_reclaim, fmt, args); va_end(args); return ret; }