#ifndef _FS_CEPH_SUPER_H #define _FS_CEPH_SUPER_H #include <linux/ceph/ceph_debug.h> #include <asm/unaligned.h> #include <linux/backing-dev.h> #include <linux/completion.h> #include <linux/exportfs.h> #include <linux/fs.h> #include <linux/mempool.h> #include <linux/pagemap.h> #include <linux/wait.h> #include <linux/writeback.h> #include <linux/slab.h> #include <linux/posix_acl.h> #include <linux/ceph/libceph.h> #ifdef CONFIG_CEPH_FSCACHE #include <linux/fscache.h> #endif /* f_type in struct statfs */ #define CEPH_SUPER_MAGIC 0x00c36400 /* large granularity for statfs utilization stats to facilitate * large volume sizes on 32-bit machines. */ #define CEPH_BLOCK_SHIFT 22 /* 4 MB */ #define CEPH_BLOCK (1 << CEPH_BLOCK_SHIFT) #define CEPH_MOUNT_OPT_DIRSTAT (1<<4) /* `cat dirname` for stats */ #define CEPH_MOUNT_OPT_RBYTES (1<<5) /* dir st_bytes = rbytes */ #define CEPH_MOUNT_OPT_NOASYNCREADDIR (1<<7) /* no dcache readdir */ #define CEPH_MOUNT_OPT_INO32 (1<<8) /* 32 bit inos */ #define CEPH_MOUNT_OPT_DCACHE (1<<9) /* use dcache for readdir etc */ #define CEPH_MOUNT_OPT_FSCACHE (1<<10) /* use fscache */ #define CEPH_MOUNT_OPT_NOPOOLPERM (1<<11) /* no pool permission check */ #define CEPH_MOUNT_OPT_DEFAULT (CEPH_MOUNT_OPT_RBYTES | \ CEPH_MOUNT_OPT_DCACHE) #define ceph_set_mount_opt(fsc, opt) \ (fsc)->mount_options->flags |= CEPH_MOUNT_OPT_##opt; #define ceph_test_mount_opt(fsc, opt) \ (!!((fsc)->mount_options->flags & CEPH_MOUNT_OPT_##opt)) #define CEPH_RSIZE_DEFAULT 0 /* max read size */ #define CEPH_RASIZE_DEFAULT (8192*1024) /* readahead */ #define CEPH_MAX_READDIR_DEFAULT 1024 #define CEPH_MAX_READDIR_BYTES_DEFAULT (512*1024) #define CEPH_SNAPDIRNAME_DEFAULT ".snap" struct ceph_mount_options { int flags; int sb_flags; int wsize; /* max write size */ int rsize; /* max read size */ int rasize; /* max readahead */ int congestion_kb; /* max writeback in flight */ int caps_wanted_delay_min, caps_wanted_delay_max; int cap_release_safety; int max_readdir; /* max readdir result (entires) */ int max_readdir_bytes; /* max readdir result (bytes) */ /* * everything above this point can be memcmp'd; everything below * is handled in compare_mount_options() */ char *snapdir_name; /* default ".snap" */ }; struct ceph_fs_client { struct super_block *sb; struct ceph_mount_options *mount_options; struct ceph_client *client; unsigned long mount_state; int min_caps; /* min caps i added */ struct ceph_mds_client *mdsc; /* writeback */ mempool_t *wb_pagevec_pool; struct workqueue_struct *wb_wq; struct workqueue_struct *pg_inv_wq; struct workqueue_struct *trunc_wq; atomic_long_t writeback_count; struct backing_dev_info backing_dev_info; #ifdef CONFIG_DEBUG_FS struct dentry *debugfs_dentry_lru, *debugfs_caps; struct dentry *debugfs_congestion_kb; struct dentry *debugfs_bdi; struct dentry *debugfs_mdsc, *debugfs_mdsmap; struct dentry *debugfs_mds_sessions; #endif #ifdef CONFIG_CEPH_FSCACHE struct fscache_cookie *fscache; struct workqueue_struct *revalidate_wq; #endif }; /* * File i/o capability. This tracks shared state with the metadata * server that allows us to cache or writeback attributes or to read * and write data. For any given inode, we should have one or more * capabilities, one issued by each metadata server, and our * cumulative access is the OR of all issued capabilities. * * Each cap is referenced by the inode's i_caps rbtree and by per-mds * session capability lists. */ struct ceph_cap { struct ceph_inode_info *ci; struct rb_node ci_node; /* per-ci cap tree */ struct ceph_mds_session *session; struct list_head session_caps; /* per-session caplist */ u64 cap_id; /* unique cap id (mds provided) */ union { /* in-use caps */ struct { int issued; /* latest, from the mds */ int implemented; /* implemented superset of issued (for revocation) */ int mds, mds_wanted; }; /* caps to release */ struct { u64 cap_ino; int queue_release; }; }; u32 seq, issue_seq, mseq; u32 cap_gen; /* active/stale cycle */ unsigned long last_used; struct list_head caps_item; }; #define CHECK_CAPS_NODELAY 1 /* do not delay any further */ #define CHECK_CAPS_AUTHONLY 2 /* only check auth cap */ #define CHECK_CAPS_FLUSH 4 /* flush any dirty caps */ /* * Snapped cap state that is pending flush to mds. When a snapshot occurs, * we first complete any in-process sync writes and writeback any dirty * data before flushing the snapped state (tracked here) back to the MDS. */ struct ceph_cap_snap { atomic_t nref; struct ceph_inode_info *ci; struct list_head ci_item, flushing_item; u64 follows, flush_tid; int issued, dirty; struct ceph_snap_context *context; umode_t mode; kuid_t uid; kgid_t gid; struct ceph_buffer *xattr_blob; u64 xattr_version; u64 size; struct timespec mtime, atime, ctime; u64 time_warp_seq; int writing; /* a sync write is still in progress */ int dirty_pages; /* dirty pages awaiting writeback */ bool inline_data; bool need_flush; }; static inline void ceph_put_cap_snap(struct ceph_cap_snap *capsnap) { if (atomic_dec_and_test(&capsnap->nref)) { if (capsnap->xattr_blob) ceph_buffer_put(capsnap->xattr_blob); kfree(capsnap); } } struct ceph_cap_flush { u64 tid; int caps; struct rb_node g_node; // global union { struct rb_node i_node; // inode struct list_head list; }; }; /* * The frag tree describes how a directory is fragmented, potentially across * multiple metadata servers. It is also used to indicate points where * metadata authority is delegated, and whether/where metadata is replicated. * * A _leaf_ frag will be present in the i_fragtree IFF there is * delegation info. That is, if mds >= 0 || ndist > 0. */ #define CEPH_MAX_DIRFRAG_REP 4 struct ceph_inode_frag { struct rb_node node; /* fragtree state */ u32 frag; int split_by; /* i.e. 2^(split_by) children */ /* delegation and replication info */ int mds; /* -1 if same authority as parent */ int ndist; /* >0 if replicated */ int dist[CEPH_MAX_DIRFRAG_REP]; }; /* * We cache inode xattrs as an encoded blob until they are first used, * at which point we parse them into an rbtree. */ struct ceph_inode_xattr { struct rb_node node; const char *name; int name_len; const char *val; int val_len; int dirty; int should_free_name; int should_free_val; }; /* * Ceph dentry state */ struct ceph_dentry_info { struct ceph_mds_session *lease_session; u32 lease_gen, lease_shared_gen; u32 lease_seq; unsigned long lease_renew_after, lease_renew_from; struct list_head lru; struct dentry *dentry; u64 time; u64 offset; }; struct ceph_inode_xattrs_info { /* * (still encoded) xattr blob. we avoid the overhead of parsing * this until someone actually calls getxattr, etc. * * blob->vec.iov_len == 4 implies there are no xattrs; blob == * NULL means we don't know. */ struct ceph_buffer *blob, *prealloc_blob; struct rb_root index; bool dirty; int count; int names_size; int vals_size; u64 version, index_version; }; /* * Ceph inode. */ struct ceph_inode_info { struct ceph_vino i_vino; /* ceph ino + snap */ spinlock_t i_ceph_lock; u64 i_version; u64 i_inline_version; u32 i_time_warp_seq; unsigned i_ceph_flags; atomic64_t i_release_count; atomic64_t i_ordered_count; atomic64_t i_complete_seq[2]; struct ceph_dir_layout i_dir_layout; struct ceph_file_layout i_layout; char *i_symlink; /* for dirs */ struct timespec i_rctime; u64 i_rbytes, i_rfiles, i_rsubdirs; u64 i_files, i_subdirs; struct rb_root i_fragtree; struct mutex i_fragtree_mutex; struct ceph_inode_xattrs_info i_xattrs; /* capabilities. protected _both_ by i_ceph_lock and cap->session's * s_mutex. */ struct rb_root i_caps; /* cap list */ struct ceph_cap *i_auth_cap; /* authoritative cap, if any */ unsigned i_dirty_caps, i_flushing_caps; /* mask of dirtied fields */ struct list_head i_dirty_item, i_flushing_item; /* we need to track cap writeback on a per-cap-bit basis, to allow * overlapping, pipelined cap flushes to the mds. we can probably * reduce the tid to 8 bits if we're concerned about inode size. */ struct ceph_cap_flush *i_prealloc_cap_flush; struct rb_root i_cap_flush_tree; wait_queue_head_t i_cap_wq; /* threads waiting on a capability */ unsigned long i_hold_caps_min; /* jiffies */ unsigned long i_hold_caps_max; /* jiffies */ struct list_head i_cap_delay_list; /* for delayed cap release to mds */ struct ceph_cap_reservation i_cap_migration_resv; struct list_head i_cap_snaps; /* snapped state pending flush to mds */ struct ceph_snap_context *i_head_snapc; /* set if wr_buffer_head > 0 or dirty|flushing caps */ unsigned i_snap_caps; /* cap bits for snapped files */ int i_nr_by_mode[CEPH_FILE_MODE_NUM]; /* open file counts */ struct mutex i_truncate_mutex; u32 i_truncate_seq; /* last truncate to smaller size */ u64 i_truncate_size; /* and the size we last truncated down to */ int i_truncate_pending; /* still need to call vmtruncate */ u64 i_max_size; /* max file size authorized by mds */ u64 i_reported_size; /* (max_)size reported to or requested of mds */ u64 i_wanted_max_size; /* offset we'd like to write too */ u64 i_requested_max_size; /* max_size we've requested */ /* held references to caps */ int i_pin_ref; int i_rd_ref, i_rdcache_ref, i_wr_ref, i_wb_ref; int i_wrbuffer_ref, i_wrbuffer_ref_head; u32 i_shared_gen; /* increment each time we get FILE_SHARED */ u32 i_rdcache_gen; /* incremented each time we get FILE_CACHE. */ u32 i_rdcache_revoking; /* RDCACHE gen to async invalidate, if any */ struct list_head i_unsafe_writes; /* uncommitted sync writes */ struct list_head i_unsafe_dirops; /* uncommitted mds dir ops */ spinlock_t i_unsafe_lock; struct ceph_snap_realm *i_snap_realm; /* snap realm (if caps) */ int i_snap_realm_counter; /* snap realm (if caps) */ struct list_head i_snap_realm_item; struct list_head i_snap_flush_item; struct work_struct i_wb_work; /* writeback work */ struct work_struct i_pg_inv_work; /* page invalidation work */ struct work_struct i_vmtruncate_work; #ifdef CONFIG_CEPH_FSCACHE struct fscache_cookie *fscache; u32 i_fscache_gen; /* sequence, for delayed fscache validate */ struct work_struct i_revalidate_work; #endif struct inode vfs_inode; /* at end */ }; static inline struct ceph_inode_info *ceph_inode(struct inode *inode) { return container_of(inode, struct ceph_inode_info, vfs_inode); } static inline struct ceph_fs_client *ceph_inode_to_client(struct inode *inode) { return (struct ceph_fs_client *)inode->i_sb->s_fs_info; } static inline struct ceph_fs_client *ceph_sb_to_client(struct super_block *sb) { return (struct ceph_fs_client *)sb->s_fs_info; } static inline struct ceph_vino ceph_vino(struct inode *inode) { return ceph_inode(inode)->i_vino; } /* * ino_t is <64 bits on many architectures, blech. * * i_ino (kernel inode) st_ino (userspace) * i386 32 32 * x86_64+ino32 64 32 * x86_64 64 64 */ static inline u32 ceph_ino_to_ino32(__u64 vino) { u32 ino = vino & 0xffffffff; ino ^= vino >> 32; if (!ino) ino = 2; return ino; } /* * kernel i_ino value */ static inline ino_t ceph_vino_to_ino(struct ceph_vino vino) { #if BITS_PER_LONG == 32 return ceph_ino_to_ino32(vino.ino); #else return (ino_t)vino.ino; #endif } /* * user-visible ino (stat, filldir) */ #if BITS_PER_LONG == 32 static inline ino_t ceph_translate_ino(struct super_block *sb, ino_t ino) { return ino; } #else static inline ino_t ceph_translate_ino(struct super_block *sb, ino_t ino) { if (ceph_test_mount_opt(ceph_sb_to_client(sb), INO32)) ino = ceph_ino_to_ino32(ino); return ino; } #endif /* for printf-style formatting */ #define ceph_vinop(i) ceph_inode(i)->i_vino.ino, ceph_inode(i)->i_vino.snap static inline u64 ceph_ino(struct inode *inode) { return ceph_inode(inode)->i_vino.ino; } static inline u64 ceph_snap(struct inode *inode) { return ceph_inode(inode)->i_vino.snap; } static inline int ceph_ino_compare(struct inode *inode, void *data) { struct ceph_vino *pvino = (struct ceph_vino *)data; struct ceph_inode_info *ci = ceph_inode(inode); return ci->i_vino.ino == pvino->ino && ci->i_vino.snap == pvino->snap; } static inline struct inode *ceph_find_inode(struct super_block *sb, struct ceph_vino vino) { ino_t t = ceph_vino_to_ino(vino); return ilookup5(sb, t, ceph_ino_compare, &vino); } /* * Ceph inode. */ #define CEPH_I_DIR_ORDERED (1 << 0) /* dentries in dir are ordered */ #define CEPH_I_NODELAY (1 << 1) /* do not delay cap release */ #define CEPH_I_FLUSH (1 << 2) /* do not delay flush of dirty metadata */ #define CEPH_I_NOFLUSH (1 << 3) /* do not flush dirty caps */ #define CEPH_I_POOL_PERM (1 << 4) /* pool rd/wr bits are valid */ #define CEPH_I_POOL_RD (1 << 5) /* can read from pool */ #define CEPH_I_POOL_WR (1 << 6) /* can write to pool */ static inline void __ceph_dir_set_complete(struct ceph_inode_info *ci, long long release_count, long long ordered_count) { smp_mb__before_atomic(); atomic64_set(&ci->i_complete_seq[0], release_count); atomic64_set(&ci->i_complete_seq[1], ordered_count); } static inline void __ceph_dir_clear_complete(struct ceph_inode_info *ci) { atomic64_inc(&ci->i_release_count); } static inline void __ceph_dir_clear_ordered(struct ceph_inode_info *ci) { atomic64_inc(&ci->i_ordered_count); } static inline bool __ceph_dir_is_complete(struct ceph_inode_info *ci) { return atomic64_read(&ci->i_complete_seq[0]) == atomic64_read(&ci->i_release_count); } static inline bool __ceph_dir_is_complete_ordered(struct ceph_inode_info *ci) { return atomic64_read(&ci->i_complete_seq[0]) == atomic64_read(&ci->i_release_count) && atomic64_read(&ci->i_complete_seq[1]) == atomic64_read(&ci->i_ordered_count); } static inline void ceph_dir_clear_complete(struct inode *inode) { __ceph_dir_clear_complete(ceph_inode(inode)); } static inline void ceph_dir_clear_ordered(struct inode *inode) { __ceph_dir_clear_ordered(ceph_inode(inode)); } static inline bool ceph_dir_is_complete_ordered(struct inode *inode) { bool ret = __ceph_dir_is_complete_ordered(ceph_inode(inode)); smp_rmb(); return ret; } /* find a specific frag @f */ extern struct ceph_inode_frag *__ceph_find_frag(struct ceph_inode_info *ci, u32 f); /* * choose fragment for value @v. copy frag content to pfrag, if leaf * exists */ extern u32 ceph_choose_frag(struct ceph_inode_info *ci, u32 v, struct ceph_inode_frag *pfrag, int *found); static inline struct ceph_dentry_info *ceph_dentry(struct dentry *dentry) { return (struct ceph_dentry_info *)dentry->d_fsdata; } static inline loff_t ceph_make_fpos(unsigned frag, unsigned off) { return ((loff_t)frag << 32) | (loff_t)off; } /* * caps helpers */ static inline bool __ceph_is_any_real_caps(struct ceph_inode_info *ci) { return !RB_EMPTY_ROOT(&ci->i_caps); } extern int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented); extern int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int t); extern int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *cap); static inline int ceph_caps_issued(struct ceph_inode_info *ci) { int issued; spin_lock(&ci->i_ceph_lock); issued = __ceph_caps_issued(ci, NULL); spin_unlock(&ci->i_ceph_lock); return issued; } static inline int ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int touch) { int r; spin_lock(&ci->i_ceph_lock); r = __ceph_caps_issued_mask(ci, mask, touch); spin_unlock(&ci->i_ceph_lock); return r; } static inline int __ceph_caps_dirty(struct ceph_inode_info *ci) { return ci->i_dirty_caps | ci->i_flushing_caps; } extern struct ceph_cap_flush *ceph_alloc_cap_flush(void); extern void ceph_free_cap_flush(struct ceph_cap_flush *cf); extern int __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask, struct ceph_cap_flush **pcf); extern int __ceph_caps_revoking_other(struct ceph_inode_info *ci, struct ceph_cap *ocap, int mask); extern int ceph_caps_revoking(struct ceph_inode_info *ci, int mask); extern int __ceph_caps_used(struct ceph_inode_info *ci); extern int __ceph_caps_file_wanted(struct ceph_inode_info *ci); /* * wanted, by virtue of open file modes AND cap refs (buffered/cached data) */ static inline int __ceph_caps_wanted(struct ceph_inode_info *ci) { int w = __ceph_caps_file_wanted(ci) | __ceph_caps_used(ci); if (w & CEPH_CAP_FILE_BUFFER) w |= CEPH_CAP_FILE_EXCL; /* we want EXCL if dirty data */ return w; } /* what the mds thinks we want */ extern int __ceph_caps_mds_wanted(struct ceph_inode_info *ci); extern void ceph_caps_init(struct ceph_mds_client *mdsc); extern void ceph_caps_finalize(struct ceph_mds_client *mdsc); extern void ceph_adjust_min_caps(struct ceph_mds_client *mdsc, int delta); extern void ceph_reserve_caps(struct ceph_mds_client *mdsc, struct ceph_cap_reservation *ctx, int need); extern int ceph_unreserve_caps(struct ceph_mds_client *mdsc, struct ceph_cap_reservation *ctx); extern void ceph_reservation_status(struct ceph_fs_client *client, int *total, int *avail, int *used, int *reserved, int *min); /* * we keep buffered readdir results attached to file->private_data */ #define CEPH_F_SYNC 1 #define CEPH_F_ATEND 2 struct ceph_file_info { short fmode; /* initialized on open */ short flags; /* CEPH_F_* */ /* readdir: position within the dir */ u32 frag; struct ceph_mds_request *last_readdir; /* readdir: position within a frag */ unsigned offset; /* offset of last chunk, adjusted for . and .. */ unsigned next_offset; /* offset of next chunk (last_name's + 1) */ char *last_name; /* last entry in previous chunk */ long long dir_release_count; long long dir_ordered_count; int readdir_cache_idx; /* used for -o dirstat read() on directory thing */ char *dir_info; int dir_info_len; }; struct ceph_readdir_cache_control { struct page *page; struct dentry **dentries; int index; }; /* * A "snap realm" describes a subset of the file hierarchy sharing * the same set of snapshots that apply to it. The realms themselves * are organized into a hierarchy, such that children inherit (some of) * the snapshots of their parents. * * All inodes within the realm that have capabilities are linked into a * per-realm list. */ struct ceph_snap_realm { u64 ino; atomic_t nref; struct rb_node node; u64 created, seq; u64 parent_ino; u64 parent_since; /* snapid when our current parent became so */ u64 *prior_parent_snaps; /* snaps inherited from any parents we */ u32 num_prior_parent_snaps; /* had prior to parent_since */ u64 *snaps; /* snaps specific to this realm */ u32 num_snaps; struct ceph_snap_realm *parent; struct list_head children; /* list of child realms */ struct list_head child_item; struct list_head empty_item; /* if i have ref==0 */ struct list_head dirty_item; /* if realm needs new context */ /* the current set of snaps for this realm */ struct ceph_snap_context *cached_context; struct list_head inodes_with_caps; spinlock_t inodes_with_caps_lock; }; static inline int default_congestion_kb(void) { int congestion_kb; /* * Copied from NFS * * congestion size, scale with available memory. * * 64MB: 8192k * 128MB: 11585k * 256MB: 16384k * 512MB: 23170k * 1GB: 32768k * 2GB: 46340k * 4GB: 65536k * 8GB: 92681k * 16GB: 131072k * * This allows larger machines to have larger/more transfers. * Limit the default to 256M */ congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10); if (congestion_kb > 256*1024) congestion_kb = 256*1024; return congestion_kb; } /* snap.c */ extern struct ceph_snap_context *ceph_empty_snapc; struct ceph_snap_realm *ceph_lookup_snap_realm(struct ceph_mds_client *mdsc, u64 ino); extern void ceph_get_snap_realm(struct ceph_mds_client *mdsc, struct ceph_snap_realm *realm); extern void ceph_put_snap_realm(struct ceph_mds_client *mdsc, struct ceph_snap_realm *realm); extern int ceph_update_snap_trace(struct ceph_mds_client *m, void *p, void *e, bool deletion, struct ceph_snap_realm **realm_ret); extern void ceph_handle_snap(struct ceph_mds_client *mdsc, struct ceph_mds_session *session, struct ceph_msg *msg); extern void ceph_queue_cap_snap(struct ceph_inode_info *ci); extern int __ceph_finish_cap_snap(struct ceph_inode_info *ci, struct ceph_cap_snap *capsnap); extern void ceph_cleanup_empty_realms(struct ceph_mds_client *mdsc); extern int ceph_snap_init(void); extern void ceph_snap_exit(void); /* * a cap_snap is "pending" if it is still awaiting an in-progress * sync write (that may/may not still update size, mtime, etc.). */ static inline bool __ceph_have_pending_cap_snap(struct ceph_inode_info *ci) { return !list_empty(&ci->i_cap_snaps) && list_last_entry(&ci->i_cap_snaps, struct ceph_cap_snap, ci_item)->writing; } /* inode.c */ extern const struct inode_operations ceph_file_iops; extern struct inode *ceph_alloc_inode(struct super_block *sb); extern void ceph_destroy_inode(struct inode *inode); extern int ceph_drop_inode(struct inode *inode); extern struct inode *ceph_get_inode(struct super_block *sb, struct ceph_vino vino); extern struct inode *ceph_get_snapdir(struct inode *parent); extern int ceph_fill_file_size(struct inode *inode, int issued, u32 truncate_seq, u64 truncate_size, u64 size); extern void ceph_fill_file_time(struct inode *inode, int issued, u64 time_warp_seq, struct timespec *ctime, struct timespec *mtime, struct timespec *atime); extern int ceph_fill_trace(struct super_block *sb, struct ceph_mds_request *req, struct ceph_mds_session *session); extern int ceph_readdir_prepopulate(struct ceph_mds_request *req, struct ceph_mds_session *session); extern int ceph_inode_holds_cap(struct inode *inode, int mask); extern int ceph_inode_set_size(struct inode *inode, loff_t size); extern void __ceph_do_pending_vmtruncate(struct inode *inode); extern void ceph_queue_vmtruncate(struct inode *inode); extern void ceph_queue_invalidate(struct inode *inode); extern void ceph_queue_writeback(struct inode *inode); extern int __ceph_do_getattr(struct inode *inode, struct page *locked_page, int mask, bool force); static inline int ceph_do_getattr(struct inode *inode, int mask, bool force) { return __ceph_do_getattr(inode, NULL, mask, force); } extern int ceph_permission(struct inode *inode, int mask); extern int ceph_setattr(struct dentry *dentry, struct iattr *attr); extern int ceph_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat); /* xattr.c */ extern int ceph_setxattr(struct dentry *, const char *, const void *, size_t, int); int __ceph_setxattr(struct dentry *, const char *, const void *, size_t, int); ssize_t __ceph_getxattr(struct inode *, const char *, void *, size_t); int __ceph_removexattr(struct dentry *, const char *); extern ssize_t ceph_getxattr(struct dentry *, const char *, void *, size_t); extern ssize_t ceph_listxattr(struct dentry *, char *, size_t); extern int ceph_removexattr(struct dentry *, const char *); extern void __ceph_build_xattrs_blob(struct ceph_inode_info *ci); extern void __ceph_destroy_xattrs(struct ceph_inode_info *ci); extern void __init ceph_xattr_init(void); extern void ceph_xattr_exit(void); extern const struct xattr_handler *ceph_xattr_handlers[]; /* acl.c */ struct ceph_acls_info { void *default_acl; void *acl; struct ceph_pagelist *pagelist; }; #ifdef CONFIG_CEPH_FS_POSIX_ACL struct posix_acl *ceph_get_acl(struct inode *, int); int ceph_set_acl(struct inode *inode, struct posix_acl *acl, int type); int ceph_pre_init_acls(struct inode *dir, umode_t *mode, struct ceph_acls_info *info); void ceph_init_inode_acls(struct inode *inode, struct ceph_acls_info *info); void ceph_release_acls_info(struct ceph_acls_info *info); static inline void ceph_forget_all_cached_acls(struct inode *inode) { forget_all_cached_acls(inode); } #else #define ceph_get_acl NULL #define ceph_set_acl NULL static inline int ceph_pre_init_acls(struct inode *dir, umode_t *mode, struct ceph_acls_info *info) { return 0; } static inline void ceph_init_inode_acls(struct inode *inode, struct ceph_acls_info *info) { } static inline void ceph_release_acls_info(struct ceph_acls_info *info) { } static inline int ceph_acl_chmod(struct dentry *dentry, struct inode *inode) { return 0; } static inline void ceph_forget_all_cached_acls(struct inode *inode) { } #endif /* caps.c */ extern const char *ceph_cap_string(int c); extern void ceph_handle_caps(struct ceph_mds_session *session, struct ceph_msg *msg); extern struct ceph_cap *ceph_get_cap(struct ceph_mds_client *mdsc, struct ceph_cap_reservation *ctx); extern void ceph_add_cap(struct inode *inode, struct ceph_mds_session *session, u64 cap_id, int fmode, unsigned issued, unsigned wanted, unsigned cap, unsigned seq, u64 realmino, int flags, struct ceph_cap **new_cap); extern void __ceph_remove_cap(struct ceph_cap *cap, bool queue_release); extern void ceph_put_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap); extern int ceph_is_any_caps(struct inode *inode); extern void ceph_queue_caps_release(struct inode *inode); extern int ceph_write_inode(struct inode *inode, struct writeback_control *wbc); extern int ceph_fsync(struct file *file, loff_t start, loff_t end, int datasync); extern void ceph_early_kick_flushing_caps(struct ceph_mds_client *mdsc, struct ceph_mds_session *session); extern void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc, struct ceph_mds_session *session); extern struct ceph_cap *ceph_get_cap_for_mds(struct ceph_inode_info *ci, int mds); extern int ceph_get_cap_mds(struct inode *inode); extern void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps); extern void ceph_put_cap_refs(struct ceph_inode_info *ci, int had); extern void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr, struct ceph_snap_context *snapc); extern void __ceph_flush_snaps(struct ceph_inode_info *ci, struct ceph_mds_session **psession, int again); extern void ceph_check_caps(struct ceph_inode_info *ci, int flags, struct ceph_mds_session *session); extern void ceph_check_delayed_caps(struct ceph_mds_client *mdsc); extern void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc); extern int ceph_encode_inode_release(void **p, struct inode *inode, int mds, int drop, int unless, int force); extern int ceph_encode_dentry_release(void **p, struct dentry *dn, int mds, int drop, int unless); extern int ceph_get_caps(struct ceph_inode_info *ci, int need, int want, loff_t endoff, int *got, struct page **pinned_page); /* for counting open files by mode */ static inline void __ceph_get_fmode(struct ceph_inode_info *ci, int mode) { ci->i_nr_by_mode[mode]++; } extern void ceph_put_fmode(struct ceph_inode_info *ci, int mode); /* addr.c */ extern const struct address_space_operations ceph_aops; extern int ceph_mmap(struct file *file, struct vm_area_struct *vma); extern int ceph_uninline_data(struct file *filp, struct page *locked_page); extern int ceph_pool_perm_check(struct ceph_inode_info *ci, int need); extern void ceph_pool_perm_destroy(struct ceph_mds_client* mdsc); /* file.c */ extern const struct file_operations ceph_file_fops; extern int ceph_open(struct inode *inode, struct file *file); extern int ceph_atomic_open(struct inode *dir, struct dentry *dentry, struct file *file, unsigned flags, umode_t mode, int *opened); extern int ceph_release(struct inode *inode, struct file *filp); extern void ceph_fill_inline_data(struct inode *inode, struct page *locked_page, char *data, size_t len); /* dir.c */ extern const struct file_operations ceph_dir_fops; extern const struct file_operations ceph_snapdir_fops; extern const struct inode_operations ceph_dir_iops; extern const struct inode_operations ceph_snapdir_iops; extern const struct dentry_operations ceph_dentry_ops, ceph_snap_dentry_ops, ceph_snapdir_dentry_ops; extern int ceph_handle_notrace_create(struct inode *dir, struct dentry *dentry); extern int ceph_handle_snapdir(struct ceph_mds_request *req, struct dentry *dentry, int err); extern struct dentry *ceph_finish_lookup(struct ceph_mds_request *req, struct dentry *dentry, int err); extern void ceph_dentry_lru_add(struct dentry *dn); extern void ceph_dentry_lru_touch(struct dentry *dn); extern void ceph_dentry_lru_del(struct dentry *dn); extern void ceph_invalidate_dentry_lease(struct dentry *dentry); extern unsigned ceph_dentry_hash(struct inode *dir, struct dentry *dn); extern struct inode *ceph_get_dentry_parent_inode(struct dentry *dentry); extern void ceph_readdir_cache_release(struct ceph_readdir_cache_control *ctl); /* * our d_ops vary depending on whether the inode is live, * snapshotted (read-only), or a virtual ".snap" directory. */ int ceph_init_dentry(struct dentry *dentry); /* ioctl.c */ extern long ceph_ioctl(struct file *file, unsigned int cmd, unsigned long arg); /* export.c */ extern const struct export_operations ceph_export_ops; /* locks.c */ extern __init void ceph_flock_init(void); extern int ceph_lock(struct file *file, int cmd, struct file_lock *fl); extern int ceph_flock(struct file *file, int cmd, struct file_lock *fl); extern void ceph_count_locks(struct inode *inode, int *p_num, int *f_num); extern int ceph_encode_locks_to_buffer(struct inode *inode, struct ceph_filelock *flocks, int num_fcntl_locks, int num_flock_locks); extern int ceph_locks_to_pagelist(struct ceph_filelock *flocks, struct ceph_pagelist *pagelist, int num_fcntl_locks, int num_flock_locks); extern int lock_to_ceph_filelock(struct file_lock *fl, struct ceph_filelock *c); /* debugfs.c */ extern int ceph_fs_debugfs_init(struct ceph_fs_client *client); extern void ceph_fs_debugfs_cleanup(struct ceph_fs_client *client); #endif /* _FS_CEPH_SUPER_H */