/* * fs/dax.c - Direct Access filesystem code * Copyright (c) 2013-2014 Intel Corporation * Author: Matthew Wilcox <matthew.r.wilcox@intel.com> * Author: Ross Zwisler <ross.zwisler@linux.intel.com> * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. */ #include <linux/atomic.h> #include <linux/blkdev.h> #include <linux/buffer_head.h> #include <linux/dax.h> #include <linux/fs.h> #include <linux/genhd.h> #include <linux/highmem.h> #include <linux/memcontrol.h> #include <linux/mm.h> #include <linux/mutex.h> #include <linux/pagevec.h> #include <linux/pmem.h> #include <linux/sched.h> #include <linux/uio.h> #include <linux/vmstat.h> #include <linux/pfn_t.h> #include <linux/sizes.h> /* * We use lowest available bit in exceptional entry for locking, other two * bits to determine entry type. In total 3 special bits. */ #define RADIX_DAX_SHIFT (RADIX_TREE_EXCEPTIONAL_SHIFT + 3) #define RADIX_DAX_PTE (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 1)) #define RADIX_DAX_PMD (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 2)) #define RADIX_DAX_TYPE_MASK (RADIX_DAX_PTE | RADIX_DAX_PMD) #define RADIX_DAX_TYPE(entry) ((unsigned long)entry & RADIX_DAX_TYPE_MASK) #define RADIX_DAX_SECTOR(entry) (((unsigned long)entry >> RADIX_DAX_SHIFT)) #define RADIX_DAX_ENTRY(sector, pmd) ((void *)((unsigned long)sector << \ RADIX_DAX_SHIFT | (pmd ? RADIX_DAX_PMD : RADIX_DAX_PTE) | \ RADIX_TREE_EXCEPTIONAL_ENTRY)) /* We choose 4096 entries - same as per-zone page wait tables */ #define DAX_WAIT_TABLE_BITS 12 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS) wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES]; static int __init init_dax_wait_table(void) { int i; for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++) init_waitqueue_head(wait_table + i); return 0; } fs_initcall(init_dax_wait_table); static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping, pgoff_t index) { unsigned long hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS); return wait_table + hash; } static long dax_map_atomic(struct block_device *bdev, struct blk_dax_ctl *dax) { struct request_queue *q = bdev->bd_queue; long rc = -EIO; dax->addr = (void __pmem *) ERR_PTR(-EIO); if (blk_queue_enter(q, true) != 0) return rc; rc = bdev_direct_access(bdev, dax); if (rc < 0) { dax->addr = (void __pmem *) ERR_PTR(rc); blk_queue_exit(q); return rc; } return rc; } static void dax_unmap_atomic(struct block_device *bdev, const struct blk_dax_ctl *dax) { if (IS_ERR(dax->addr)) return; blk_queue_exit(bdev->bd_queue); } struct page *read_dax_sector(struct block_device *bdev, sector_t n) { struct page *page = alloc_pages(GFP_KERNEL, 0); struct blk_dax_ctl dax = { .size = PAGE_SIZE, .sector = n & ~((((int) PAGE_SIZE) / 512) - 1), }; long rc; if (!page) return ERR_PTR(-ENOMEM); rc = dax_map_atomic(bdev, &dax); if (rc < 0) return ERR_PTR(rc); memcpy_from_pmem(page_address(page), dax.addr, PAGE_SIZE); dax_unmap_atomic(bdev, &dax); return page; } static bool buffer_written(struct buffer_head *bh) { return buffer_mapped(bh) && !buffer_unwritten(bh); } /* * When ext4 encounters a hole, it returns without modifying the buffer_head * which means that we can't trust b_size. To cope with this, we set b_state * to 0 before calling get_block and, if any bit is set, we know we can trust * b_size. Unfortunate, really, since ext4 knows precisely how long a hole is * and would save us time calling get_block repeatedly. */ static bool buffer_size_valid(struct buffer_head *bh) { return bh->b_state != 0; } static sector_t to_sector(const struct buffer_head *bh, const struct inode *inode) { sector_t sector = bh->b_blocknr << (inode->i_blkbits - 9); return sector; } static ssize_t dax_io(struct inode *inode, struct iov_iter *iter, loff_t start, loff_t end, get_block_t get_block, struct buffer_head *bh) { loff_t pos = start, max = start, bh_max = start; bool hole = false, need_wmb = false; struct block_device *bdev = NULL; int rw = iov_iter_rw(iter), rc; long map_len = 0; struct blk_dax_ctl dax = { .addr = (void __pmem *) ERR_PTR(-EIO), }; unsigned blkbits = inode->i_blkbits; sector_t file_blks = (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits; if (rw == READ) end = min(end, i_size_read(inode)); while (pos < end) { size_t len; if (pos == max) { long page = pos >> PAGE_SHIFT; sector_t block = page << (PAGE_SHIFT - blkbits); unsigned first = pos - (block << blkbits); long size; if (pos == bh_max) { bh->b_size = PAGE_ALIGN(end - pos); bh->b_state = 0; rc = get_block(inode, block, bh, rw == WRITE); if (rc) break; if (!buffer_size_valid(bh)) bh->b_size = 1 << blkbits; bh_max = pos - first + bh->b_size; bdev = bh->b_bdev; /* * We allow uninitialized buffers for writes * beyond EOF as those cannot race with faults */ WARN_ON_ONCE( (buffer_new(bh) && block < file_blks) || (rw == WRITE && buffer_unwritten(bh))); } else { unsigned done = bh->b_size - (bh_max - (pos - first)); bh->b_blocknr += done >> blkbits; bh->b_size -= done; } hole = rw == READ && !buffer_written(bh); if (hole) { size = bh->b_size - first; } else { dax_unmap_atomic(bdev, &dax); dax.sector = to_sector(bh, inode); dax.size = bh->b_size; map_len = dax_map_atomic(bdev, &dax); if (map_len < 0) { rc = map_len; break; } dax.addr += first; size = map_len - first; } /* * pos + size is one past the last offset for IO, * so pos + size can overflow loff_t at extreme offsets. * Cast to u64 to catch this and get the true minimum. */ max = min_t(u64, pos + size, end); } if (iov_iter_rw(iter) == WRITE) { len = copy_from_iter_pmem(dax.addr, max - pos, iter); need_wmb = true; } else if (!hole) len = copy_to_iter((void __force *) dax.addr, max - pos, iter); else len = iov_iter_zero(max - pos, iter); if (!len) { rc = -EFAULT; break; } pos += len; if (!IS_ERR(dax.addr)) dax.addr += len; } if (need_wmb) wmb_pmem(); dax_unmap_atomic(bdev, &dax); return (pos == start) ? rc : pos - start; } /** * dax_do_io - Perform I/O to a DAX file * @iocb: The control block for this I/O * @inode: The file which the I/O is directed at * @iter: The addresses to do I/O from or to * @get_block: The filesystem method used to translate file offsets to blocks * @end_io: A filesystem callback for I/O completion * @flags: See below * * This function uses the same locking scheme as do_blockdev_direct_IO: * If @flags has DIO_LOCKING set, we assume that the i_mutex is held by the * caller for writes. For reads, we take and release the i_mutex ourselves. * If DIO_LOCKING is not set, the filesystem takes care of its own locking. * As with do_blockdev_direct_IO(), we increment i_dio_count while the I/O * is in progress. */ ssize_t dax_do_io(struct kiocb *iocb, struct inode *inode, struct iov_iter *iter, get_block_t get_block, dio_iodone_t end_io, int flags) { struct buffer_head bh; ssize_t retval = -EINVAL; loff_t pos = iocb->ki_pos; loff_t end = pos + iov_iter_count(iter); memset(&bh, 0, sizeof(bh)); bh.b_bdev = inode->i_sb->s_bdev; if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ) inode_lock(inode); /* Protects against truncate */ if (!(flags & DIO_SKIP_DIO_COUNT)) inode_dio_begin(inode); retval = dax_io(inode, iter, pos, end, get_block, &bh); if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ) inode_unlock(inode); if (end_io) { int err; err = end_io(iocb, pos, retval, bh.b_private); if (err) retval = err; } if (!(flags & DIO_SKIP_DIO_COUNT)) inode_dio_end(inode); return retval; } EXPORT_SYMBOL_GPL(dax_do_io); /* * DAX radix tree locking */ struct exceptional_entry_key { struct address_space *mapping; unsigned long index; }; struct wait_exceptional_entry_queue { wait_queue_t wait; struct exceptional_entry_key key; }; static int wake_exceptional_entry_func(wait_queue_t *wait, unsigned int mode, int sync, void *keyp) { struct exceptional_entry_key *key = keyp; struct wait_exceptional_entry_queue *ewait = container_of(wait, struct wait_exceptional_entry_queue, wait); if (key->mapping != ewait->key.mapping || key->index != ewait->key.index) return 0; return autoremove_wake_function(wait, mode, sync, NULL); } /* * Check whether the given slot is locked. The function must be called with * mapping->tree_lock held */ static inline int slot_locked(struct address_space *mapping, void **slot) { unsigned long entry = (unsigned long) radix_tree_deref_slot_protected(slot, &mapping->tree_lock); return entry & RADIX_DAX_ENTRY_LOCK; } /* * Mark the given slot is locked. The function must be called with * mapping->tree_lock held */ static inline void *lock_slot(struct address_space *mapping, void **slot) { unsigned long entry = (unsigned long) radix_tree_deref_slot_protected(slot, &mapping->tree_lock); entry |= RADIX_DAX_ENTRY_LOCK; radix_tree_replace_slot(slot, (void *)entry); return (void *)entry; } /* * Mark the given slot is unlocked. The function must be called with * mapping->tree_lock held */ static inline void *unlock_slot(struct address_space *mapping, void **slot) { unsigned long entry = (unsigned long) radix_tree_deref_slot_protected(slot, &mapping->tree_lock); entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK; radix_tree_replace_slot(slot, (void *)entry); return (void *)entry; } /* * Lookup entry in radix tree, wait for it to become unlocked if it is * exceptional entry and return it. The caller must call * put_unlocked_mapping_entry() when he decided not to lock the entry or * put_locked_mapping_entry() when he locked the entry and now wants to * unlock it. * * The function must be called with mapping->tree_lock held. */ static void *get_unlocked_mapping_entry(struct address_space *mapping, pgoff_t index, void ***slotp) { void *ret, **slot; struct wait_exceptional_entry_queue ewait; wait_queue_head_t *wq = dax_entry_waitqueue(mapping, index); init_wait(&ewait.wait); ewait.wait.func = wake_exceptional_entry_func; ewait.key.mapping = mapping; ewait.key.index = index; for (;;) { ret = __radix_tree_lookup(&mapping->page_tree, index, NULL, &slot); if (!ret || !radix_tree_exceptional_entry(ret) || !slot_locked(mapping, slot)) { if (slotp) *slotp = slot; return ret; } prepare_to_wait_exclusive(wq, &ewait.wait, TASK_UNINTERRUPTIBLE); spin_unlock_irq(&mapping->tree_lock); schedule(); finish_wait(wq, &ewait.wait); spin_lock_irq(&mapping->tree_lock); } } /* * Find radix tree entry at given index. If it points to a page, return with * the page locked. If it points to the exceptional entry, return with the * radix tree entry locked. If the radix tree doesn't contain given index, * create empty exceptional entry for the index and return with it locked. * * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For * persistent memory the benefit is doubtful. We can add that later if we can * show it helps. */ static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index) { void *ret, **slot; restart: spin_lock_irq(&mapping->tree_lock); ret = get_unlocked_mapping_entry(mapping, index, &slot); /* No entry for given index? Make sure radix tree is big enough. */ if (!ret) { int err; spin_unlock_irq(&mapping->tree_lock); err = radix_tree_preload( mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM); if (err) return ERR_PTR(err); ret = (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY | RADIX_DAX_ENTRY_LOCK); spin_lock_irq(&mapping->tree_lock); err = radix_tree_insert(&mapping->page_tree, index, ret); radix_tree_preload_end(); if (err) { spin_unlock_irq(&mapping->tree_lock); /* Someone already created the entry? */ if (err == -EEXIST) goto restart; return ERR_PTR(err); } /* Good, we have inserted empty locked entry into the tree. */ mapping->nrexceptional++; spin_unlock_irq(&mapping->tree_lock); return ret; } /* Normal page in radix tree? */ if (!radix_tree_exceptional_entry(ret)) { struct page *page = ret; get_page(page); spin_unlock_irq(&mapping->tree_lock); lock_page(page); /* Page got truncated? Retry... */ if (unlikely(page->mapping != mapping)) { unlock_page(page); put_page(page); goto restart; } return page; } ret = lock_slot(mapping, slot); spin_unlock_irq(&mapping->tree_lock); return ret; } void dax_wake_mapping_entry_waiter(struct address_space *mapping, pgoff_t index, bool wake_all) { wait_queue_head_t *wq = dax_entry_waitqueue(mapping, index); /* * Checking for locked entry and prepare_to_wait_exclusive() happens * under mapping->tree_lock, ditto for entry handling in our callers. * So at this point all tasks that could have seen our entry locked * must be in the waitqueue and the following check will see them. */ if (waitqueue_active(wq)) { struct exceptional_entry_key key; key.mapping = mapping; key.index = index; __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key); } } void dax_unlock_mapping_entry(struct address_space *mapping, pgoff_t index) { void *ret, **slot; spin_lock_irq(&mapping->tree_lock); ret = __radix_tree_lookup(&mapping->page_tree, index, NULL, &slot); if (WARN_ON_ONCE(!ret || !radix_tree_exceptional_entry(ret) || !slot_locked(mapping, slot))) { spin_unlock_irq(&mapping->tree_lock); return; } unlock_slot(mapping, slot); spin_unlock_irq(&mapping->tree_lock); dax_wake_mapping_entry_waiter(mapping, index, false); } static void put_locked_mapping_entry(struct address_space *mapping, pgoff_t index, void *entry) { if (!radix_tree_exceptional_entry(entry)) { unlock_page(entry); put_page(entry); } else { dax_unlock_mapping_entry(mapping, index); } } /* * Called when we are done with radix tree entry we looked up via * get_unlocked_mapping_entry() and which we didn't lock in the end. */ static void put_unlocked_mapping_entry(struct address_space *mapping, pgoff_t index, void *entry) { if (!radix_tree_exceptional_entry(entry)) return; /* We have to wake up next waiter for the radix tree entry lock */ dax_wake_mapping_entry_waiter(mapping, index, false); } /* * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree * entry to get unlocked before deleting it. */ int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index) { void *entry; spin_lock_irq(&mapping->tree_lock); entry = get_unlocked_mapping_entry(mapping, index, NULL); /* * This gets called from truncate / punch_hole path. As such, the caller * must hold locks protecting against concurrent modifications of the * radix tree (usually fs-private i_mmap_sem for writing). Since the * caller has seen exceptional entry for this index, we better find it * at that index as well... */ if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry))) { spin_unlock_irq(&mapping->tree_lock); return 0; } radix_tree_delete(&mapping->page_tree, index); mapping->nrexceptional--; spin_unlock_irq(&mapping->tree_lock); dax_wake_mapping_entry_waiter(mapping, index, true); return 1; } /* * The user has performed a load from a hole in the file. Allocating * a new page in the file would cause excessive storage usage for * workloads with sparse files. We allocate a page cache page instead. * We'll kick it out of the page cache if it's ever written to, * otherwise it will simply fall out of the page cache under memory * pressure without ever having been dirtied. */ static int dax_load_hole(struct address_space *mapping, void *entry, struct vm_fault *vmf) { struct page *page; /* Hole page already exists? Return it... */ if (!radix_tree_exceptional_entry(entry)) { vmf->page = entry; return VM_FAULT_LOCKED; } /* This will replace locked radix tree entry with a hole page */ page = find_or_create_page(mapping, vmf->pgoff, vmf->gfp_mask | __GFP_ZERO); if (!page) { put_locked_mapping_entry(mapping, vmf->pgoff, entry); return VM_FAULT_OOM; } vmf->page = page; return VM_FAULT_LOCKED; } static int copy_user_bh(struct page *to, struct inode *inode, struct buffer_head *bh, unsigned long vaddr) { struct blk_dax_ctl dax = { .sector = to_sector(bh, inode), .size = bh->b_size, }; struct block_device *bdev = bh->b_bdev; void *vto; if (dax_map_atomic(bdev, &dax) < 0) return PTR_ERR(dax.addr); vto = kmap_atomic(to); copy_user_page(vto, (void __force *)dax.addr, vaddr, to); kunmap_atomic(vto); dax_unmap_atomic(bdev, &dax); return 0; } #define DAX_PMD_INDEX(page_index) (page_index & (PMD_MASK >> PAGE_SHIFT)) static void *dax_insert_mapping_entry(struct address_space *mapping, struct vm_fault *vmf, void *entry, sector_t sector) { struct radix_tree_root *page_tree = &mapping->page_tree; int error = 0; bool hole_fill = false; void *new_entry; pgoff_t index = vmf->pgoff; if (vmf->flags & FAULT_FLAG_WRITE) __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); /* Replacing hole page with block mapping? */ if (!radix_tree_exceptional_entry(entry)) { hole_fill = true; /* * Unmap the page now before we remove it from page cache below. * The page is locked so it cannot be faulted in again. */ unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT, PAGE_SIZE, 0); error = radix_tree_preload(vmf->gfp_mask & ~__GFP_HIGHMEM); if (error) return ERR_PTR(error); } spin_lock_irq(&mapping->tree_lock); new_entry = (void *)((unsigned long)RADIX_DAX_ENTRY(sector, false) | RADIX_DAX_ENTRY_LOCK); if (hole_fill) { __delete_from_page_cache(entry, NULL); /* Drop pagecache reference */ put_page(entry); error = radix_tree_insert(page_tree, index, new_entry); if (error) { new_entry = ERR_PTR(error); goto unlock; } mapping->nrexceptional++; } else { void **slot; void *ret; ret = __radix_tree_lookup(page_tree, index, NULL, &slot); WARN_ON_ONCE(ret != entry); radix_tree_replace_slot(slot, new_entry); } if (vmf->flags & FAULT_FLAG_WRITE) radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY); unlock: spin_unlock_irq(&mapping->tree_lock); if (hole_fill) { radix_tree_preload_end(); /* * We don't need hole page anymore, it has been replaced with * locked radix tree entry now. */ if (mapping->a_ops->freepage) mapping->a_ops->freepage(entry); unlock_page(entry); put_page(entry); } return new_entry; } static int dax_writeback_one(struct block_device *bdev, struct address_space *mapping, pgoff_t index, void *entry) { struct radix_tree_root *page_tree = &mapping->page_tree; int type = RADIX_DAX_TYPE(entry); struct radix_tree_node *node; struct blk_dax_ctl dax; void **slot; int ret = 0; spin_lock_irq(&mapping->tree_lock); /* * Regular page slots are stabilized by the page lock even * without the tree itself locked. These unlocked entries * need verification under the tree lock. */ if (!__radix_tree_lookup(page_tree, index, &node, &slot)) goto unlock; if (*slot != entry) goto unlock; /* another fsync thread may have already written back this entry */ if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE)) goto unlock; if (WARN_ON_ONCE(type != RADIX_DAX_PTE && type != RADIX_DAX_PMD)) { ret = -EIO; goto unlock; } dax.sector = RADIX_DAX_SECTOR(entry); dax.size = (type == RADIX_DAX_PMD ? PMD_SIZE : PAGE_SIZE); spin_unlock_irq(&mapping->tree_lock); /* * We cannot hold tree_lock while calling dax_map_atomic() because it * eventually calls cond_resched(). */ ret = dax_map_atomic(bdev, &dax); if (ret < 0) return ret; if (WARN_ON_ONCE(ret < dax.size)) { ret = -EIO; goto unmap; } wb_cache_pmem(dax.addr, dax.size); spin_lock_irq(&mapping->tree_lock); radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE); spin_unlock_irq(&mapping->tree_lock); unmap: dax_unmap_atomic(bdev, &dax); return ret; unlock: spin_unlock_irq(&mapping->tree_lock); return ret; } /* * Flush the mapping to the persistent domain within the byte range of [start, * end]. This is required by data integrity operations to ensure file data is * on persistent storage prior to completion of the operation. */ int dax_writeback_mapping_range(struct address_space *mapping, struct block_device *bdev, struct writeback_control *wbc) { struct inode *inode = mapping->host; pgoff_t start_index, end_index, pmd_index; pgoff_t indices[PAGEVEC_SIZE]; struct pagevec pvec; bool done = false; int i, ret = 0; void *entry; if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT)) return -EIO; if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL) return 0; start_index = wbc->range_start >> PAGE_SHIFT; end_index = wbc->range_end >> PAGE_SHIFT; pmd_index = DAX_PMD_INDEX(start_index); rcu_read_lock(); entry = radix_tree_lookup(&mapping->page_tree, pmd_index); rcu_read_unlock(); /* see if the start of our range is covered by a PMD entry */ if (entry && RADIX_DAX_TYPE(entry) == RADIX_DAX_PMD) start_index = pmd_index; tag_pages_for_writeback(mapping, start_index, end_index); pagevec_init(&pvec, 0); while (!done) { pvec.nr = find_get_entries_tag(mapping, start_index, PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE, pvec.pages, indices); if (pvec.nr == 0) break; for (i = 0; i < pvec.nr; i++) { if (indices[i] > end_index) { done = true; break; } ret = dax_writeback_one(bdev, mapping, indices[i], pvec.pages[i]); if (ret < 0) return ret; } } wmb_pmem(); return 0; } EXPORT_SYMBOL_GPL(dax_writeback_mapping_range); static int dax_insert_mapping(struct address_space *mapping, struct buffer_head *bh, void **entryp, struct vm_area_struct *vma, struct vm_fault *vmf) { unsigned long vaddr = (unsigned long)vmf->virtual_address; struct block_device *bdev = bh->b_bdev; struct blk_dax_ctl dax = { .sector = to_sector(bh, mapping->host), .size = bh->b_size, }; void *ret; void *entry = *entryp; if (dax_map_atomic(bdev, &dax) < 0) return PTR_ERR(dax.addr); dax_unmap_atomic(bdev, &dax); ret = dax_insert_mapping_entry(mapping, vmf, entry, dax.sector); if (IS_ERR(ret)) return PTR_ERR(ret); *entryp = ret; return vm_insert_mixed(vma, vaddr, dax.pfn); } /** * __dax_fault - handle a page fault on a DAX file * @vma: The virtual memory area where the fault occurred * @vmf: The description of the fault * @get_block: The filesystem method used to translate file offsets to blocks * * When a page fault occurs, filesystems may call this helper in their * fault handler for DAX files. __dax_fault() assumes the caller has done all * the necessary locking for the page fault to proceed successfully. */ int __dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf, get_block_t get_block) { struct file *file = vma->vm_file; struct address_space *mapping = file->f_mapping; struct inode *inode = mapping->host; void *entry; struct buffer_head bh; unsigned long vaddr = (unsigned long)vmf->virtual_address; unsigned blkbits = inode->i_blkbits; sector_t block; pgoff_t size; int error; int major = 0; /* * Check whether offset isn't beyond end of file now. Caller is supposed * to hold locks serializing us with truncate / punch hole so this is * a reliable test. */ size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT; if (vmf->pgoff >= size) return VM_FAULT_SIGBUS; memset(&bh, 0, sizeof(bh)); block = (sector_t)vmf->pgoff << (PAGE_SHIFT - blkbits); bh.b_bdev = inode->i_sb->s_bdev; bh.b_size = PAGE_SIZE; entry = grab_mapping_entry(mapping, vmf->pgoff); if (IS_ERR(entry)) { error = PTR_ERR(entry); goto out; } error = get_block(inode, block, &bh, 0); if (!error && (bh.b_size < PAGE_SIZE)) error = -EIO; /* fs corruption? */ if (error) goto unlock_entry; if (vmf->cow_page) { struct page *new_page = vmf->cow_page; if (buffer_written(&bh)) error = copy_user_bh(new_page, inode, &bh, vaddr); else clear_user_highpage(new_page, vaddr); if (error) goto unlock_entry; if (!radix_tree_exceptional_entry(entry)) { vmf->page = entry; return VM_FAULT_LOCKED; } vmf->entry = entry; return VM_FAULT_DAX_LOCKED; } if (!buffer_mapped(&bh)) { if (vmf->flags & FAULT_FLAG_WRITE) { error = get_block(inode, block, &bh, 1); count_vm_event(PGMAJFAULT); mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); major = VM_FAULT_MAJOR; if (!error && (bh.b_size < PAGE_SIZE)) error = -EIO; if (error) goto unlock_entry; } else { return dax_load_hole(mapping, entry, vmf); } } /* Filesystem should not return unwritten buffers to us! */ WARN_ON_ONCE(buffer_unwritten(&bh) || buffer_new(&bh)); error = dax_insert_mapping(mapping, &bh, &entry, vma, vmf); unlock_entry: put_locked_mapping_entry(mapping, vmf->pgoff, entry); out: if (error == -ENOMEM) return VM_FAULT_OOM | major; /* -EBUSY is fine, somebody else faulted on the same PTE */ if ((error < 0) && (error != -EBUSY)) return VM_FAULT_SIGBUS | major; return VM_FAULT_NOPAGE | major; } EXPORT_SYMBOL(__dax_fault); /** * dax_fault - handle a page fault on a DAX file * @vma: The virtual memory area where the fault occurred * @vmf: The description of the fault * @get_block: The filesystem method used to translate file offsets to blocks * * When a page fault occurs, filesystems may call this helper in their * fault handler for DAX files. */ int dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf, get_block_t get_block) { int result; struct super_block *sb = file_inode(vma->vm_file)->i_sb; if (vmf->flags & FAULT_FLAG_WRITE) { sb_start_pagefault(sb); file_update_time(vma->vm_file); } result = __dax_fault(vma, vmf, get_block); if (vmf->flags & FAULT_FLAG_WRITE) sb_end_pagefault(sb); return result; } EXPORT_SYMBOL_GPL(dax_fault); #if defined(CONFIG_TRANSPARENT_HUGEPAGE) /* * The 'colour' (ie low bits) within a PMD of a page offset. This comes up * more often than one might expect in the below function. */ #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1) static void __dax_dbg(struct buffer_head *bh, unsigned long address, const char *reason, const char *fn) { if (bh) { char bname[BDEVNAME_SIZE]; bdevname(bh->b_bdev, bname); pr_debug("%s: %s addr: %lx dev %s state %lx start %lld " "length %zd fallback: %s\n", fn, current->comm, address, bname, bh->b_state, (u64)bh->b_blocknr, bh->b_size, reason); } else { pr_debug("%s: %s addr: %lx fallback: %s\n", fn, current->comm, address, reason); } } #define dax_pmd_dbg(bh, address, reason) __dax_dbg(bh, address, reason, "dax_pmd") int __dax_pmd_fault(struct vm_area_struct *vma, unsigned long address, pmd_t *pmd, unsigned int flags, get_block_t get_block) { struct file *file = vma->vm_file; struct address_space *mapping = file->f_mapping; struct inode *inode = mapping->host; struct buffer_head bh; unsigned blkbits = inode->i_blkbits; unsigned long pmd_addr = address & PMD_MASK; bool write = flags & FAULT_FLAG_WRITE; struct block_device *bdev; pgoff_t size, pgoff; sector_t block; int result = 0; bool alloc = false; /* dax pmd mappings require pfn_t_devmap() */ if (!IS_ENABLED(CONFIG_FS_DAX_PMD)) return VM_FAULT_FALLBACK; /* Fall back to PTEs if we're going to COW */ if (write && !(vma->vm_flags & VM_SHARED)) { split_huge_pmd(vma, pmd, address); dax_pmd_dbg(NULL, address, "cow write"); return VM_FAULT_FALLBACK; } /* If the PMD would extend outside the VMA */ if (pmd_addr < vma->vm_start) { dax_pmd_dbg(NULL, address, "vma start unaligned"); return VM_FAULT_FALLBACK; } if ((pmd_addr + PMD_SIZE) > vma->vm_end) { dax_pmd_dbg(NULL, address, "vma end unaligned"); return VM_FAULT_FALLBACK; } pgoff = linear_page_index(vma, pmd_addr); size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT; if (pgoff >= size) return VM_FAULT_SIGBUS; /* If the PMD would cover blocks out of the file */ if ((pgoff | PG_PMD_COLOUR) >= size) { dax_pmd_dbg(NULL, address, "offset + huge page size > file size"); return VM_FAULT_FALLBACK; } memset(&bh, 0, sizeof(bh)); bh.b_bdev = inode->i_sb->s_bdev; block = (sector_t)pgoff << (PAGE_SHIFT - blkbits); bh.b_size = PMD_SIZE; if (get_block(inode, block, &bh, 0) != 0) return VM_FAULT_SIGBUS; if (!buffer_mapped(&bh) && write) { if (get_block(inode, block, &bh, 1) != 0) return VM_FAULT_SIGBUS; alloc = true; WARN_ON_ONCE(buffer_unwritten(&bh) || buffer_new(&bh)); } bdev = bh.b_bdev; /* * If the filesystem isn't willing to tell us the length of a hole, * just fall back to PTEs. Calling get_block 512 times in a loop * would be silly. */ if (!buffer_size_valid(&bh) || bh.b_size < PMD_SIZE) { dax_pmd_dbg(&bh, address, "allocated block too small"); return VM_FAULT_FALLBACK; } /* * If we allocated new storage, make sure no process has any * zero pages covering this hole */ if (alloc) { loff_t lstart = pgoff << PAGE_SHIFT; loff_t lend = lstart + PMD_SIZE - 1; /* inclusive */ truncate_pagecache_range(inode, lstart, lend); } if (!write && !buffer_mapped(&bh)) { spinlock_t *ptl; pmd_t entry; struct page *zero_page = get_huge_zero_page(); if (unlikely(!zero_page)) { dax_pmd_dbg(&bh, address, "no zero page"); goto fallback; } ptl = pmd_lock(vma->vm_mm, pmd); if (!pmd_none(*pmd)) { spin_unlock(ptl); dax_pmd_dbg(&bh, address, "pmd already present"); goto fallback; } dev_dbg(part_to_dev(bdev->bd_part), "%s: %s addr: %lx pfn: <zero> sect: %llx\n", __func__, current->comm, address, (unsigned long long) to_sector(&bh, inode)); entry = mk_pmd(zero_page, vma->vm_page_prot); entry = pmd_mkhuge(entry); set_pmd_at(vma->vm_mm, pmd_addr, pmd, entry); result = VM_FAULT_NOPAGE; spin_unlock(ptl); } else { struct blk_dax_ctl dax = { .sector = to_sector(&bh, inode), .size = PMD_SIZE, }; long length = dax_map_atomic(bdev, &dax); if (length < 0) { dax_pmd_dbg(&bh, address, "dax-error fallback"); goto fallback; } if (length < PMD_SIZE) { dax_pmd_dbg(&bh, address, "dax-length too small"); dax_unmap_atomic(bdev, &dax); goto fallback; } if (pfn_t_to_pfn(dax.pfn) & PG_PMD_COLOUR) { dax_pmd_dbg(&bh, address, "pfn unaligned"); dax_unmap_atomic(bdev, &dax); goto fallback; } if (!pfn_t_devmap(dax.pfn)) { dax_unmap_atomic(bdev, &dax); dax_pmd_dbg(&bh, address, "pfn not in memmap"); goto fallback; } dax_unmap_atomic(bdev, &dax); /* * For PTE faults we insert a radix tree entry for reads, and * leave it clean. Then on the first write we dirty the radix * tree entry via the dax_pfn_mkwrite() path. This sequence * allows the dax_pfn_mkwrite() call to be simpler and avoid a * call into get_block() to translate the pgoff to a sector in * order to be able to create a new radix tree entry. * * The PMD path doesn't have an equivalent to * dax_pfn_mkwrite(), though, so for a read followed by a * write we traverse all the way through __dax_pmd_fault() * twice. This means we can just skip inserting a radix tree * entry completely on the initial read and just wait until * the write to insert a dirty entry. */ if (write) { /* * We should insert radix-tree entry and dirty it here. * For now this is broken... */ } dev_dbg(part_to_dev(bdev->bd_part), "%s: %s addr: %lx pfn: %lx sect: %llx\n", __func__, current->comm, address, pfn_t_to_pfn(dax.pfn), (unsigned long long) dax.sector); result |= vmf_insert_pfn_pmd(vma, address, pmd, dax.pfn, write); } out: return result; fallback: count_vm_event(THP_FAULT_FALLBACK); result = VM_FAULT_FALLBACK; goto out; } EXPORT_SYMBOL_GPL(__dax_pmd_fault); /** * dax_pmd_fault - handle a PMD fault on a DAX file * @vma: The virtual memory area where the fault occurred * @vmf: The description of the fault * @get_block: The filesystem method used to translate file offsets to blocks * * When a page fault occurs, filesystems may call this helper in their * pmd_fault handler for DAX files. */ int dax_pmd_fault(struct vm_area_struct *vma, unsigned long address, pmd_t *pmd, unsigned int flags, get_block_t get_block) { int result; struct super_block *sb = file_inode(vma->vm_file)->i_sb; if (flags & FAULT_FLAG_WRITE) { sb_start_pagefault(sb); file_update_time(vma->vm_file); } result = __dax_pmd_fault(vma, address, pmd, flags, get_block); if (flags & FAULT_FLAG_WRITE) sb_end_pagefault(sb); return result; } EXPORT_SYMBOL_GPL(dax_pmd_fault); #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ /** * dax_pfn_mkwrite - handle first write to DAX page * @vma: The virtual memory area where the fault occurred * @vmf: The description of the fault */ int dax_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) { struct file *file = vma->vm_file; struct address_space *mapping = file->f_mapping; void *entry; pgoff_t index = vmf->pgoff; spin_lock_irq(&mapping->tree_lock); entry = get_unlocked_mapping_entry(mapping, index, NULL); if (!entry || !radix_tree_exceptional_entry(entry)) goto out; radix_tree_tag_set(&mapping->page_tree, index, PAGECACHE_TAG_DIRTY); put_unlocked_mapping_entry(mapping, index, entry); out: spin_unlock_irq(&mapping->tree_lock); return VM_FAULT_NOPAGE; } EXPORT_SYMBOL_GPL(dax_pfn_mkwrite); static bool dax_range_is_aligned(struct block_device *bdev, unsigned int offset, unsigned int length) { unsigned short sector_size = bdev_logical_block_size(bdev); if (!IS_ALIGNED(offset, sector_size)) return false; if (!IS_ALIGNED(length, sector_size)) return false; return true; } int __dax_zero_page_range(struct block_device *bdev, sector_t sector, unsigned int offset, unsigned int length) { struct blk_dax_ctl dax = { .sector = sector, .size = PAGE_SIZE, }; if (dax_range_is_aligned(bdev, offset, length)) { sector_t start_sector = dax.sector + (offset >> 9); return blkdev_issue_zeroout(bdev, start_sector, length >> 9, GFP_NOFS, true); } else { if (dax_map_atomic(bdev, &dax) < 0) return PTR_ERR(dax.addr); clear_pmem(dax.addr + offset, length); wmb_pmem(); dax_unmap_atomic(bdev, &dax); } return 0; } EXPORT_SYMBOL_GPL(__dax_zero_page_range); /** * dax_zero_page_range - zero a range within a page of a DAX file * @inode: The file being truncated * @from: The file offset that is being truncated to * @length: The number of bytes to zero * @get_block: The filesystem method used to translate file offsets to blocks * * This function can be called by a filesystem when it is zeroing part of a * page in a DAX file. This is intended for hole-punch operations. If * you are truncating a file, the helper function dax_truncate_page() may be * more convenient. */ int dax_zero_page_range(struct inode *inode, loff_t from, unsigned length, get_block_t get_block) { struct buffer_head bh; pgoff_t index = from >> PAGE_SHIFT; unsigned offset = from & (PAGE_SIZE-1); int err; /* Block boundary? Nothing to do */ if (!length) return 0; BUG_ON((offset + length) > PAGE_SIZE); memset(&bh, 0, sizeof(bh)); bh.b_bdev = inode->i_sb->s_bdev; bh.b_size = PAGE_SIZE; err = get_block(inode, index, &bh, 0); if (err < 0 || !buffer_written(&bh)) return err; return __dax_zero_page_range(bh.b_bdev, to_sector(&bh, inode), offset, length); } EXPORT_SYMBOL_GPL(dax_zero_page_range); /** * dax_truncate_page - handle a partial page being truncated in a DAX file * @inode: The file being truncated * @from: The file offset that is being truncated to * @get_block: The filesystem method used to translate file offsets to blocks * * Similar to block_truncate_page(), this function can be called by a * filesystem when it is truncating a DAX file to handle the partial page. */ int dax_truncate_page(struct inode *inode, loff_t from, get_block_t get_block) { unsigned length = PAGE_ALIGN(from) - from; return dax_zero_page_range(inode, from, length, get_block); } EXPORT_SYMBOL_GPL(dax_truncate_page);