/* * Copyright (C) 2008 Red Hat. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #include <linux/sched.h> #include "ctree.h" static int tree_insert_offset(struct rb_root *root, u64 offset, struct rb_node *node) { struct rb_node **p = &root->rb_node; struct rb_node *parent = NULL; struct btrfs_free_space *info; while (*p) { parent = *p; info = rb_entry(parent, struct btrfs_free_space, offset_index); if (offset < info->offset) p = &(*p)->rb_left; else if (offset > info->offset) p = &(*p)->rb_right; else return -EEXIST; } rb_link_node(node, parent, p); rb_insert_color(node, root); return 0; } static int tree_insert_bytes(struct rb_root *root, u64 bytes, struct rb_node *node) { struct rb_node **p = &root->rb_node; struct rb_node *parent = NULL; struct btrfs_free_space *info; while (*p) { parent = *p; info = rb_entry(parent, struct btrfs_free_space, bytes_index); if (bytes < info->bytes) p = &(*p)->rb_left; else p = &(*p)->rb_right; } rb_link_node(node, parent, p); rb_insert_color(node, root); return 0; } /* * searches the tree for the given offset. If contains is set we will return * the free space that contains the given offset. If contains is not set we * will return the free space that starts at or after the given offset and is * at least bytes long. */ static struct btrfs_free_space *tree_search_offset(struct rb_root *root, u64 offset, u64 bytes, int contains) { struct rb_node *n = root->rb_node; struct btrfs_free_space *entry, *ret = NULL; while (n) { entry = rb_entry(n, struct btrfs_free_space, offset_index); if (offset < entry->offset) { if (!contains && (!ret || entry->offset < ret->offset) && (bytes <= entry->bytes)) ret = entry; n = n->rb_left; } else if (offset > entry->offset) { if ((entry->offset + entry->bytes - 1) >= offset && bytes <= entry->bytes) { ret = entry; break; } n = n->rb_right; } else { if (bytes > entry->bytes) { n = n->rb_right; continue; } ret = entry; break; } } return ret; } /* * return a chunk at least bytes size, as close to offset that we can get. */ static struct btrfs_free_space *tree_search_bytes(struct rb_root *root, u64 offset, u64 bytes) { struct rb_node *n = root->rb_node; struct btrfs_free_space *entry, *ret = NULL; while (n) { entry = rb_entry(n, struct btrfs_free_space, bytes_index); if (bytes < entry->bytes) { /* * We prefer to get a hole size as close to the size we * are asking for so we don't take small slivers out of * huge holes, but we also want to get as close to the * offset as possible so we don't have a whole lot of * fragmentation. */ if (offset <= entry->offset) { if (!ret) ret = entry; else if (entry->bytes < ret->bytes) ret = entry; else if (entry->offset < ret->offset) ret = entry; } n = n->rb_left; } else if (bytes > entry->bytes) { n = n->rb_right; } else { /* * Ok we may have multiple chunks of the wanted size, * so we don't want to take the first one we find, we * want to take the one closest to our given offset, so * keep searching just in case theres a better match. */ n = n->rb_right; if (offset > entry->offset) continue; else if (!ret || entry->offset < ret->offset) ret = entry; } } return ret; } static void unlink_free_space(struct btrfs_block_group_cache *block_group, struct btrfs_free_space *info) { rb_erase(&info->offset_index, &block_group->free_space_offset); rb_erase(&info->bytes_index, &block_group->free_space_bytes); } static int link_free_space(struct btrfs_block_group_cache *block_group, struct btrfs_free_space *info) { int ret = 0; ret = tree_insert_offset(&block_group->free_space_offset, info->offset, &info->offset_index); if (ret) return ret; ret = tree_insert_bytes(&block_group->free_space_bytes, info->bytes, &info->bytes_index); if (ret) return ret; return ret; } static int __btrfs_add_free_space(struct btrfs_block_group_cache *block_group, u64 offset, u64 bytes) { struct btrfs_free_space *right_info; struct btrfs_free_space *left_info; struct btrfs_free_space *info = NULL; struct btrfs_free_space *alloc_info; int ret = 0; alloc_info = kzalloc(sizeof(struct btrfs_free_space), GFP_NOFS); if (!alloc_info) return -ENOMEM; /* * first we want to see if there is free space adjacent to the range we * are adding, if there is remove that struct and add a new one to * cover the entire range */ right_info = tree_search_offset(&block_group->free_space_offset, offset+bytes, 0, 1); left_info = tree_search_offset(&block_group->free_space_offset, offset-1, 0, 1); if (right_info && right_info->offset == offset+bytes) { unlink_free_space(block_group, right_info); info = right_info; info->offset = offset; info->bytes += bytes; } else if (right_info && right_info->offset != offset+bytes) { printk(KERN_ERR "adding space in the middle of an existing " "free space area. existing: offset=%Lu, bytes=%Lu. " "new: offset=%Lu, bytes=%Lu\n", right_info->offset, right_info->bytes, offset, bytes); BUG(); } if (left_info) { unlink_free_space(block_group, left_info); if (unlikely((left_info->offset + left_info->bytes) != offset)) { printk(KERN_ERR "free space to the left of new free " "space isn't quite right. existing: offset=%Lu," " bytes=%Lu. new: offset=%Lu, bytes=%Lu\n", left_info->offset, left_info->bytes, offset, bytes); BUG(); } if (info) { info->offset = left_info->offset; info->bytes += left_info->bytes; kfree(left_info); } else { info = left_info; info->bytes += bytes; } } if (info) { ret = link_free_space(block_group, info); if (!ret) info = NULL; goto out; } info = alloc_info; alloc_info = NULL; info->offset = offset; info->bytes = bytes; ret = link_free_space(block_group, info); if (ret) kfree(info); out: if (ret) { printk(KERN_ERR "btrfs: unable to add free space :%d\n", ret); if (ret == -EEXIST) BUG(); } if (alloc_info) kfree(alloc_info); return ret; } static int __btrfs_remove_free_space(struct btrfs_block_group_cache *block_group, u64 offset, u64 bytes) { struct btrfs_free_space *info; int ret = 0; info = tree_search_offset(&block_group->free_space_offset, offset, 0, 1); if (info && info->offset == offset) { if (info->bytes < bytes) { printk(KERN_ERR "Found free space at %Lu, size %Lu," "trying to use %Lu\n", info->offset, info->bytes, bytes); WARN_ON(1); ret = -EINVAL; goto out; } unlink_free_space(block_group, info); if (info->bytes == bytes) { kfree(info); goto out; } info->offset += bytes; info->bytes -= bytes; ret = link_free_space(block_group, info); BUG_ON(ret); } else if (info && info->offset < offset && info->offset + info->bytes >= offset + bytes) { u64 old_start = info->offset; /* * we're freeing space in the middle of the info, * this can happen during tree log replay * * first unlink the old info and then * insert it again after the hole we're creating */ unlink_free_space(block_group, info); if (offset + bytes < info->offset + info->bytes) { u64 old_end = info->offset + info->bytes; info->offset = offset + bytes; info->bytes = old_end - info->offset; ret = link_free_space(block_group, info); BUG_ON(ret); } else { /* the hole we're creating ends at the end * of the info struct, just free the info */ kfree(info); } /* step two, insert a new info struct to cover anything * before the hole */ ret = __btrfs_add_free_space(block_group, old_start, offset - old_start); BUG_ON(ret); } else { WARN_ON(1); } out: return ret; } int btrfs_add_free_space(struct btrfs_block_group_cache *block_group, u64 offset, u64 bytes) { int ret; struct btrfs_free_space *sp; mutex_lock(&block_group->alloc_mutex); ret = __btrfs_add_free_space(block_group, offset, bytes); sp = tree_search_offset(&block_group->free_space_offset, offset, 0, 1); BUG_ON(!sp); mutex_unlock(&block_group->alloc_mutex); return ret; } int btrfs_add_free_space_lock(struct btrfs_block_group_cache *block_group, u64 offset, u64 bytes) { int ret; struct btrfs_free_space *sp; ret = __btrfs_add_free_space(block_group, offset, bytes); sp = tree_search_offset(&block_group->free_space_offset, offset, 0, 1); BUG_ON(!sp); return ret; } int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group, u64 offset, u64 bytes) { int ret = 0; mutex_lock(&block_group->alloc_mutex); ret = __btrfs_remove_free_space(block_group, offset, bytes); mutex_unlock(&block_group->alloc_mutex); return ret; } int btrfs_remove_free_space_lock(struct btrfs_block_group_cache *block_group, u64 offset, u64 bytes) { int ret; ret = __btrfs_remove_free_space(block_group, offset, bytes); return ret; } void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group, u64 bytes) { struct btrfs_free_space *info; struct rb_node *n; int count = 0; for (n = rb_first(&block_group->free_space_offset); n; n = rb_next(n)) { info = rb_entry(n, struct btrfs_free_space, offset_index); if (info->bytes >= bytes) count++; //printk(KERN_INFO "offset=%Lu, bytes=%Lu\n", info->offset, // info->bytes); } printk(KERN_INFO "%d blocks of free space at or bigger than bytes is" "\n", count); } u64 btrfs_block_group_free_space(struct btrfs_block_group_cache *block_group) { struct btrfs_free_space *info; struct rb_node *n; u64 ret = 0; for (n = rb_first(&block_group->free_space_offset); n; n = rb_next(n)) { info = rb_entry(n, struct btrfs_free_space, offset_index); ret += info->bytes; } return ret; } void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group) { struct btrfs_free_space *info; struct rb_node *node; mutex_lock(&block_group->alloc_mutex); while ((node = rb_last(&block_group->free_space_bytes)) != NULL) { info = rb_entry(node, struct btrfs_free_space, bytes_index); unlink_free_space(block_group, info); kfree(info); if (need_resched()) { mutex_unlock(&block_group->alloc_mutex); cond_resched(); mutex_lock(&block_group->alloc_mutex); } } mutex_unlock(&block_group->alloc_mutex); } struct btrfs_free_space *btrfs_find_free_space_offset(struct btrfs_block_group_cache *block_group, u64 offset, u64 bytes) { struct btrfs_free_space *ret; mutex_lock(&block_group->alloc_mutex); ret = tree_search_offset(&block_group->free_space_offset, offset, bytes, 0); mutex_unlock(&block_group->alloc_mutex); return ret; } struct btrfs_free_space *btrfs_find_free_space_bytes(struct btrfs_block_group_cache *block_group, u64 offset, u64 bytes) { struct btrfs_free_space *ret; mutex_lock(&block_group->alloc_mutex); ret = tree_search_bytes(&block_group->free_space_bytes, offset, bytes); mutex_unlock(&block_group->alloc_mutex); return ret; } struct btrfs_free_space *btrfs_find_free_space(struct btrfs_block_group_cache *block_group, u64 offset, u64 bytes) { struct btrfs_free_space *ret = NULL; ret = tree_search_offset(&block_group->free_space_offset, offset, bytes, 0); if (!ret) ret = tree_search_bytes(&block_group->free_space_bytes, offset, bytes); return ret; }