// SPDX-License-Identifier: GPL-2.0 #include "bcachefs.h" #include "alloc_background.h" #include "bkey_buf.h" #include "btree_journal_iter.h" #include "btree_node_scan.h" #include "btree_update.h" #include "btree_update_interior.h" #include "btree_io.h" #include "buckets.h" #include "dirent.h" #include "disk_accounting.h" #include "errcode.h" #include "error.h" #include "fs-common.h" #include "journal_io.h" #include "journal_reclaim.h" #include "journal_seq_blacklist.h" #include "logged_ops.h" #include "move.h" #include "quota.h" #include "rebalance.h" #include "recovery.h" #include "recovery_passes.h" #include "replicas.h" #include "sb-clean.h" #include "sb-downgrade.h" #include "snapshot.h" #include "super-io.h" #include #include #define QSTR(n) { { { .len = strlen(n) } }, .name = n } void bch2_btree_lost_data(struct bch_fs *c, enum btree_id btree) { if (btree >= BTREE_ID_NR_MAX) return; u64 b = BIT_ULL(btree); if (!(c->sb.btrees_lost_data & b)) { bch_err(c, "flagging btree %s lost data", bch2_btree_id_str(btree)); mutex_lock(&c->sb_lock); bch2_sb_field_get(c->disk_sb.sb, ext)->btrees_lost_data |= cpu_to_le64(b); bch2_write_super(c); mutex_unlock(&c->sb_lock); } } /* for -o reconstruct_alloc: */ static void bch2_reconstruct_alloc(struct bch_fs *c) { bch2_journal_log_msg(c, "dropping alloc info"); bch_info(c, "dropping and reconstructing all alloc info"); mutex_lock(&c->sb_lock); struct bch_sb_field_ext *ext = bch2_sb_field_get(c->disk_sb.sb, ext); __set_bit_le64(BCH_RECOVERY_PASS_STABLE_check_allocations, ext->recovery_passes_required); __set_bit_le64(BCH_RECOVERY_PASS_STABLE_check_alloc_info, ext->recovery_passes_required); __set_bit_le64(BCH_RECOVERY_PASS_STABLE_check_lrus, ext->recovery_passes_required); __set_bit_le64(BCH_RECOVERY_PASS_STABLE_check_extents_to_backpointers, ext->recovery_passes_required); __set_bit_le64(BCH_RECOVERY_PASS_STABLE_check_alloc_to_lru_refs, ext->recovery_passes_required); __set_bit_le64(BCH_FSCK_ERR_ptr_to_missing_alloc_key, ext->errors_silent); __set_bit_le64(BCH_FSCK_ERR_ptr_gen_newer_than_bucket_gen, ext->errors_silent); __set_bit_le64(BCH_FSCK_ERR_stale_dirty_ptr, ext->errors_silent); __set_bit_le64(BCH_FSCK_ERR_dev_usage_buckets_wrong, ext->errors_silent); __set_bit_le64(BCH_FSCK_ERR_dev_usage_sectors_wrong, ext->errors_silent); __set_bit_le64(BCH_FSCK_ERR_dev_usage_fragmented_wrong, ext->errors_silent); __set_bit_le64(BCH_FSCK_ERR_fs_usage_btree_wrong, ext->errors_silent); __set_bit_le64(BCH_FSCK_ERR_fs_usage_cached_wrong, ext->errors_silent); __set_bit_le64(BCH_FSCK_ERR_fs_usage_persistent_reserved_wrong, ext->errors_silent); __set_bit_le64(BCH_FSCK_ERR_fs_usage_replicas_wrong, ext->errors_silent); __set_bit_le64(BCH_FSCK_ERR_alloc_key_data_type_wrong, ext->errors_silent); __set_bit_le64(BCH_FSCK_ERR_alloc_key_gen_wrong, ext->errors_silent); __set_bit_le64(BCH_FSCK_ERR_alloc_key_dirty_sectors_wrong, ext->errors_silent); __set_bit_le64(BCH_FSCK_ERR_alloc_key_cached_sectors_wrong, ext->errors_silent); __set_bit_le64(BCH_FSCK_ERR_alloc_key_stripe_wrong, ext->errors_silent); __set_bit_le64(BCH_FSCK_ERR_alloc_key_stripe_redundancy_wrong, ext->errors_silent); __set_bit_le64(BCH_FSCK_ERR_need_discard_key_wrong, ext->errors_silent); __set_bit_le64(BCH_FSCK_ERR_freespace_key_wrong, ext->errors_silent); __set_bit_le64(BCH_FSCK_ERR_bucket_gens_key_wrong, ext->errors_silent); __set_bit_le64(BCH_FSCK_ERR_freespace_hole_missing, ext->errors_silent); __set_bit_le64(BCH_FSCK_ERR_ptr_to_missing_backpointer, ext->errors_silent); __set_bit_le64(BCH_FSCK_ERR_lru_entry_bad, ext->errors_silent); __set_bit_le64(BCH_FSCK_ERR_accounting_mismatch, ext->errors_silent); c->sb.compat &= ~(1ULL << BCH_COMPAT_alloc_info); bch2_write_super(c); mutex_unlock(&c->sb_lock); c->recovery_passes_explicit |= bch2_recovery_passes_from_stable(le64_to_cpu(ext->recovery_passes_required[0])); bch2_shoot_down_journal_keys(c, BTREE_ID_alloc, 0, BTREE_MAX_DEPTH, POS_MIN, SPOS_MAX); bch2_shoot_down_journal_keys(c, BTREE_ID_backpointers, 0, BTREE_MAX_DEPTH, POS_MIN, SPOS_MAX); bch2_shoot_down_journal_keys(c, BTREE_ID_need_discard, 0, BTREE_MAX_DEPTH, POS_MIN, SPOS_MAX); bch2_shoot_down_journal_keys(c, BTREE_ID_freespace, 0, BTREE_MAX_DEPTH, POS_MIN, SPOS_MAX); bch2_shoot_down_journal_keys(c, BTREE_ID_bucket_gens, 0, BTREE_MAX_DEPTH, POS_MIN, SPOS_MAX); } /* * Btree node pointers have a field to stack a pointer to the in memory btree * node; we need to zero out this field when reading in btree nodes, or when * reading in keys from the journal: */ static void zero_out_btree_mem_ptr(struct journal_keys *keys) { darray_for_each(*keys, i) if (i->k->k.type == KEY_TYPE_btree_ptr_v2) bkey_i_to_btree_ptr_v2(i->k)->v.mem_ptr = 0; } /* journal replay: */ static void replay_now_at(struct journal *j, u64 seq) { BUG_ON(seq < j->replay_journal_seq); seq = min(seq, j->replay_journal_seq_end); while (j->replay_journal_seq < seq) bch2_journal_pin_put(j, j->replay_journal_seq++); } static int bch2_journal_replay_accounting_key(struct btree_trans *trans, struct journal_key *k) { struct journal_keys *keys = &trans->c->journal_keys; struct btree_iter iter; bch2_trans_node_iter_init(trans, &iter, k->btree_id, k->k->k.p, BTREE_MAX_DEPTH, k->level, BTREE_ITER_intent); int ret = bch2_btree_iter_traverse(&iter); if (ret) goto out; struct bkey u; struct bkey_s_c old = bch2_btree_path_peek_slot(btree_iter_path(trans, &iter), &u); /* Has this delta already been applied to the btree? */ if (bversion_cmp(old.k->version, k->k->k.version) >= 0) { ret = 0; goto out; } struct bkey_i *new = k->k; if (old.k->type == KEY_TYPE_accounting) { new = bch2_bkey_make_mut_noupdate(trans, bkey_i_to_s_c(k->k)); ret = PTR_ERR_OR_ZERO(new); if (ret) goto out; bch2_accounting_accumulate(bkey_i_to_accounting(new), bkey_s_c_to_accounting(old)); } trans->journal_res.seq = k->journal_seq; ret = bch2_trans_update(trans, &iter, new, BTREE_TRIGGER_norun); out: bch2_trans_iter_exit(trans, &iter); return ret; } static int bch2_journal_replay_key(struct btree_trans *trans, struct journal_key *k) { struct btree_iter iter; unsigned iter_flags = BTREE_ITER_intent| BTREE_ITER_not_extents; unsigned update_flags = BTREE_TRIGGER_norun; int ret; if (k->overwritten) return 0; trans->journal_res.seq = k->journal_seq; /* * BTREE_UPDATE_key_cache_reclaim disables key cache lookup/update to * keep the key cache coherent with the underlying btree. Nothing * besides the allocator is doing updates yet so we don't need key cache * coherency for non-alloc btrees, and key cache fills for snapshots * btrees use BTREE_ITER_filter_snapshots, which isn't available until * the snapshots recovery pass runs. */ if (!k->level && k->btree_id == BTREE_ID_alloc) iter_flags |= BTREE_ITER_cached; else update_flags |= BTREE_UPDATE_key_cache_reclaim; bch2_trans_node_iter_init(trans, &iter, k->btree_id, k->k->k.p, BTREE_MAX_DEPTH, k->level, iter_flags); ret = bch2_btree_iter_traverse(&iter); if (ret) goto out; struct btree_path *path = btree_iter_path(trans, &iter); if (unlikely(!btree_path_node(path, k->level))) { bch2_trans_iter_exit(trans, &iter); bch2_trans_node_iter_init(trans, &iter, k->btree_id, k->k->k.p, BTREE_MAX_DEPTH, 0, iter_flags); ret = bch2_btree_iter_traverse(&iter) ?: bch2_btree_increase_depth(trans, iter.path, 0) ?: -BCH_ERR_transaction_restart_nested; goto out; } /* Must be checked with btree locked: */ if (k->overwritten) goto out; if (k->k->k.type == KEY_TYPE_accounting) { ret = bch2_trans_update_buffered(trans, BTREE_ID_accounting, k->k); goto out; } ret = bch2_trans_update(trans, &iter, k->k, update_flags); out: bch2_trans_iter_exit(trans, &iter); return ret; } static int journal_sort_seq_cmp(const void *_l, const void *_r) { const struct journal_key *l = *((const struct journal_key **)_l); const struct journal_key *r = *((const struct journal_key **)_r); return cmp_int(l->journal_seq, r->journal_seq); } int bch2_journal_replay(struct bch_fs *c) { struct journal_keys *keys = &c->journal_keys; DARRAY(struct journal_key *) keys_sorted = { 0 }; struct journal *j = &c->journal; u64 start_seq = c->journal_replay_seq_start; u64 end_seq = c->journal_replay_seq_start; struct btree_trans *trans = NULL; bool immediate_flush = false; int ret = 0; if (keys->nr) { ret = bch2_journal_log_msg(c, "Starting journal replay (%zu keys in entries %llu-%llu)", keys->nr, start_seq, end_seq); if (ret) goto err; } BUG_ON(!atomic_read(&keys->ref)); move_gap(keys, keys->nr); trans = bch2_trans_get(c); /* * Replay accounting keys first: we can't allow the write buffer to * flush accounting keys until we're done */ darray_for_each(*keys, k) { if (!(k->k->k.type == KEY_TYPE_accounting && !k->allocated)) continue; cond_resched(); ret = commit_do(trans, NULL, NULL, BCH_TRANS_COMMIT_no_enospc| BCH_TRANS_COMMIT_journal_reclaim| BCH_TRANS_COMMIT_no_journal_res, bch2_journal_replay_accounting_key(trans, k)); if (bch2_fs_fatal_err_on(ret, c, "error replaying accounting; %s", bch2_err_str(ret))) goto err; k->overwritten = true; } set_bit(BCH_FS_accounting_replay_done, &c->flags); /* * First, attempt to replay keys in sorted order. This is more * efficient - better locality of btree access - but some might fail if * that would cause a journal deadlock. */ darray_for_each(*keys, k) { cond_resched(); /* * k->allocated means the key wasn't read in from the journal, * rather it was from early repair code */ if (k->allocated) immediate_flush = true; /* Skip fastpath if we're low on space in the journal */ ret = c->journal.watermark ? -1 : commit_do(trans, NULL, NULL, BCH_TRANS_COMMIT_no_enospc| BCH_TRANS_COMMIT_journal_reclaim| (!k->allocated ? BCH_TRANS_COMMIT_no_journal_res : 0), bch2_journal_replay_key(trans, k)); BUG_ON(!ret && !k->overwritten && k->k->k.type != KEY_TYPE_accounting); if (ret) { ret = darray_push(&keys_sorted, k); if (ret) goto err; } } /* * Now, replay any remaining keys in the order in which they appear in * the journal, unpinning those journal entries as we go: */ sort(keys_sorted.data, keys_sorted.nr, sizeof(keys_sorted.data[0]), journal_sort_seq_cmp, NULL); darray_for_each(keys_sorted, kp) { cond_resched(); struct journal_key *k = *kp; if (k->journal_seq) replay_now_at(j, k->journal_seq); else replay_now_at(j, j->replay_journal_seq_end); ret = commit_do(trans, NULL, NULL, BCH_TRANS_COMMIT_no_enospc| (!k->allocated ? BCH_TRANS_COMMIT_no_journal_res|BCH_WATERMARK_reclaim : 0), bch2_journal_replay_key(trans, k)); bch_err_msg(c, ret, "while replaying key at btree %s level %u:", bch2_btree_id_str(k->btree_id), k->level); if (ret) goto err; BUG_ON(k->btree_id != BTREE_ID_accounting && !k->overwritten); } /* * We need to put our btree_trans before calling flush_all_pins(), since * that will use a btree_trans internally */ bch2_trans_put(trans); trans = NULL; if (!c->opts.retain_recovery_info && c->recovery_pass_done >= BCH_RECOVERY_PASS_journal_replay) bch2_journal_keys_put_initial(c); replay_now_at(j, j->replay_journal_seq_end); j->replay_journal_seq = 0; bch2_journal_set_replay_done(j); /* if we did any repair, flush it immediately */ if (immediate_flush) { bch2_journal_flush_all_pins(&c->journal); ret = bch2_journal_meta(&c->journal); } if (keys->nr) bch2_journal_log_msg(c, "journal replay finished"); err: if (trans) bch2_trans_put(trans); darray_exit(&keys_sorted); bch_err_fn(c, ret); return ret; } /* journal replay early: */ static int journal_replay_entry_early(struct bch_fs *c, struct jset_entry *entry) { int ret = 0; switch (entry->type) { case BCH_JSET_ENTRY_btree_root: { struct btree_root *r; if (fsck_err_on(entry->btree_id >= BTREE_ID_NR_MAX, c, invalid_btree_id, "invalid btree id %u (max %u)", entry->btree_id, BTREE_ID_NR_MAX)) return 0; while (entry->btree_id >= c->btree_roots_extra.nr + BTREE_ID_NR) { ret = darray_push(&c->btree_roots_extra, (struct btree_root) { NULL }); if (ret) return ret; } r = bch2_btree_id_root(c, entry->btree_id); if (entry->u64s) { r->level = entry->level; bkey_copy(&r->key, (struct bkey_i *) entry->start); r->error = 0; } else { r->error = -BCH_ERR_btree_node_read_error; } r->alive = true; break; } case BCH_JSET_ENTRY_usage: { struct jset_entry_usage *u = container_of(entry, struct jset_entry_usage, entry); switch (entry->btree_id) { case BCH_FS_USAGE_reserved: if (entry->level < BCH_REPLICAS_MAX) c->usage_base->persistent_reserved[entry->level] = le64_to_cpu(u->v); break; case BCH_FS_USAGE_inodes: c->usage_base->b.nr_inodes = le64_to_cpu(u->v); break; case BCH_FS_USAGE_key_version: atomic64_set(&c->key_version, le64_to_cpu(u->v)); break; } break; } case BCH_JSET_ENTRY_data_usage: { struct jset_entry_data_usage *u = container_of(entry, struct jset_entry_data_usage, entry); ret = bch2_replicas_set_usage(c, &u->r, le64_to_cpu(u->v)); break; } case BCH_JSET_ENTRY_dev_usage: { struct jset_entry_dev_usage *u = container_of(entry, struct jset_entry_dev_usage, entry); unsigned nr_types = jset_entry_dev_usage_nr_types(u); rcu_read_lock(); struct bch_dev *ca = bch2_dev_rcu(c, le32_to_cpu(u->dev)); if (ca) for (unsigned i = 0; i < min_t(unsigned, nr_types, BCH_DATA_NR); i++) { ca->usage_base->d[i].buckets = le64_to_cpu(u->d[i].buckets); ca->usage_base->d[i].sectors = le64_to_cpu(u->d[i].sectors); ca->usage_base->d[i].fragmented = le64_to_cpu(u->d[i].fragmented); } rcu_read_unlock(); break; } case BCH_JSET_ENTRY_blacklist: { struct jset_entry_blacklist *bl_entry = container_of(entry, struct jset_entry_blacklist, entry); ret = bch2_journal_seq_blacklist_add(c, le64_to_cpu(bl_entry->seq), le64_to_cpu(bl_entry->seq) + 1); break; } case BCH_JSET_ENTRY_blacklist_v2: { struct jset_entry_blacklist_v2 *bl_entry = container_of(entry, struct jset_entry_blacklist_v2, entry); ret = bch2_journal_seq_blacklist_add(c, le64_to_cpu(bl_entry->start), le64_to_cpu(bl_entry->end) + 1); break; } case BCH_JSET_ENTRY_clock: { struct jset_entry_clock *clock = container_of(entry, struct jset_entry_clock, entry); atomic64_set(&c->io_clock[clock->rw].now, le64_to_cpu(clock->time)); } } fsck_err: return ret; } static int journal_replay_early(struct bch_fs *c, struct bch_sb_field_clean *clean) { if (clean) { for (struct jset_entry *entry = clean->start; entry != vstruct_end(&clean->field); entry = vstruct_next(entry)) { int ret = journal_replay_entry_early(c, entry); if (ret) return ret; } } else { struct genradix_iter iter; struct journal_replay *i, **_i; genradix_for_each(&c->journal_entries, iter, _i) { i = *_i; if (journal_replay_ignore(i)) continue; vstruct_for_each(&i->j, entry) { int ret = journal_replay_entry_early(c, entry); if (ret) return ret; } } } bch2_fs_usage_initialize(c); return 0; } /* sb clean section: */ static int read_btree_roots(struct bch_fs *c) { int ret = 0; for (unsigned i = 0; i < btree_id_nr_alive(c); i++) { struct btree_root *r = bch2_btree_id_root(c, i); if (!r->alive) continue; if (btree_id_is_alloc(i) && c->opts.reconstruct_alloc) continue; if (mustfix_fsck_err_on((ret = r->error), c, btree_root_bkey_invalid, "invalid btree root %s", bch2_btree_id_str(i)) || mustfix_fsck_err_on((ret = r->error = bch2_btree_root_read(c, i, &r->key, r->level)), c, btree_root_read_error, "error reading btree root %s l=%u: %s", bch2_btree_id_str(i), r->level, bch2_err_str(ret))) { if (btree_id_is_alloc(i)) { c->recovery_passes_explicit |= BIT_ULL(BCH_RECOVERY_PASS_check_allocations); c->recovery_passes_explicit |= BIT_ULL(BCH_RECOVERY_PASS_check_alloc_info); c->recovery_passes_explicit |= BIT_ULL(BCH_RECOVERY_PASS_check_lrus); c->recovery_passes_explicit |= BIT_ULL(BCH_RECOVERY_PASS_check_extents_to_backpointers); c->recovery_passes_explicit |= BIT_ULL(BCH_RECOVERY_PASS_check_alloc_to_lru_refs); c->sb.compat &= ~(1ULL << BCH_COMPAT_alloc_info); r->error = 0; } else if (!(c->recovery_passes_explicit & BIT_ULL(BCH_RECOVERY_PASS_scan_for_btree_nodes))) { bch_info(c, "will run btree node scan"); c->recovery_passes_explicit |= BIT_ULL(BCH_RECOVERY_PASS_scan_for_btree_nodes); c->recovery_passes_explicit |= BIT_ULL(BCH_RECOVERY_PASS_check_topology); } ret = 0; bch2_btree_lost_data(c, i); } } for (unsigned i = 0; i < BTREE_ID_NR; i++) { struct btree_root *r = bch2_btree_id_root(c, i); if (!r->b && !r->error) { r->alive = false; r->level = 0; bch2_btree_root_alloc_fake(c, i, 0); } } fsck_err: return ret; } static bool check_version_upgrade(struct bch_fs *c) { unsigned latest_version = bcachefs_metadata_version_current; unsigned latest_compatible = min(latest_version, bch2_latest_compatible_version(c->sb.version)); unsigned old_version = c->sb.version_upgrade_complete ?: c->sb.version; unsigned new_version = 0; if (old_version < bcachefs_metadata_required_upgrade_below) { if (c->opts.version_upgrade == BCH_VERSION_UPGRADE_incompatible || latest_compatible < bcachefs_metadata_required_upgrade_below) new_version = latest_version; else new_version = latest_compatible; } else { switch (c->opts.version_upgrade) { case BCH_VERSION_UPGRADE_compatible: new_version = latest_compatible; break; case BCH_VERSION_UPGRADE_incompatible: new_version = latest_version; break; case BCH_VERSION_UPGRADE_none: new_version = min(old_version, latest_version); break; } } if (new_version > old_version) { struct printbuf buf = PRINTBUF; if (old_version < bcachefs_metadata_required_upgrade_below) prt_str(&buf, "Version upgrade required:\n"); if (old_version != c->sb.version) { prt_str(&buf, "Version upgrade from "); bch2_version_to_text(&buf, c->sb.version_upgrade_complete); prt_str(&buf, " to "); bch2_version_to_text(&buf, c->sb.version); prt_str(&buf, " incomplete\n"); } prt_printf(&buf, "Doing %s version upgrade from ", BCH_VERSION_MAJOR(old_version) != BCH_VERSION_MAJOR(new_version) ? "incompatible" : "compatible"); bch2_version_to_text(&buf, old_version); prt_str(&buf, " to "); bch2_version_to_text(&buf, new_version); prt_newline(&buf); struct bch_sb_field_ext *ext = bch2_sb_field_get(c->disk_sb.sb, ext); __le64 passes = ext->recovery_passes_required[0]; bch2_sb_set_upgrade(c, old_version, new_version); passes = ext->recovery_passes_required[0] & ~passes; if (passes) { prt_str(&buf, " running recovery passes: "); prt_bitflags(&buf, bch2_recovery_passes, bch2_recovery_passes_from_stable(le64_to_cpu(passes))); } bch_info(c, "%s", buf.buf); bch2_sb_upgrade(c, new_version); printbuf_exit(&buf); return true; } return false; } int bch2_fs_recovery(struct bch_fs *c) { struct bch_sb_field_clean *clean = NULL; struct jset *last_journal_entry = NULL; u64 last_seq = 0, blacklist_seq, journal_seq; int ret = 0; if (c->sb.clean) { clean = bch2_read_superblock_clean(c); ret = PTR_ERR_OR_ZERO(clean); if (ret) goto err; bch_info(c, "recovering from clean shutdown, journal seq %llu", le64_to_cpu(clean->journal_seq)); } else { bch_info(c, "recovering from unclean shutdown"); } if (!(c->sb.features & (1ULL << BCH_FEATURE_new_extent_overwrite))) { bch_err(c, "feature new_extent_overwrite not set, filesystem no longer supported"); ret = -EINVAL; goto err; } if (!c->sb.clean && !(c->sb.features & (1ULL << BCH_FEATURE_extents_above_btree_updates))) { bch_err(c, "filesystem needs recovery from older version; run fsck from older bcachefs-tools to fix"); ret = -EINVAL; goto err; } if (c->opts.norecovery) c->opts.recovery_pass_last = BCH_RECOVERY_PASS_journal_replay - 1; mutex_lock(&c->sb_lock); struct bch_sb_field_ext *ext = bch2_sb_field_get(c->disk_sb.sb, ext); bool write_sb = false; if (BCH_SB_HAS_TOPOLOGY_ERRORS(c->disk_sb.sb)) { ext->recovery_passes_required[0] |= cpu_to_le64(bch2_recovery_passes_to_stable(BIT_ULL(BCH_RECOVERY_PASS_check_topology))); write_sb = true; } u64 sb_passes = bch2_recovery_passes_from_stable(le64_to_cpu(ext->recovery_passes_required[0])); if (sb_passes) { struct printbuf buf = PRINTBUF; prt_str(&buf, "superblock requires following recovery passes to be run:\n "); prt_bitflags(&buf, bch2_recovery_passes, sb_passes); bch_info(c, "%s", buf.buf); printbuf_exit(&buf); } if (bch2_check_version_downgrade(c)) { struct printbuf buf = PRINTBUF; prt_str(&buf, "Version downgrade required:"); __le64 passes = ext->recovery_passes_required[0]; bch2_sb_set_downgrade(c, BCH_VERSION_MINOR(bcachefs_metadata_version_current), BCH_VERSION_MINOR(c->sb.version)); passes = ext->recovery_passes_required[0] & ~passes; if (passes) { prt_str(&buf, "\n running recovery passes: "); prt_bitflags(&buf, bch2_recovery_passes, bch2_recovery_passes_from_stable(le64_to_cpu(passes))); } bch_info(c, "%s", buf.buf); printbuf_exit(&buf); write_sb = true; } if (check_version_upgrade(c)) write_sb = true; c->recovery_passes_explicit |= bch2_recovery_passes_from_stable(le64_to_cpu(ext->recovery_passes_required[0])); if (write_sb) bch2_write_super(c); mutex_unlock(&c->sb_lock); if (c->opts.fsck && IS_ENABLED(CONFIG_BCACHEFS_DEBUG)) c->recovery_passes_explicit |= BIT_ULL(BCH_RECOVERY_PASS_check_topology); if (c->opts.fsck) set_bit(BCH_FS_fsck_running, &c->flags); ret = bch2_blacklist_table_initialize(c); if (ret) { bch_err(c, "error initializing blacklist table"); goto err; } bch2_journal_pos_from_member_info_resume(c); if (!c->sb.clean || c->opts.retain_recovery_info) { struct genradix_iter iter; struct journal_replay **i; bch_verbose(c, "starting journal read"); ret = bch2_journal_read(c, &last_seq, &blacklist_seq, &journal_seq); if (ret) goto err; /* * note: cmd_list_journal needs the blacklist table fully up to date so * it can asterisk ignored journal entries: */ if (c->opts.read_journal_only) goto out; genradix_for_each_reverse(&c->journal_entries, iter, i) if (!journal_replay_ignore(*i)) { last_journal_entry = &(*i)->j; break; } if (mustfix_fsck_err_on(c->sb.clean && last_journal_entry && !journal_entry_empty(last_journal_entry), c, clean_but_journal_not_empty, "filesystem marked clean but journal not empty")) { c->sb.compat &= ~(1ULL << BCH_COMPAT_alloc_info); SET_BCH_SB_CLEAN(c->disk_sb.sb, false); c->sb.clean = false; } if (!last_journal_entry) { fsck_err_on(!c->sb.clean, c, dirty_but_no_journal_entries, "no journal entries found"); if (clean) goto use_clean; genradix_for_each_reverse(&c->journal_entries, iter, i) if (*i) { last_journal_entry = &(*i)->j; (*i)->ignore_blacklisted = false; (*i)->ignore_not_dirty= false; /* * This was probably a NO_FLUSH entry, * so last_seq was garbage - but we know * we're only using a single journal * entry, set it here: */ (*i)->j.last_seq = (*i)->j.seq; break; } } ret = bch2_journal_keys_sort(c); if (ret) goto err; if (c->sb.clean && last_journal_entry) { ret = bch2_verify_superblock_clean(c, &clean, last_journal_entry); if (ret) goto err; } } else { use_clean: if (!clean) { bch_err(c, "no superblock clean section found"); ret = -BCH_ERR_fsck_repair_impossible; goto err; } blacklist_seq = journal_seq = le64_to_cpu(clean->journal_seq) + 1; } c->journal_replay_seq_start = last_seq; c->journal_replay_seq_end = blacklist_seq - 1; if (c->opts.reconstruct_alloc) bch2_reconstruct_alloc(c); zero_out_btree_mem_ptr(&c->journal_keys); ret = journal_replay_early(c, clean); if (ret) goto err; /* * After an unclean shutdown, skip then next few journal sequence * numbers as they may have been referenced by btree writes that * happened before their corresponding journal writes - those btree * writes need to be ignored, by skipping and blacklisting the next few * journal sequence numbers: */ if (!c->sb.clean) journal_seq += 8; if (blacklist_seq != journal_seq) { ret = bch2_journal_log_msg(c, "blacklisting entries %llu-%llu", blacklist_seq, journal_seq) ?: bch2_journal_seq_blacklist_add(c, blacklist_seq, journal_seq); if (ret) { bch_err_msg(c, ret, "error creating new journal seq blacklist entry"); goto err; } } ret = bch2_journal_log_msg(c, "starting journal at entry %llu, replaying %llu-%llu", journal_seq, last_seq, blacklist_seq - 1) ?: bch2_fs_journal_start(&c->journal, journal_seq); if (ret) goto err; /* * Skip past versions that might have possibly been used (as nonces), * but hadn't had their pointers written: */ if (c->sb.encryption_type && !c->sb.clean) atomic64_add(1 << 16, &c->key_version); ret = read_btree_roots(c); if (ret) goto err; set_bit(BCH_FS_btree_running, &c->flags); ret = bch2_sb_set_upgrade_extra(c); ret = bch2_run_recovery_passes(c); if (ret) goto err; clear_bit(BCH_FS_fsck_running, &c->flags); /* fsync if we fixed errors */ if (test_bit(BCH_FS_errors_fixed, &c->flags) && bch2_write_ref_tryget(c, BCH_WRITE_REF_fsync)) { bch2_journal_flush_all_pins(&c->journal); bch2_journal_meta(&c->journal); bch2_write_ref_put(c, BCH_WRITE_REF_fsync); } /* If we fixed errors, verify that fs is actually clean now: */ if (IS_ENABLED(CONFIG_BCACHEFS_DEBUG) && test_bit(BCH_FS_errors_fixed, &c->flags) && !test_bit(BCH_FS_errors_not_fixed, &c->flags) && !test_bit(BCH_FS_error, &c->flags)) { bch2_flush_fsck_errs(c); bch_info(c, "Fixed errors, running fsck a second time to verify fs is clean"); clear_bit(BCH_FS_errors_fixed, &c->flags); c->curr_recovery_pass = BCH_RECOVERY_PASS_check_alloc_info; ret = bch2_run_recovery_passes(c); if (ret) goto err; if (test_bit(BCH_FS_errors_fixed, &c->flags) || test_bit(BCH_FS_errors_not_fixed, &c->flags)) { bch_err(c, "Second fsck run was not clean"); set_bit(BCH_FS_errors_not_fixed, &c->flags); } set_bit(BCH_FS_errors_fixed, &c->flags); } if (enabled_qtypes(c)) { bch_verbose(c, "reading quotas"); ret = bch2_fs_quota_read(c); if (ret) goto err; bch_verbose(c, "quotas done"); } mutex_lock(&c->sb_lock); ext = bch2_sb_field_get(c->disk_sb.sb, ext); write_sb = false; if (BCH_SB_VERSION_UPGRADE_COMPLETE(c->disk_sb.sb) != le16_to_cpu(c->disk_sb.sb->version)) { SET_BCH_SB_VERSION_UPGRADE_COMPLETE(c->disk_sb.sb, le16_to_cpu(c->disk_sb.sb->version)); write_sb = true; } if (!test_bit(BCH_FS_error, &c->flags) && !(c->disk_sb.sb->compat[0] & cpu_to_le64(1ULL << BCH_COMPAT_alloc_info))) { c->disk_sb.sb->compat[0] |= cpu_to_le64(1ULL << BCH_COMPAT_alloc_info); write_sb = true; } if (!test_bit(BCH_FS_error, &c->flags) && !bch2_is_zero(ext->errors_silent, sizeof(ext->errors_silent))) { memset(ext->errors_silent, 0, sizeof(ext->errors_silent)); write_sb = true; } if (c->opts.fsck && !test_bit(BCH_FS_error, &c->flags) && c->recovery_pass_done == BCH_RECOVERY_PASS_NR - 1 && ext->btrees_lost_data) { ext->btrees_lost_data = 0; write_sb = true; } if (c->opts.fsck && !test_bit(BCH_FS_error, &c->flags) && !test_bit(BCH_FS_errors_not_fixed, &c->flags)) { SET_BCH_SB_HAS_ERRORS(c->disk_sb.sb, 0); SET_BCH_SB_HAS_TOPOLOGY_ERRORS(c->disk_sb.sb, 0); write_sb = true; } if (bch2_blacklist_entries_gc(c)) write_sb = true; if (write_sb) bch2_write_super(c); mutex_unlock(&c->sb_lock); if (!(c->sb.compat & (1ULL << BCH_COMPAT_extents_above_btree_updates_done)) || c->sb.version_min < bcachefs_metadata_version_btree_ptr_sectors_written) { struct bch_move_stats stats; bch2_move_stats_init(&stats, "recovery"); struct printbuf buf = PRINTBUF; bch2_version_to_text(&buf, c->sb.version_min); bch_info(c, "scanning for old btree nodes: min_version %s", buf.buf); printbuf_exit(&buf); ret = bch2_fs_read_write_early(c) ?: bch2_scan_old_btree_nodes(c, &stats); if (ret) goto err; bch_info(c, "scanning for old btree nodes done"); } ret = 0; out: bch2_flush_fsck_errs(c); if (!c->opts.retain_recovery_info) { bch2_journal_keys_put_initial(c); bch2_find_btree_nodes_exit(&c->found_btree_nodes); } if (!IS_ERR(clean)) kfree(clean); if (!ret && test_bit(BCH_FS_need_delete_dead_snapshots, &c->flags) && !c->opts.nochanges) { bch2_fs_read_write_early(c); bch2_delete_dead_snapshots_async(c); } bch_err_fn(c, ret); return ret; err: fsck_err: bch2_fs_emergency_read_only(c); goto out; } int bch2_fs_initialize(struct bch_fs *c) { struct bch_inode_unpacked root_inode, lostfound_inode; struct bkey_inode_buf packed_inode; struct qstr lostfound = QSTR("lost+found"); int ret; bch_notice(c, "initializing new filesystem"); set_bit(BCH_FS_new_fs, &c->flags); mutex_lock(&c->sb_lock); c->disk_sb.sb->compat[0] |= cpu_to_le64(1ULL << BCH_COMPAT_extents_above_btree_updates_done); c->disk_sb.sb->compat[0] |= cpu_to_le64(1ULL << BCH_COMPAT_bformat_overflow_done); bch2_check_version_downgrade(c); if (c->opts.version_upgrade != BCH_VERSION_UPGRADE_none) { bch2_sb_upgrade(c, bcachefs_metadata_version_current); SET_BCH_SB_VERSION_UPGRADE_COMPLETE(c->disk_sb.sb, bcachefs_metadata_version_current); bch2_write_super(c); } mutex_unlock(&c->sb_lock); c->curr_recovery_pass = BCH_RECOVERY_PASS_NR; set_bit(BCH_FS_btree_running, &c->flags); set_bit(BCH_FS_may_go_rw, &c->flags); for (unsigned i = 0; i < BTREE_ID_NR; i++) bch2_btree_root_alloc_fake(c, i, 0); for_each_member_device(c, ca) bch2_dev_usage_init(ca); ret = bch2_fs_journal_alloc(c); if (ret) goto err; /* * journal_res_get() will crash if called before this has * set up the journal.pin FIFO and journal.cur pointer: */ bch2_fs_journal_start(&c->journal, 1); set_bit(BCH_FS_accounting_replay_done, &c->flags); bch2_journal_set_replay_done(&c->journal); ret = bch2_fs_read_write_early(c); if (ret) goto err; /* * Write out the superblock and journal buckets, now that we can do * btree updates */ bch_verbose(c, "marking superblocks"); ret = bch2_trans_mark_dev_sbs(c); bch_err_msg(c, ret, "marking superblocks"); if (ret) goto err; for_each_online_member(c, ca) ca->new_fs_bucket_idx = 0; ret = bch2_fs_freespace_init(c); if (ret) goto err; ret = bch2_initialize_subvolumes(c); if (ret) goto err; bch_verbose(c, "reading snapshots table"); ret = bch2_snapshots_read(c); if (ret) goto err; bch_verbose(c, "reading snapshots done"); bch2_inode_init(c, &root_inode, 0, 0, S_IFDIR|0755, 0, NULL); root_inode.bi_inum = BCACHEFS_ROOT_INO; root_inode.bi_subvol = BCACHEFS_ROOT_SUBVOL; bch2_inode_pack(&packed_inode, &root_inode); packed_inode.inode.k.p.snapshot = U32_MAX; ret = bch2_btree_insert(c, BTREE_ID_inodes, &packed_inode.inode.k_i, NULL, 0); bch_err_msg(c, ret, "creating root directory"); if (ret) goto err; bch2_inode_init_early(c, &lostfound_inode); ret = bch2_trans_do(c, NULL, NULL, 0, bch2_create_trans(trans, BCACHEFS_ROOT_SUBVOL_INUM, &root_inode, &lostfound_inode, &lostfound, 0, 0, S_IFDIR|0700, 0, NULL, NULL, (subvol_inum) { 0 }, 0)); bch_err_msg(c, ret, "creating lost+found"); if (ret) goto err; c->recovery_pass_done = BCH_RECOVERY_PASS_NR - 1; if (enabled_qtypes(c)) { ret = bch2_fs_quota_read(c); if (ret) goto err; } ret = bch2_journal_flush(&c->journal); bch_err_msg(c, ret, "writing first journal entry"); if (ret) goto err; mutex_lock(&c->sb_lock); SET_BCH_SB_INITIALIZED(c->disk_sb.sb, true); SET_BCH_SB_CLEAN(c->disk_sb.sb, false); bch2_write_super(c); mutex_unlock(&c->sb_lock); return 0; err: bch_err_fn(c, ret); return ret; }