/* * fs/dcache.c * * Complete reimplementation * (C) 1997 Thomas Schoebel-Theuer, * with heavy changes by Linus Torvalds */ /* * Notes on the allocation strategy: * * The dcache is a master of the icache - whenever a dcache entry * exists, the inode will always exist. "iput()" is done either when * the dcache entry is deleted or garbage collected. */ #include <linux/syscalls.h> #include <linux/string.h> #include <linux/mm.h> #include <linux/fs.h> #include <linux/fsnotify.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/hash.h> #include <linux/cache.h> #include <linux/export.h> #include <linux/mount.h> #include <linux/file.h> #include <asm/uaccess.h> #include <linux/security.h> #include <linux/seqlock.h> #include <linux/swap.h> #include <linux/bootmem.h> #include <linux/fs_struct.h> #include <linux/hardirq.h> #include <linux/bit_spinlock.h> #include <linux/rculist_bl.h> #include <linux/prefetch.h> #include <linux/ratelimit.h> #include <linux/list_lru.h> #include <linux/kasan.h> #include "internal.h" #include "mount.h" /* * Usage: * dcache->d_inode->i_lock protects: * - i_dentry, d_u.d_alias, d_inode of aliases * dcache_hash_bucket lock protects: * - the dcache hash table * s_anon bl list spinlock protects: * - the s_anon list (see __d_drop) * dentry->d_sb->s_dentry_lru_lock protects: * - the dcache lru lists and counters * d_lock protects: * - d_flags * - d_name * - d_lru * - d_count * - d_unhashed() * - d_parent and d_subdirs * - childrens' d_child and d_parent * - d_u.d_alias, d_inode * * Ordering: * dentry->d_inode->i_lock * dentry->d_lock * dentry->d_sb->s_dentry_lru_lock * dcache_hash_bucket lock * s_anon lock * * If there is an ancestor relationship: * dentry->d_parent->...->d_parent->d_lock * ... * dentry->d_parent->d_lock * dentry->d_lock * * If no ancestor relationship: * if (dentry1 < dentry2) * dentry1->d_lock * dentry2->d_lock */ int sysctl_vfs_cache_pressure __read_mostly = 100; EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); EXPORT_SYMBOL(rename_lock); static struct kmem_cache *dentry_cache __read_mostly; /* * This is the single most critical data structure when it comes * to the dcache: the hashtable for lookups. Somebody should try * to make this good - I've just made it work. * * This hash-function tries to avoid losing too many bits of hash * information, yet avoid using a prime hash-size or similar. */ static unsigned int d_hash_mask __read_mostly; static unsigned int d_hash_shift __read_mostly; static struct hlist_bl_head *dentry_hashtable __read_mostly; static inline struct hlist_bl_head *d_hash(const struct dentry *parent, unsigned int hash) { hash += (unsigned long) parent / L1_CACHE_BYTES; return dentry_hashtable + hash_32(hash, d_hash_shift); } /* Statistics gathering. */ struct dentry_stat_t dentry_stat = { .age_limit = 45, }; static DEFINE_PER_CPU(long, nr_dentry); static DEFINE_PER_CPU(long, nr_dentry_unused); #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) /* * Here we resort to our own counters instead of using generic per-cpu counters * for consistency with what the vfs inode code does. We are expected to harvest * better code and performance by having our own specialized counters. * * Please note that the loop is done over all possible CPUs, not over all online * CPUs. The reason for this is that we don't want to play games with CPUs going * on and off. If one of them goes off, we will just keep their counters. * * glommer: See cffbc8a for details, and if you ever intend to change this, * please update all vfs counters to match. */ static long get_nr_dentry(void) { int i; long sum = 0; for_each_possible_cpu(i) sum += per_cpu(nr_dentry, i); return sum < 0 ? 0 : sum; } static long get_nr_dentry_unused(void) { int i; long sum = 0; for_each_possible_cpu(i) sum += per_cpu(nr_dentry_unused, i); return sum < 0 ? 0 : sum; } int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer, size_t *lenp, loff_t *ppos) { dentry_stat.nr_dentry = get_nr_dentry(); dentry_stat.nr_unused = get_nr_dentry_unused(); return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); } #endif /* * Compare 2 name strings, return 0 if they match, otherwise non-zero. * The strings are both count bytes long, and count is non-zero. */ #ifdef CONFIG_DCACHE_WORD_ACCESS #include <asm/word-at-a-time.h> /* * NOTE! 'cs' and 'scount' come from a dentry, so it has a * aligned allocation for this particular component. We don't * strictly need the load_unaligned_zeropad() safety, but it * doesn't hurt either. * * In contrast, 'ct' and 'tcount' can be from a pathname, and do * need the careful unaligned handling. */ static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) { unsigned long a,b,mask; for (;;) { a = *(unsigned long *)cs; b = load_unaligned_zeropad(ct); if (tcount < sizeof(unsigned long)) break; if (unlikely(a != b)) return 1; cs += sizeof(unsigned long); ct += sizeof(unsigned long); tcount -= sizeof(unsigned long); if (!tcount) return 0; } mask = bytemask_from_count(tcount); return unlikely(!!((a ^ b) & mask)); } #else static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) { do { if (*cs != *ct) return 1; cs++; ct++; tcount--; } while (tcount); return 0; } #endif static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount) { const unsigned char *cs; /* * Be careful about RCU walk racing with rename: * use ACCESS_ONCE to fetch the name pointer. * * NOTE! Even if a rename will mean that the length * was not loaded atomically, we don't care. The * RCU walk will check the sequence count eventually, * and catch it. And we won't overrun the buffer, * because we're reading the name pointer atomically, * and a dentry name is guaranteed to be properly * terminated with a NUL byte. * * End result: even if 'len' is wrong, we'll exit * early because the data cannot match (there can * be no NUL in the ct/tcount data) */ cs = ACCESS_ONCE(dentry->d_name.name); smp_read_barrier_depends(); return dentry_string_cmp(cs, ct, tcount); } struct external_name { union { atomic_t count; struct rcu_head head; } u; unsigned char name[]; }; static inline struct external_name *external_name(struct dentry *dentry) { return container_of(dentry->d_name.name, struct external_name, name[0]); } static void __d_free(struct rcu_head *head) { struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); kmem_cache_free(dentry_cache, dentry); } static void __d_free_external(struct rcu_head *head) { struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); kfree(external_name(dentry)); kmem_cache_free(dentry_cache, dentry); } static inline int dname_external(const struct dentry *dentry) { return dentry->d_name.name != dentry->d_iname; } static inline void __d_set_inode_and_type(struct dentry *dentry, struct inode *inode, unsigned type_flags) { unsigned flags; dentry->d_inode = inode; flags = READ_ONCE(dentry->d_flags); flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); flags |= type_flags; WRITE_ONCE(dentry->d_flags, flags); } static inline void __d_clear_type_and_inode(struct dentry *dentry) { unsigned flags = READ_ONCE(dentry->d_flags); flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); WRITE_ONCE(dentry->d_flags, flags); dentry->d_inode = NULL; } static void dentry_free(struct dentry *dentry) { WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias)); if (unlikely(dname_external(dentry))) { struct external_name *p = external_name(dentry); if (likely(atomic_dec_and_test(&p->u.count))) { call_rcu(&dentry->d_u.d_rcu, __d_free_external); return; } } /* if dentry was never visible to RCU, immediate free is OK */ if (!(dentry->d_flags & DCACHE_RCUACCESS)) __d_free(&dentry->d_u.d_rcu); else call_rcu(&dentry->d_u.d_rcu, __d_free); } /** * dentry_rcuwalk_invalidate - invalidate in-progress rcu-walk lookups * @dentry: the target dentry * After this call, in-progress rcu-walk path lookup will fail. This * should be called after unhashing, and after changing d_inode (if * the dentry has not already been unhashed). */ static inline void dentry_rcuwalk_invalidate(struct dentry *dentry) { lockdep_assert_held(&dentry->d_lock); /* Go through am invalidation barrier */ write_seqcount_invalidate(&dentry->d_seq); } /* * Release the dentry's inode, using the filesystem * d_iput() operation if defined. Dentry has no refcount * and is unhashed. */ static void dentry_iput(struct dentry * dentry) __releases(dentry->d_lock) __releases(dentry->d_inode->i_lock) { struct inode *inode = dentry->d_inode; if (inode) { __d_clear_type_and_inode(dentry); hlist_del_init(&dentry->d_u.d_alias); spin_unlock(&dentry->d_lock); spin_unlock(&inode->i_lock); if (!inode->i_nlink) fsnotify_inoderemove(inode); if (dentry->d_op && dentry->d_op->d_iput) dentry->d_op->d_iput(dentry, inode); else iput(inode); } else { spin_unlock(&dentry->d_lock); } } /* * Release the dentry's inode, using the filesystem * d_iput() operation if defined. dentry remains in-use. */ static void dentry_unlink_inode(struct dentry * dentry) __releases(dentry->d_lock) __releases(dentry->d_inode->i_lock) { struct inode *inode = dentry->d_inode; raw_write_seqcount_begin(&dentry->d_seq); __d_clear_type_and_inode(dentry); hlist_del_init(&dentry->d_u.d_alias); raw_write_seqcount_end(&dentry->d_seq); spin_unlock(&dentry->d_lock); spin_unlock(&inode->i_lock); if (!inode->i_nlink) fsnotify_inoderemove(inode); if (dentry->d_op && dentry->d_op->d_iput) dentry->d_op->d_iput(dentry, inode); else iput(inode); } /* * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry * is in use - which includes both the "real" per-superblock * LRU list _and_ the DCACHE_SHRINK_LIST use. * * The DCACHE_SHRINK_LIST bit is set whenever the dentry is * on the shrink list (ie not on the superblock LRU list). * * The per-cpu "nr_dentry_unused" counters are updated with * the DCACHE_LRU_LIST bit. * * These helper functions make sure we always follow the * rules. d_lock must be held by the caller. */ #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x)) static void d_lru_add(struct dentry *dentry) { D_FLAG_VERIFY(dentry, 0); dentry->d_flags |= DCACHE_LRU_LIST; this_cpu_inc(nr_dentry_unused); WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); } static void d_lru_del(struct dentry *dentry) { D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); dentry->d_flags &= ~DCACHE_LRU_LIST; this_cpu_dec(nr_dentry_unused); WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); } static void d_shrink_del(struct dentry *dentry) { D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); list_del_init(&dentry->d_lru); dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); this_cpu_dec(nr_dentry_unused); } static void d_shrink_add(struct dentry *dentry, struct list_head *list) { D_FLAG_VERIFY(dentry, 0); list_add(&dentry->d_lru, list); dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST; this_cpu_inc(nr_dentry_unused); } /* * These can only be called under the global LRU lock, ie during the * callback for freeing the LRU list. "isolate" removes it from the * LRU lists entirely, while shrink_move moves it to the indicated * private list. */ static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry) { D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); dentry->d_flags &= ~DCACHE_LRU_LIST; this_cpu_dec(nr_dentry_unused); list_lru_isolate(lru, &dentry->d_lru); } static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry, struct list_head *list) { D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); dentry->d_flags |= DCACHE_SHRINK_LIST; list_lru_isolate_move(lru, &dentry->d_lru, list); } /* * dentry_lru_(add|del)_list) must be called with d_lock held. */ static void dentry_lru_add(struct dentry *dentry) { if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST))) d_lru_add(dentry); } /** * d_drop - drop a dentry * @dentry: dentry to drop * * d_drop() unhashes the entry from the parent dentry hashes, so that it won't * be found through a VFS lookup any more. Note that this is different from * deleting the dentry - d_delete will try to mark the dentry negative if * possible, giving a successful _negative_ lookup, while d_drop will * just make the cache lookup fail. * * d_drop() is used mainly for stuff that wants to invalidate a dentry for some * reason (NFS timeouts or autofs deletes). * * __d_drop requires dentry->d_lock. */ void __d_drop(struct dentry *dentry) { if (!d_unhashed(dentry)) { struct hlist_bl_head *b; /* * Hashed dentries are normally on the dentry hashtable, * with the exception of those newly allocated by * d_obtain_alias, which are always IS_ROOT: */ if (unlikely(IS_ROOT(dentry))) b = &dentry->d_sb->s_anon; else b = d_hash(dentry->d_parent, dentry->d_name.hash); hlist_bl_lock(b); __hlist_bl_del(&dentry->d_hash); dentry->d_hash.pprev = NULL; hlist_bl_unlock(b); dentry_rcuwalk_invalidate(dentry); } } EXPORT_SYMBOL(__d_drop); void d_drop(struct dentry *dentry) { spin_lock(&dentry->d_lock); __d_drop(dentry); spin_unlock(&dentry->d_lock); } EXPORT_SYMBOL(d_drop); static void __dentry_kill(struct dentry *dentry) { struct dentry *parent = NULL; bool can_free = true; if (!IS_ROOT(dentry)) parent = dentry->d_parent; /* * The dentry is now unrecoverably dead to the world. */ lockref_mark_dead(&dentry->d_lockref); /* * inform the fs via d_prune that this dentry is about to be * unhashed and destroyed. */ if (dentry->d_flags & DCACHE_OP_PRUNE) dentry->d_op->d_prune(dentry); if (dentry->d_flags & DCACHE_LRU_LIST) { if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) d_lru_del(dentry); } /* if it was on the hash then remove it */ __d_drop(dentry); __list_del_entry(&dentry->d_child); /* * Inform d_walk() that we are no longer attached to the * dentry tree */ dentry->d_flags |= DCACHE_DENTRY_KILLED; if (parent) spin_unlock(&parent->d_lock); dentry_iput(dentry); /* * dentry_iput drops the locks, at which point nobody (except * transient RCU lookups) can reach this dentry. */ BUG_ON(dentry->d_lockref.count > 0); this_cpu_dec(nr_dentry); if (dentry->d_op && dentry->d_op->d_release) dentry->d_op->d_release(dentry); spin_lock(&dentry->d_lock); if (dentry->d_flags & DCACHE_SHRINK_LIST) { dentry->d_flags |= DCACHE_MAY_FREE; can_free = false; } spin_unlock(&dentry->d_lock); if (likely(can_free)) dentry_free(dentry); } /* * Finish off a dentry we've decided to kill. * dentry->d_lock must be held, returns with it unlocked. * If ref is non-zero, then decrement the refcount too. * Returns dentry requiring refcount drop, or NULL if we're done. */ static struct dentry *dentry_kill(struct dentry *dentry) __releases(dentry->d_lock) { struct inode *inode = dentry->d_inode; struct dentry *parent = NULL; if (inode && unlikely(!spin_trylock(&inode->i_lock))) goto failed; if (!IS_ROOT(dentry)) { parent = dentry->d_parent; if (unlikely(!spin_trylock(&parent->d_lock))) { if (inode) spin_unlock(&inode->i_lock); goto failed; } } __dentry_kill(dentry); return parent; failed: spin_unlock(&dentry->d_lock); cpu_relax(); return dentry; /* try again with same dentry */ } static inline struct dentry *lock_parent(struct dentry *dentry) { struct dentry *parent = dentry->d_parent; if (IS_ROOT(dentry)) return NULL; if (unlikely(dentry->d_lockref.count < 0)) return NULL; if (likely(spin_trylock(&parent->d_lock))) return parent; rcu_read_lock(); spin_unlock(&dentry->d_lock); again: parent = ACCESS_ONCE(dentry->d_parent); spin_lock(&parent->d_lock); /* * We can't blindly lock dentry until we are sure * that we won't violate the locking order. * Any changes of dentry->d_parent must have * been done with parent->d_lock held, so * spin_lock() above is enough of a barrier * for checking if it's still our child. */ if (unlikely(parent != dentry->d_parent)) { spin_unlock(&parent->d_lock); goto again; } rcu_read_unlock(); if (parent != dentry) spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); else parent = NULL; return parent; } /* * Try to do a lockless dput(), and return whether that was successful. * * If unsuccessful, we return false, having already taken the dentry lock. * * The caller needs to hold the RCU read lock, so that the dentry is * guaranteed to stay around even if the refcount goes down to zero! */ static inline bool fast_dput(struct dentry *dentry) { int ret; unsigned int d_flags; /* * If we have a d_op->d_delete() operation, we sould not * let the dentry count go to zero, so use "put_or_lock". */ if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) return lockref_put_or_lock(&dentry->d_lockref); /* * .. otherwise, we can try to just decrement the * lockref optimistically. */ ret = lockref_put_return(&dentry->d_lockref); /* * If the lockref_put_return() failed due to the lock being held * by somebody else, the fast path has failed. We will need to * get the lock, and then check the count again. */ if (unlikely(ret < 0)) { spin_lock(&dentry->d_lock); if (dentry->d_lockref.count > 1) { dentry->d_lockref.count--; spin_unlock(&dentry->d_lock); return 1; } return 0; } /* * If we weren't the last ref, we're done. */ if (ret) return 1; /* * Careful, careful. The reference count went down * to zero, but we don't hold the dentry lock, so * somebody else could get it again, and do another * dput(), and we need to not race with that. * * However, there is a very special and common case * where we don't care, because there is nothing to * do: the dentry is still hashed, it does not have * a 'delete' op, and it's referenced and already on * the LRU list. * * NOTE! Since we aren't locked, these values are * not "stable". However, it is sufficient that at * some point after we dropped the reference the * dentry was hashed and the flags had the proper * value. Other dentry users may have re-gotten * a reference to the dentry and change that, but * our work is done - we can leave the dentry * around with a zero refcount. */ smp_rmb(); d_flags = ACCESS_ONCE(dentry->d_flags); d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED; /* Nothing to do? Dropping the reference was all we needed? */ if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry)) return 1; /* * Not the fast normal case? Get the lock. We've already decremented * the refcount, but we'll need to re-check the situation after * getting the lock. */ spin_lock(&dentry->d_lock); /* * Did somebody else grab a reference to it in the meantime, and * we're no longer the last user after all? Alternatively, somebody * else could have killed it and marked it dead. Either way, we * don't need to do anything else. */ if (dentry->d_lockref.count) { spin_unlock(&dentry->d_lock); return 1; } /* * Re-get the reference we optimistically dropped. We hold the * lock, and we just tested that it was zero, so we can just * set it to 1. */ dentry->d_lockref.count = 1; return 0; } /* * This is dput * * This is complicated by the fact that we do not want to put * dentries that are no longer on any hash chain on the unused * list: we'd much rather just get rid of them immediately. * * However, that implies that we have to traverse the dentry * tree upwards to the parents which might _also_ now be * scheduled for deletion (it may have been only waiting for * its last child to go away). * * This tail recursion is done by hand as we don't want to depend * on the compiler to always get this right (gcc generally doesn't). * Real recursion would eat up our stack space. */ /* * dput - release a dentry * @dentry: dentry to release * * Release a dentry. This will drop the usage count and if appropriate * call the dentry unlink method as well as removing it from the queues and * releasing its resources. If the parent dentries were scheduled for release * they too may now get deleted. */ void dput(struct dentry *dentry) { if (unlikely(!dentry)) return; repeat: rcu_read_lock(); if (likely(fast_dput(dentry))) { rcu_read_unlock(); return; } /* Slow case: now with the dentry lock held */ rcu_read_unlock(); /* Unreachable? Get rid of it */ if (unlikely(d_unhashed(dentry))) goto kill_it; if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED)) goto kill_it; if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) { if (dentry->d_op->d_delete(dentry)) goto kill_it; } if (!(dentry->d_flags & DCACHE_REFERENCED)) dentry->d_flags |= DCACHE_REFERENCED; dentry_lru_add(dentry); dentry->d_lockref.count--; spin_unlock(&dentry->d_lock); return; kill_it: dentry = dentry_kill(dentry); if (dentry) goto repeat; } EXPORT_SYMBOL(dput); /* This must be called with d_lock held */ static inline void __dget_dlock(struct dentry *dentry) { dentry->d_lockref.count++; } static inline void __dget(struct dentry *dentry) { lockref_get(&dentry->d_lockref); } struct dentry *dget_parent(struct dentry *dentry) { int gotref; struct dentry *ret; /* * Do optimistic parent lookup without any * locking. */ rcu_read_lock(); ret = ACCESS_ONCE(dentry->d_parent); gotref = lockref_get_not_zero(&ret->d_lockref); rcu_read_unlock(); if (likely(gotref)) { if (likely(ret == ACCESS_ONCE(dentry->d_parent))) return ret; dput(ret); } repeat: /* * Don't need rcu_dereference because we re-check it was correct under * the lock. */ rcu_read_lock(); ret = dentry->d_parent; spin_lock(&ret->d_lock); if (unlikely(ret != dentry->d_parent)) { spin_unlock(&ret->d_lock); rcu_read_unlock(); goto repeat; } rcu_read_unlock(); BUG_ON(!ret->d_lockref.count); ret->d_lockref.count++; spin_unlock(&ret->d_lock); return ret; } EXPORT_SYMBOL(dget_parent); /** * d_find_alias - grab a hashed alias of inode * @inode: inode in question * * If inode has a hashed alias, or is a directory and has any alias, * acquire the reference to alias and return it. Otherwise return NULL. * Notice that if inode is a directory there can be only one alias and * it can be unhashed only if it has no children, or if it is the root * of a filesystem, or if the directory was renamed and d_revalidate * was the first vfs operation to notice. * * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer * any other hashed alias over that one. */ static struct dentry *__d_find_alias(struct inode *inode) { struct dentry *alias, *discon_alias; again: discon_alias = NULL; hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { spin_lock(&alias->d_lock); if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { if (IS_ROOT(alias) && (alias->d_flags & DCACHE_DISCONNECTED)) { discon_alias = alias; } else { __dget_dlock(alias); spin_unlock(&alias->d_lock); return alias; } } spin_unlock(&alias->d_lock); } if (discon_alias) { alias = discon_alias; spin_lock(&alias->d_lock); if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { __dget_dlock(alias); spin_unlock(&alias->d_lock); return alias; } spin_unlock(&alias->d_lock); goto again; } return NULL; } struct dentry *d_find_alias(struct inode *inode) { struct dentry *de = NULL; if (!hlist_empty(&inode->i_dentry)) { spin_lock(&inode->i_lock); de = __d_find_alias(inode); spin_unlock(&inode->i_lock); } return de; } EXPORT_SYMBOL(d_find_alias); /* * Try to kill dentries associated with this inode. * WARNING: you must own a reference to inode. */ void d_prune_aliases(struct inode *inode) { struct dentry *dentry; restart: spin_lock(&inode->i_lock); hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) { spin_lock(&dentry->d_lock); if (!dentry->d_lockref.count) { struct dentry *parent = lock_parent(dentry); if (likely(!dentry->d_lockref.count)) { __dentry_kill(dentry); dput(parent); goto restart; } if (parent) spin_unlock(&parent->d_lock); } spin_unlock(&dentry->d_lock); } spin_unlock(&inode->i_lock); } EXPORT_SYMBOL(d_prune_aliases); static void shrink_dentry_list(struct list_head *list) { struct dentry *dentry, *parent; while (!list_empty(list)) { struct inode *inode; dentry = list_entry(list->prev, struct dentry, d_lru); spin_lock(&dentry->d_lock); parent = lock_parent(dentry); /* * The dispose list is isolated and dentries are not accounted * to the LRU here, so we can simply remove it from the list * here regardless of whether it is referenced or not. */ d_shrink_del(dentry); /* * We found an inuse dentry which was not removed from * the LRU because of laziness during lookup. Do not free it. */ if (dentry->d_lockref.count > 0) { spin_unlock(&dentry->d_lock); if (parent) spin_unlock(&parent->d_lock); continue; } if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) { bool can_free = dentry->d_flags & DCACHE_MAY_FREE; spin_unlock(&dentry->d_lock); if (parent) spin_unlock(&parent->d_lock); if (can_free) dentry_free(dentry); continue; } inode = dentry->d_inode; if (inode && unlikely(!spin_trylock(&inode->i_lock))) { d_shrink_add(dentry, list); spin_unlock(&dentry->d_lock); if (parent) spin_unlock(&parent->d_lock); continue; } __dentry_kill(dentry); /* * We need to prune ancestors too. This is necessary to prevent * quadratic behavior of shrink_dcache_parent(), but is also * expected to be beneficial in reducing dentry cache * fragmentation. */ dentry = parent; while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) { parent = lock_parent(dentry); if (dentry->d_lockref.count != 1) { dentry->d_lockref.count--; spin_unlock(&dentry->d_lock); if (parent) spin_unlock(&parent->d_lock); break; } inode = dentry->d_inode; /* can't be NULL */ if (unlikely(!spin_trylock(&inode->i_lock))) { spin_unlock(&dentry->d_lock); if (parent) spin_unlock(&parent->d_lock); cpu_relax(); continue; } __dentry_kill(dentry); dentry = parent; } } } static enum lru_status dentry_lru_isolate(struct list_head *item, struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) { struct list_head *freeable = arg; struct dentry *dentry = container_of(item, struct dentry, d_lru); /* * we are inverting the lru lock/dentry->d_lock here, * so use a trylock. If we fail to get the lock, just skip * it */ if (!spin_trylock(&dentry->d_lock)) return LRU_SKIP; /* * Referenced dentries are still in use. If they have active * counts, just remove them from the LRU. Otherwise give them * another pass through the LRU. */ if (dentry->d_lockref.count) { d_lru_isolate(lru, dentry); spin_unlock(&dentry->d_lock); return LRU_REMOVED; } if (dentry->d_flags & DCACHE_REFERENCED) { dentry->d_flags &= ~DCACHE_REFERENCED; spin_unlock(&dentry->d_lock); /* * The list move itself will be made by the common LRU code. At * this point, we've dropped the dentry->d_lock but keep the * lru lock. This is safe to do, since every list movement is * protected by the lru lock even if both locks are held. * * This is guaranteed by the fact that all LRU management * functions are intermediated by the LRU API calls like * list_lru_add and list_lru_del. List movement in this file * only ever occur through this functions or through callbacks * like this one, that are called from the LRU API. * * The only exceptions to this are functions like * shrink_dentry_list, and code that first checks for the * DCACHE_SHRINK_LIST flag. Those are guaranteed to be * operating only with stack provided lists after they are * properly isolated from the main list. It is thus, always a * local access. */ return LRU_ROTATE; } d_lru_shrink_move(lru, dentry, freeable); spin_unlock(&dentry->d_lock); return LRU_REMOVED; } /** * prune_dcache_sb - shrink the dcache * @sb: superblock * @sc: shrink control, passed to list_lru_shrink_walk() * * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This * is done when we need more memory and called from the superblock shrinker * function. * * This function may fail to free any resources if all the dentries are in * use. */ long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc) { LIST_HEAD(dispose); long freed; freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc, dentry_lru_isolate, &dispose); shrink_dentry_list(&dispose); return freed; } static enum lru_status dentry_lru_isolate_shrink(struct list_head *item, struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) { struct list_head *freeable = arg; struct dentry *dentry = container_of(item, struct dentry, d_lru); /* * we are inverting the lru lock/dentry->d_lock here, * so use a trylock. If we fail to get the lock, just skip * it */ if (!spin_trylock(&dentry->d_lock)) return LRU_SKIP; d_lru_shrink_move(lru, dentry, freeable); spin_unlock(&dentry->d_lock); return LRU_REMOVED; } /** * shrink_dcache_sb - shrink dcache for a superblock * @sb: superblock * * Shrink the dcache for the specified super block. This is used to free * the dcache before unmounting a file system. */ void shrink_dcache_sb(struct super_block *sb) { long freed; do { LIST_HEAD(dispose); freed = list_lru_walk(&sb->s_dentry_lru, dentry_lru_isolate_shrink, &dispose, UINT_MAX); this_cpu_sub(nr_dentry_unused, freed); shrink_dentry_list(&dispose); } while (freed > 0); } EXPORT_SYMBOL(shrink_dcache_sb); /** * enum d_walk_ret - action to talke during tree walk * @D_WALK_CONTINUE: contrinue walk * @D_WALK_QUIT: quit walk * @D_WALK_NORETRY: quit when retry is needed * @D_WALK_SKIP: skip this dentry and its children */ enum d_walk_ret { D_WALK_CONTINUE, D_WALK_QUIT, D_WALK_NORETRY, D_WALK_SKIP, }; /** * d_walk - walk the dentry tree * @parent: start of walk * @data: data passed to @enter() and @finish() * @enter: callback when first entering the dentry * @finish: callback when successfully finished the walk * * The @enter() and @finish() callbacks are called with d_lock held. */ static void d_walk(struct dentry *parent, void *data, enum d_walk_ret (*enter)(void *, struct dentry *), void (*finish)(void *)) { struct dentry *this_parent; struct list_head *next; unsigned seq = 0; enum d_walk_ret ret; bool retry = true; again: read_seqbegin_or_lock(&rename_lock, &seq); this_parent = parent; spin_lock(&this_parent->d_lock); ret = enter(data, this_parent); switch (ret) { case D_WALK_CONTINUE: break; case D_WALK_QUIT: case D_WALK_SKIP: goto out_unlock; case D_WALK_NORETRY: retry = false; break; } repeat: next = this_parent->d_subdirs.next; resume: while (next != &this_parent->d_subdirs) { struct list_head *tmp = next; struct dentry *dentry = list_entry(tmp, struct dentry, d_child); next = tmp->next; spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); ret = enter(data, dentry); switch (ret) { case D_WALK_CONTINUE: break; case D_WALK_QUIT: spin_unlock(&dentry->d_lock); goto out_unlock; case D_WALK_NORETRY: retry = false; break; case D_WALK_SKIP: spin_unlock(&dentry->d_lock); continue; } if (!list_empty(&dentry->d_subdirs)) { spin_unlock(&this_parent->d_lock); spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_); this_parent = dentry; spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); goto repeat; } spin_unlock(&dentry->d_lock); } /* * All done at this level ... ascend and resume the search. */ rcu_read_lock(); ascend: if (this_parent != parent) { struct dentry *child = this_parent; this_parent = child->d_parent; spin_unlock(&child->d_lock); spin_lock(&this_parent->d_lock); /* might go back up the wrong parent if we have had a rename. */ if (need_seqretry(&rename_lock, seq)) goto rename_retry; /* go into the first sibling still alive */ do { next = child->d_child.next; if (next == &this_parent->d_subdirs) goto ascend; child = list_entry(next, struct dentry, d_child); } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED)); rcu_read_unlock(); goto resume; } if (need_seqretry(&rename_lock, seq)) goto rename_retry; rcu_read_unlock(); if (finish) finish(data); out_unlock: spin_unlock(&this_parent->d_lock); done_seqretry(&rename_lock, seq); return; rename_retry: spin_unlock(&this_parent->d_lock); rcu_read_unlock(); BUG_ON(seq & 1); if (!retry) return; seq = 1; goto again; } /* * Search for at least 1 mount point in the dentry's subdirs. * We descend to the next level whenever the d_subdirs * list is non-empty and continue searching. */ static enum d_walk_ret check_mount(void *data, struct dentry *dentry) { int *ret = data; if (d_mountpoint(dentry)) { *ret = 1; return D_WALK_QUIT; } return D_WALK_CONTINUE; } /** * have_submounts - check for mounts over a dentry * @parent: dentry to check. * * Return true if the parent or its subdirectories contain * a mount point */ int have_submounts(struct dentry *parent) { int ret = 0; d_walk(parent, &ret, check_mount, NULL); return ret; } EXPORT_SYMBOL(have_submounts); /* * Called by mount code to set a mountpoint and check if the mountpoint is * reachable (e.g. NFS can unhash a directory dentry and then the complete * subtree can become unreachable). * * Only one of d_invalidate() and d_set_mounted() must succeed. For * this reason take rename_lock and d_lock on dentry and ancestors. */ int d_set_mounted(struct dentry *dentry) { struct dentry *p; int ret = -ENOENT; write_seqlock(&rename_lock); for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) { /* Need exclusion wrt. d_invalidate() */ spin_lock(&p->d_lock); if (unlikely(d_unhashed(p))) { spin_unlock(&p->d_lock); goto out; } spin_unlock(&p->d_lock); } spin_lock(&dentry->d_lock); if (!d_unlinked(dentry)) { dentry->d_flags |= DCACHE_MOUNTED; ret = 0; } spin_unlock(&dentry->d_lock); out: write_sequnlock(&rename_lock); return ret; } /* * Search the dentry child list of the specified parent, * and move any unused dentries to the end of the unused * list for prune_dcache(). We descend to the next level * whenever the d_subdirs list is non-empty and continue * searching. * * It returns zero iff there are no unused children, * otherwise it returns the number of children moved to * the end of the unused list. This may not be the total * number of unused children, because select_parent can * drop the lock and return early due to latency * constraints. */ struct select_data { struct dentry *start; struct list_head dispose; int found; }; static enum d_walk_ret select_collect(void *_data, struct dentry *dentry) { struct select_data *data = _data; enum d_walk_ret ret = D_WALK_CONTINUE; if (data->start == dentry) goto out; if (dentry->d_flags & DCACHE_SHRINK_LIST) { data->found++; } else { if (dentry->d_flags & DCACHE_LRU_LIST) d_lru_del(dentry); if (!dentry->d_lockref.count) { d_shrink_add(dentry, &data->dispose); data->found++; } } /* * We can return to the caller if we have found some (this * ensures forward progress). We'll be coming back to find * the rest. */ if (!list_empty(&data->dispose)) ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; out: return ret; } /** * shrink_dcache_parent - prune dcache * @parent: parent of entries to prune * * Prune the dcache to remove unused children of the parent dentry. */ void shrink_dcache_parent(struct dentry *parent) { for (;;) { struct select_data data; INIT_LIST_HEAD(&data.dispose); data.start = parent; data.found = 0; d_walk(parent, &data, select_collect, NULL); if (!data.found) break; shrink_dentry_list(&data.dispose); cond_resched(); } } EXPORT_SYMBOL(shrink_dcache_parent); static enum d_walk_ret umount_check(void *_data, struct dentry *dentry) { /* it has busy descendents; complain about those instead */ if (!list_empty(&dentry->d_subdirs)) return D_WALK_CONTINUE; /* root with refcount 1 is fine */ if (dentry == _data && dentry->d_lockref.count == 1) return D_WALK_CONTINUE; printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} " " still in use (%d) [unmount of %s %s]\n", dentry, dentry->d_inode ? dentry->d_inode->i_ino : 0UL, dentry, dentry->d_lockref.count, dentry->d_sb->s_type->name, dentry->d_sb->s_id); WARN_ON(1); return D_WALK_CONTINUE; } static void do_one_tree(struct dentry *dentry) { shrink_dcache_parent(dentry); d_walk(dentry, dentry, umount_check, NULL); d_drop(dentry); dput(dentry); } /* * destroy the dentries attached to a superblock on unmounting */ void shrink_dcache_for_umount(struct super_block *sb) { struct dentry *dentry; WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked"); dentry = sb->s_root; sb->s_root = NULL; do_one_tree(dentry); while (!hlist_bl_empty(&sb->s_anon)) { dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash)); do_one_tree(dentry); } } struct detach_data { struct select_data select; struct dentry *mountpoint; }; static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry) { struct detach_data *data = _data; if (d_mountpoint(dentry)) { __dget_dlock(dentry); data->mountpoint = dentry; return D_WALK_QUIT; } return select_collect(&data->select, dentry); } static void check_and_drop(void *_data) { struct detach_data *data = _data; if (!data->mountpoint && !data->select.found) __d_drop(data->select.start); } /** * d_invalidate - detach submounts, prune dcache, and drop * @dentry: dentry to invalidate (aka detach, prune and drop) * * no dcache lock. * * The final d_drop is done as an atomic operation relative to * rename_lock ensuring there are no races with d_set_mounted. This * ensures there are no unhashed dentries on the path to a mountpoint. */ void d_invalidate(struct dentry *dentry) { /* * If it's already been dropped, return OK. */ spin_lock(&dentry->d_lock); if (d_unhashed(dentry)) { spin_unlock(&dentry->d_lock); return; } spin_unlock(&dentry->d_lock); /* Negative dentries can be dropped without further checks */ if (!dentry->d_inode) { d_drop(dentry); return; } for (;;) { struct detach_data data; data.mountpoint = NULL; INIT_LIST_HEAD(&data.select.dispose); data.select.start = dentry; data.select.found = 0; d_walk(dentry, &data, detach_and_collect, check_and_drop); if (data.select.found) shrink_dentry_list(&data.select.dispose); if (data.mountpoint) { detach_mounts(data.mountpoint); dput(data.mountpoint); } if (!data.mountpoint && !data.select.found) break; cond_resched(); } } EXPORT_SYMBOL(d_invalidate); /** * __d_alloc - allocate a dcache entry * @sb: filesystem it will belong to * @name: qstr of the name * * Allocates a dentry. It returns %NULL if there is insufficient memory * available. On a success the dentry is returned. The name passed in is * copied and the copy passed in may be reused after this call. */ struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name) { struct dentry *dentry; char *dname; dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL); if (!dentry) return NULL; /* * We guarantee that the inline name is always NUL-terminated. * This way the memcpy() done by the name switching in rename * will still always have a NUL at the end, even if we might * be overwriting an internal NUL character */ dentry->d_iname[DNAME_INLINE_LEN-1] = 0; if (name->len > DNAME_INLINE_LEN-1) { size_t size = offsetof(struct external_name, name[1]); struct external_name *p = kmalloc(size + name->len, GFP_KERNEL_ACCOUNT); if (!p) { kmem_cache_free(dentry_cache, dentry); return NULL; } atomic_set(&p->u.count, 1); dname = p->name; if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS)) kasan_unpoison_shadow(dname, round_up(name->len + 1, sizeof(unsigned long))); } else { dname = dentry->d_iname; } dentry->d_name.len = name->len; dentry->d_name.hash = name->hash; memcpy(dname, name->name, name->len); dname[name->len] = 0; /* Make sure we always see the terminating NUL character */ smp_wmb(); dentry->d_name.name = dname; dentry->d_lockref.count = 1; dentry->d_flags = 0; spin_lock_init(&dentry->d_lock); seqcount_init(&dentry->d_seq); dentry->d_inode = NULL; dentry->d_parent = dentry; dentry->d_sb = sb; dentry->d_op = NULL; dentry->d_fsdata = NULL; INIT_HLIST_BL_NODE(&dentry->d_hash); INIT_LIST_HEAD(&dentry->d_lru); INIT_LIST_HEAD(&dentry->d_subdirs); INIT_HLIST_NODE(&dentry->d_u.d_alias); INIT_LIST_HEAD(&dentry->d_child); d_set_d_op(dentry, dentry->d_sb->s_d_op); this_cpu_inc(nr_dentry); return dentry; } /** * d_alloc - allocate a dcache entry * @parent: parent of entry to allocate * @name: qstr of the name * * Allocates a dentry. It returns %NULL if there is insufficient memory * available. On a success the dentry is returned. The name passed in is * copied and the copy passed in may be reused after this call. */ struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) { struct dentry *dentry = __d_alloc(parent->d_sb, name); if (!dentry) return NULL; spin_lock(&parent->d_lock); /* * don't need child lock because it is not subject * to concurrency here */ __dget_dlock(parent); dentry->d_parent = parent; list_add(&dentry->d_child, &parent->d_subdirs); spin_unlock(&parent->d_lock); return dentry; } EXPORT_SYMBOL(d_alloc); /** * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems) * @sb: the superblock * @name: qstr of the name * * For a filesystem that just pins its dentries in memory and never * performs lookups at all, return an unhashed IS_ROOT dentry. */ struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name) { return __d_alloc(sb, name); } EXPORT_SYMBOL(d_alloc_pseudo); struct dentry *d_alloc_name(struct dentry *parent, const char *name) { struct qstr q; q.name = name; q.len = strlen(name); q.hash = full_name_hash(q.name, q.len); return d_alloc(parent, &q); } EXPORT_SYMBOL(d_alloc_name); void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op) { WARN_ON_ONCE(dentry->d_op); WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH | DCACHE_OP_COMPARE | DCACHE_OP_REVALIDATE | DCACHE_OP_WEAK_REVALIDATE | DCACHE_OP_DELETE | DCACHE_OP_SELECT_INODE)); dentry->d_op = op; if (!op) return; if (op->d_hash) dentry->d_flags |= DCACHE_OP_HASH; if (op->d_compare) dentry->d_flags |= DCACHE_OP_COMPARE; if (op->d_revalidate) dentry->d_flags |= DCACHE_OP_REVALIDATE; if (op->d_weak_revalidate) dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE; if (op->d_delete) dentry->d_flags |= DCACHE_OP_DELETE; if (op->d_prune) dentry->d_flags |= DCACHE_OP_PRUNE; if (op->d_select_inode) dentry->d_flags |= DCACHE_OP_SELECT_INODE; } EXPORT_SYMBOL(d_set_d_op); /* * d_set_fallthru - Mark a dentry as falling through to a lower layer * @dentry - The dentry to mark * * Mark a dentry as falling through to the lower layer (as set with * d_pin_lower()). This flag may be recorded on the medium. */ void d_set_fallthru(struct dentry *dentry) { spin_lock(&dentry->d_lock); dentry->d_flags |= DCACHE_FALLTHRU; spin_unlock(&dentry->d_lock); } EXPORT_SYMBOL(d_set_fallthru); static unsigned d_flags_for_inode(struct inode *inode) { unsigned add_flags = DCACHE_REGULAR_TYPE; if (!inode) return DCACHE_MISS_TYPE; if (S_ISDIR(inode->i_mode)) { add_flags = DCACHE_DIRECTORY_TYPE; if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) { if (unlikely(!inode->i_op->lookup)) add_flags = DCACHE_AUTODIR_TYPE; else inode->i_opflags |= IOP_LOOKUP; } goto type_determined; } if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { if (unlikely(inode->i_op->get_link)) { add_flags = DCACHE_SYMLINK_TYPE; goto type_determined; } inode->i_opflags |= IOP_NOFOLLOW; } if (unlikely(!S_ISREG(inode->i_mode))) add_flags = DCACHE_SPECIAL_TYPE; type_determined: if (unlikely(IS_AUTOMOUNT(inode))) add_flags |= DCACHE_NEED_AUTOMOUNT; return add_flags; } static void __d_instantiate(struct dentry *dentry, struct inode *inode) { unsigned add_flags = d_flags_for_inode(inode); spin_lock(&dentry->d_lock); hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); raw_write_seqcount_begin(&dentry->d_seq); __d_set_inode_and_type(dentry, inode, add_flags); raw_write_seqcount_end(&dentry->d_seq); __fsnotify_d_instantiate(dentry); spin_unlock(&dentry->d_lock); } /** * d_instantiate - fill in inode information for a dentry * @entry: dentry to complete * @inode: inode to attach to this dentry * * Fill in inode information in the entry. * * This turns negative dentries into productive full members * of society. * * NOTE! This assumes that the inode count has been incremented * (or otherwise set) by the caller to indicate that it is now * in use by the dcache. */ void d_instantiate(struct dentry *entry, struct inode * inode) { BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); if (inode) { spin_lock(&inode->i_lock); __d_instantiate(entry, inode); spin_unlock(&inode->i_lock); } security_d_instantiate(entry, inode); } EXPORT_SYMBOL(d_instantiate); /** * d_instantiate_no_diralias - instantiate a non-aliased dentry * @entry: dentry to complete * @inode: inode to attach to this dentry * * Fill in inode information in the entry. If a directory alias is found, then * return an error (and drop inode). Together with d_materialise_unique() this * guarantees that a directory inode may never have more than one alias. */ int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode) { BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); spin_lock(&inode->i_lock); if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) { spin_unlock(&inode->i_lock); iput(inode); return -EBUSY; } __d_instantiate(entry, inode); spin_unlock(&inode->i_lock); security_d_instantiate(entry, inode); return 0; } EXPORT_SYMBOL(d_instantiate_no_diralias); struct dentry *d_make_root(struct inode *root_inode) { struct dentry *res = NULL; if (root_inode) { static const struct qstr name = QSTR_INIT("/", 1); res = __d_alloc(root_inode->i_sb, &name); if (res) d_instantiate(res, root_inode); else iput(root_inode); } return res; } EXPORT_SYMBOL(d_make_root); static struct dentry * __d_find_any_alias(struct inode *inode) { struct dentry *alias; if (hlist_empty(&inode->i_dentry)) return NULL; alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias); __dget(alias); return alias; } /** * d_find_any_alias - find any alias for a given inode * @inode: inode to find an alias for * * If any aliases exist for the given inode, take and return a * reference for one of them. If no aliases exist, return %NULL. */ struct dentry *d_find_any_alias(struct inode *inode) { struct dentry *de; spin_lock(&inode->i_lock); de = __d_find_any_alias(inode); spin_unlock(&inode->i_lock); return de; } EXPORT_SYMBOL(d_find_any_alias); static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected) { static const struct qstr anonstring = QSTR_INIT("/", 1); struct dentry *tmp; struct dentry *res; unsigned add_flags; if (!inode) return ERR_PTR(-ESTALE); if (IS_ERR(inode)) return ERR_CAST(inode); res = d_find_any_alias(inode); if (res) goto out_iput; tmp = __d_alloc(inode->i_sb, &anonstring); if (!tmp) { res = ERR_PTR(-ENOMEM); goto out_iput; } spin_lock(&inode->i_lock); res = __d_find_any_alias(inode); if (res) { spin_unlock(&inode->i_lock); dput(tmp); goto out_iput; } /* attach a disconnected dentry */ add_flags = d_flags_for_inode(inode); if (disconnected) add_flags |= DCACHE_DISCONNECTED; spin_lock(&tmp->d_lock); __d_set_inode_and_type(tmp, inode, add_flags); hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry); hlist_bl_lock(&tmp->d_sb->s_anon); hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon); hlist_bl_unlock(&tmp->d_sb->s_anon); spin_unlock(&tmp->d_lock); spin_unlock(&inode->i_lock); security_d_instantiate(tmp, inode); return tmp; out_iput: if (res && !IS_ERR(res)) security_d_instantiate(res, inode); iput(inode); return res; } /** * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode * @inode: inode to allocate the dentry for * * Obtain a dentry for an inode resulting from NFS filehandle conversion or * similar open by handle operations. The returned dentry may be anonymous, * or may have a full name (if the inode was already in the cache). * * When called on a directory inode, we must ensure that the inode only ever * has one dentry. If a dentry is found, that is returned instead of * allocating a new one. * * On successful return, the reference to the inode has been transferred * to the dentry. In case of an error the reference on the inode is released. * To make it easier to use in export operations a %NULL or IS_ERR inode may * be passed in and the error will be propagated to the return value, * with a %NULL @inode replaced by ERR_PTR(-ESTALE). */ struct dentry *d_obtain_alias(struct inode *inode) { return __d_obtain_alias(inode, 1); } EXPORT_SYMBOL(d_obtain_alias); /** * d_obtain_root - find or allocate a dentry for a given inode * @inode: inode to allocate the dentry for * * Obtain an IS_ROOT dentry for the root of a filesystem. * * We must ensure that directory inodes only ever have one dentry. If a * dentry is found, that is returned instead of allocating a new one. * * On successful return, the reference to the inode has been transferred * to the dentry. In case of an error the reference on the inode is * released. A %NULL or IS_ERR inode may be passed in and will be the * error will be propagate to the return value, with a %NULL @inode * replaced by ERR_PTR(-ESTALE). */ struct dentry *d_obtain_root(struct inode *inode) { return __d_obtain_alias(inode, 0); } EXPORT_SYMBOL(d_obtain_root); /** * d_add_ci - lookup or allocate new dentry with case-exact name * @inode: the inode case-insensitive lookup has found * @dentry: the negative dentry that was passed to the parent's lookup func * @name: the case-exact name to be associated with the returned dentry * * This is to avoid filling the dcache with case-insensitive names to the * same inode, only the actual correct case is stored in the dcache for * case-insensitive filesystems. * * For a case-insensitive lookup match and if the the case-exact dentry * already exists in in the dcache, use it and return it. * * If no entry exists with the exact case name, allocate new dentry with * the exact case, and return the spliced entry. */ struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, struct qstr *name) { struct dentry *found; struct dentry *new; /* * First check if a dentry matching the name already exists, * if not go ahead and create it now. */ found = d_hash_and_lookup(dentry->d_parent, name); if (!found) { new = d_alloc(dentry->d_parent, name); if (!new) { found = ERR_PTR(-ENOMEM); } else { found = d_splice_alias(inode, new); if (found) { dput(new); return found; } return new; } } iput(inode); return found; } EXPORT_SYMBOL(d_add_ci); /* * Do the slow-case of the dentry name compare. * * Unlike the dentry_cmp() function, we need to atomically * load the name and length information, so that the * filesystem can rely on them, and can use the 'name' and * 'len' information without worrying about walking off the * end of memory etc. * * Thus the read_seqcount_retry() and the "duplicate" info * in arguments (the low-level filesystem should not look * at the dentry inode or name contents directly, since * rename can change them while we're in RCU mode). */ enum slow_d_compare { D_COMP_OK, D_COMP_NOMATCH, D_COMP_SEQRETRY, }; static noinline enum slow_d_compare slow_dentry_cmp( const struct dentry *parent, struct dentry *dentry, unsigned int seq, const struct qstr *name) { int tlen = dentry->d_name.len; const char *tname = dentry->d_name.name; if (read_seqcount_retry(&dentry->d_seq, seq)) { cpu_relax(); return D_COMP_SEQRETRY; } if (parent->d_op->d_compare(parent, dentry, tlen, tname, name)) return D_COMP_NOMATCH; return D_COMP_OK; } /** * __d_lookup_rcu - search for a dentry (racy, store-free) * @parent: parent dentry * @name: qstr of name we wish to find * @seqp: returns d_seq value at the point where the dentry was found * Returns: dentry, or NULL * * __d_lookup_rcu is the dcache lookup function for rcu-walk name * resolution (store-free path walking) design described in * Documentation/filesystems/path-lookup.txt. * * This is not to be used outside core vfs. * * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock * held, and rcu_read_lock held. The returned dentry must not be stored into * without taking d_lock and checking d_seq sequence count against @seq * returned here. * * A refcount may be taken on the found dentry with the d_rcu_to_refcount * function. * * Alternatively, __d_lookup_rcu may be called again to look up the child of * the returned dentry, so long as its parent's seqlock is checked after the * child is looked up. Thus, an interlocking stepping of sequence lock checks * is formed, giving integrity down the path walk. * * NOTE! The caller *has* to check the resulting dentry against the sequence * number we've returned before using any of the resulting dentry state! */ struct dentry *__d_lookup_rcu(const struct dentry *parent, const struct qstr *name, unsigned *seqp) { u64 hashlen = name->hash_len; const unsigned char *str = name->name; struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen)); struct hlist_bl_node *node; struct dentry *dentry; /* * Note: There is significant duplication with __d_lookup_rcu which is * required to prevent single threaded performance regressions * especially on architectures where smp_rmb (in seqcounts) are costly. * Keep the two functions in sync. */ /* * The hash list is protected using RCU. * * Carefully use d_seq when comparing a candidate dentry, to avoid * races with d_move(). * * It is possible that concurrent renames can mess up our list * walk here and result in missing our dentry, resulting in the * false-negative result. d_lookup() protects against concurrent * renames using rename_lock seqlock. * * See Documentation/filesystems/path-lookup.txt for more details. */ hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { unsigned seq; seqretry: /* * The dentry sequence count protects us from concurrent * renames, and thus protects parent and name fields. * * The caller must perform a seqcount check in order * to do anything useful with the returned dentry. * * NOTE! We do a "raw" seqcount_begin here. That means that * we don't wait for the sequence count to stabilize if it * is in the middle of a sequence change. If we do the slow * dentry compare, we will do seqretries until it is stable, * and if we end up with a successful lookup, we actually * want to exit RCU lookup anyway. */ seq = raw_seqcount_begin(&dentry->d_seq); if (dentry->d_parent != parent) continue; if (d_unhashed(dentry)) continue; if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) { if (dentry->d_name.hash != hashlen_hash(hashlen)) continue; *seqp = seq; switch (slow_dentry_cmp(parent, dentry, seq, name)) { case D_COMP_OK: return dentry; case D_COMP_NOMATCH: continue; default: goto seqretry; } } if (dentry->d_name.hash_len != hashlen) continue; *seqp = seq; if (!dentry_cmp(dentry, str, hashlen_len(hashlen))) return dentry; } return NULL; } /** * d_lookup - search for a dentry * @parent: parent dentry * @name: qstr of name we wish to find * Returns: dentry, or NULL * * d_lookup searches the children of the parent dentry for the name in * question. If the dentry is found its reference count is incremented and the * dentry is returned. The caller must use dput to free the entry when it has * finished using it. %NULL is returned if the dentry does not exist. */ struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name) { struct dentry *dentry; unsigned seq; do { seq = read_seqbegin(&rename_lock); dentry = __d_lookup(parent, name); if (dentry) break; } while (read_seqretry(&rename_lock, seq)); return dentry; } EXPORT_SYMBOL(d_lookup); /** * __d_lookup - search for a dentry (racy) * @parent: parent dentry * @name: qstr of name we wish to find * Returns: dentry, or NULL * * __d_lookup is like d_lookup, however it may (rarely) return a * false-negative result due to unrelated rename activity. * * __d_lookup is slightly faster by avoiding rename_lock read seqlock, * however it must be used carefully, eg. with a following d_lookup in * the case of failure. * * __d_lookup callers must be commented. */ struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name) { unsigned int len = name->len; unsigned int hash = name->hash; const unsigned char *str = name->name; struct hlist_bl_head *b = d_hash(parent, hash); struct hlist_bl_node *node; struct dentry *found = NULL; struct dentry *dentry; /* * Note: There is significant duplication with __d_lookup_rcu which is * required to prevent single threaded performance regressions * especially on architectures where smp_rmb (in seqcounts) are costly. * Keep the two functions in sync. */ /* * The hash list is protected using RCU. * * Take d_lock when comparing a candidate dentry, to avoid races * with d_move(). * * It is possible that concurrent renames can mess up our list * walk here and result in missing our dentry, resulting in the * false-negative result. d_lookup() protects against concurrent * renames using rename_lock seqlock. * * See Documentation/filesystems/path-lookup.txt for more details. */ rcu_read_lock(); hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { if (dentry->d_name.hash != hash) continue; spin_lock(&dentry->d_lock); if (dentry->d_parent != parent) goto next; if (d_unhashed(dentry)) goto next; /* * It is safe to compare names since d_move() cannot * change the qstr (protected by d_lock). */ if (parent->d_flags & DCACHE_OP_COMPARE) { int tlen = dentry->d_name.len; const char *tname = dentry->d_name.name; if (parent->d_op->d_compare(parent, dentry, tlen, tname, name)) goto next; } else { if (dentry->d_name.len != len) goto next; if (dentry_cmp(dentry, str, len)) goto next; } dentry->d_lockref.count++; found = dentry; spin_unlock(&dentry->d_lock); break; next: spin_unlock(&dentry->d_lock); } rcu_read_unlock(); return found; } /** * d_hash_and_lookup - hash the qstr then search for a dentry * @dir: Directory to search in * @name: qstr of name we wish to find * * On lookup failure NULL is returned; on bad name - ERR_PTR(-error) */ struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) { /* * Check for a fs-specific hash function. Note that we must * calculate the standard hash first, as the d_op->d_hash() * routine may choose to leave the hash value unchanged. */ name->hash = full_name_hash(name->name, name->len); if (dir->d_flags & DCACHE_OP_HASH) { int err = dir->d_op->d_hash(dir, name); if (unlikely(err < 0)) return ERR_PTR(err); } return d_lookup(dir, name); } EXPORT_SYMBOL(d_hash_and_lookup); /* * When a file is deleted, we have two options: * - turn this dentry into a negative dentry * - unhash this dentry and free it. * * Usually, we want to just turn this into * a negative dentry, but if anybody else is * currently using the dentry or the inode * we can't do that and we fall back on removing * it from the hash queues and waiting for * it to be deleted later when it has no users */ /** * d_delete - delete a dentry * @dentry: The dentry to delete * * Turn the dentry into a negative dentry if possible, otherwise * remove it from the hash queues so it can be deleted later */ void d_delete(struct dentry * dentry) { struct inode *inode; int isdir = 0; /* * Are we the only user? */ again: spin_lock(&dentry->d_lock); inode = dentry->d_inode; isdir = S_ISDIR(inode->i_mode); if (dentry->d_lockref.count == 1) { if (!spin_trylock(&inode->i_lock)) { spin_unlock(&dentry->d_lock); cpu_relax(); goto again; } dentry->d_flags &= ~DCACHE_CANT_MOUNT; dentry_unlink_inode(dentry); fsnotify_nameremove(dentry, isdir); return; } if (!d_unhashed(dentry)) __d_drop(dentry); spin_unlock(&dentry->d_lock); fsnotify_nameremove(dentry, isdir); } EXPORT_SYMBOL(d_delete); static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b) { BUG_ON(!d_unhashed(entry)); hlist_bl_lock(b); entry->d_flags |= DCACHE_RCUACCESS; hlist_bl_add_head_rcu(&entry->d_hash, b); hlist_bl_unlock(b); } static void _d_rehash(struct dentry * entry) { __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash)); } /** * d_rehash - add an entry back to the hash * @entry: dentry to add to the hash * * Adds a dentry to the hash according to its name. */ void d_rehash(struct dentry * entry) { spin_lock(&entry->d_lock); _d_rehash(entry); spin_unlock(&entry->d_lock); } EXPORT_SYMBOL(d_rehash); /* inode->i_lock held if inode is non-NULL */ static inline void __d_add(struct dentry *dentry, struct inode *inode) { if (inode) { __d_instantiate(dentry, inode); spin_unlock(&inode->i_lock); } security_d_instantiate(dentry, inode); d_rehash(dentry); } /** * d_add - add dentry to hash queues * @entry: dentry to add * @inode: The inode to attach to this dentry * * This adds the entry to the hash queues and initializes @inode. * The entry was actually filled in earlier during d_alloc(). */ void d_add(struct dentry *entry, struct inode *inode) { if (inode) spin_lock(&inode->i_lock); __d_add(entry, inode); } EXPORT_SYMBOL(d_add); /** * d_exact_alias - find and hash an exact unhashed alias * @entry: dentry to add * @inode: The inode to go with this dentry * * If an unhashed dentry with the same name/parent and desired * inode already exists, hash and return it. Otherwise, return * NULL. * * Parent directory should be locked. */ struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode) { struct dentry *alias; int len = entry->d_name.len; const char *name = entry->d_name.name; unsigned int hash = entry->d_name.hash; spin_lock(&inode->i_lock); hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { /* * Don't need alias->d_lock here, because aliases with * d_parent == entry->d_parent are not subject to name or * parent changes, because the parent inode i_mutex is held. */ if (alias->d_name.hash != hash) continue; if (alias->d_parent != entry->d_parent) continue; if (alias->d_name.len != len) continue; if (dentry_cmp(alias, name, len)) continue; spin_lock(&alias->d_lock); if (!d_unhashed(alias)) { spin_unlock(&alias->d_lock); alias = NULL; } else { __dget_dlock(alias); _d_rehash(alias); spin_unlock(&alias->d_lock); } spin_unlock(&inode->i_lock); return alias; } spin_unlock(&inode->i_lock); return NULL; } EXPORT_SYMBOL(d_exact_alias); /** * dentry_update_name_case - update case insensitive dentry with a new name * @dentry: dentry to be updated * @name: new name * * Update a case insensitive dentry with new case of name. * * dentry must have been returned by d_lookup with name @name. Old and new * name lengths must match (ie. no d_compare which allows mismatched name * lengths). * * Parent inode i_mutex must be held over d_lookup and into this call (to * keep renames and concurrent inserts, and readdir(2) away). */ void dentry_update_name_case(struct dentry *dentry, struct qstr *name) { BUG_ON(!inode_is_locked(dentry->d_parent->d_inode)); BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */ spin_lock(&dentry->d_lock); write_seqcount_begin(&dentry->d_seq); memcpy((unsigned char *)dentry->d_name.name, name->name, name->len); write_seqcount_end(&dentry->d_seq); spin_unlock(&dentry->d_lock); } EXPORT_SYMBOL(dentry_update_name_case); static void swap_names(struct dentry *dentry, struct dentry *target) { if (unlikely(dname_external(target))) { if (unlikely(dname_external(dentry))) { /* * Both external: swap the pointers */ swap(target->d_name.name, dentry->d_name.name); } else { /* * dentry:internal, target:external. Steal target's * storage and make target internal. */ memcpy(target->d_iname, dentry->d_name.name, dentry->d_name.len + 1); dentry->d_name.name = target->d_name.name; target->d_name.name = target->d_iname; } } else { if (unlikely(dname_external(dentry))) { /* * dentry:external, target:internal. Give dentry's * storage to target and make dentry internal */ memcpy(dentry->d_iname, target->d_name.name, target->d_name.len + 1); target->d_name.name = dentry->d_name.name; dentry->d_name.name = dentry->d_iname; } else { /* * Both are internal. */ unsigned int i; BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long))); kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN); kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN); for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) { swap(((long *) &dentry->d_iname)[i], ((long *) &target->d_iname)[i]); } } } swap(dentry->d_name.hash_len, target->d_name.hash_len); } static void copy_name(struct dentry *dentry, struct dentry *target) { struct external_name *old_name = NULL; if (unlikely(dname_external(dentry))) old_name = external_name(dentry); if (unlikely(dname_external(target))) { atomic_inc(&external_name(target)->u.count); dentry->d_name = target->d_name; } else { memcpy(dentry->d_iname, target->d_name.name, target->d_name.len + 1); dentry->d_name.name = dentry->d_iname; dentry->d_name.hash_len = target->d_name.hash_len; } if (old_name && likely(atomic_dec_and_test(&old_name->u.count))) kfree_rcu(old_name, u.head); } static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target) { /* * XXXX: do we really need to take target->d_lock? */ if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent) spin_lock(&target->d_parent->d_lock); else { if (d_ancestor(dentry->d_parent, target->d_parent)) { spin_lock(&dentry->d_parent->d_lock); spin_lock_nested(&target->d_parent->d_lock, DENTRY_D_LOCK_NESTED); } else { spin_lock(&target->d_parent->d_lock); spin_lock_nested(&dentry->d_parent->d_lock, DENTRY_D_LOCK_NESTED); } } if (target < dentry) { spin_lock_nested(&target->d_lock, 2); spin_lock_nested(&dentry->d_lock, 3); } else { spin_lock_nested(&dentry->d_lock, 2); spin_lock_nested(&target->d_lock, 3); } } static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target) { if (target->d_parent != dentry->d_parent) spin_unlock(&dentry->d_parent->d_lock); if (target->d_parent != target) spin_unlock(&target->d_parent->d_lock); spin_unlock(&target->d_lock); spin_unlock(&dentry->d_lock); } /* * When switching names, the actual string doesn't strictly have to * be preserved in the target - because we're dropping the target * anyway. As such, we can just do a simple memcpy() to copy over * the new name before we switch, unless we are going to rehash * it. Note that if we *do* unhash the target, we are not allowed * to rehash it without giving it a new name/hash key - whether * we swap or overwrite the names here, resulting name won't match * the reality in filesystem; it's only there for d_path() purposes. * Note that all of this is happening under rename_lock, so the * any hash lookup seeing it in the middle of manipulations will * be discarded anyway. So we do not care what happens to the hash * key in that case. */ /* * __d_move - move a dentry * @dentry: entry to move * @target: new dentry * @exchange: exchange the two dentries * * Update the dcache to reflect the move of a file name. Negative * dcache entries should not be moved in this way. Caller must hold * rename_lock, the i_mutex of the source and target directories, * and the sb->s_vfs_rename_mutex if they differ. See lock_rename(). */ static void __d_move(struct dentry *dentry, struct dentry *target, bool exchange) { if (!dentry->d_inode) printk(KERN_WARNING "VFS: moving negative dcache entry\n"); BUG_ON(d_ancestor(dentry, target)); BUG_ON(d_ancestor(target, dentry)); dentry_lock_for_move(dentry, target); write_seqcount_begin(&dentry->d_seq); write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED); /* __d_drop does write_seqcount_barrier, but they're OK to nest. */ /* * Move the dentry to the target hash queue. Don't bother checking * for the same hash queue because of how unlikely it is. */ __d_drop(dentry); __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash)); /* * Unhash the target (d_delete() is not usable here). If exchanging * the two dentries, then rehash onto the other's hash queue. */ __d_drop(target); if (exchange) { __d_rehash(target, d_hash(dentry->d_parent, dentry->d_name.hash)); } /* Switch the names.. */ if (exchange) swap_names(dentry, target); else copy_name(dentry, target); /* ... and switch them in the tree */ if (IS_ROOT(dentry)) { /* splicing a tree */ dentry->d_parent = target->d_parent; target->d_parent = target; list_del_init(&target->d_child); list_move(&dentry->d_child, &dentry->d_parent->d_subdirs); } else { /* swapping two dentries */ swap(dentry->d_parent, target->d_parent); list_move(&target->d_child, &target->d_parent->d_subdirs); list_move(&dentry->d_child, &dentry->d_parent->d_subdirs); if (exchange) fsnotify_d_move(target); fsnotify_d_move(dentry); } write_seqcount_end(&target->d_seq); write_seqcount_end(&dentry->d_seq); dentry_unlock_for_move(dentry, target); } /* * d_move - move a dentry * @dentry: entry to move * @target: new dentry * * Update the dcache to reflect the move of a file name. Negative * dcache entries should not be moved in this way. See the locking * requirements for __d_move. */ void d_move(struct dentry *dentry, struct dentry *target) { write_seqlock(&rename_lock); __d_move(dentry, target, false); write_sequnlock(&rename_lock); } EXPORT_SYMBOL(d_move); /* * d_exchange - exchange two dentries * @dentry1: first dentry * @dentry2: second dentry */ void d_exchange(struct dentry *dentry1, struct dentry *dentry2) { write_seqlock(&rename_lock); WARN_ON(!dentry1->d_inode); WARN_ON(!dentry2->d_inode); WARN_ON(IS_ROOT(dentry1)); WARN_ON(IS_ROOT(dentry2)); __d_move(dentry1, dentry2, true); write_sequnlock(&rename_lock); } /** * d_ancestor - search for an ancestor * @p1: ancestor dentry * @p2: child dentry * * Returns the ancestor dentry of p2 which is a child of p1, if p1 is * an ancestor of p2, else NULL. */ struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) { struct dentry *p; for (p = p2; !IS_ROOT(p); p = p->d_parent) { if (p->d_parent == p1) return p; } return NULL; } /* * This helper attempts to cope with remotely renamed directories * * It assumes that the caller is already holding * dentry->d_parent->d_inode->i_mutex, and rename_lock * * Note: If ever the locking in lock_rename() changes, then please * remember to update this too... */ static int __d_unalias(struct inode *inode, struct dentry *dentry, struct dentry *alias) { struct mutex *m1 = NULL, *m2 = NULL; int ret = -ESTALE; /* If alias and dentry share a parent, then no extra locks required */ if (alias->d_parent == dentry->d_parent) goto out_unalias; /* See lock_rename() */ if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) goto out_err; m1 = &dentry->d_sb->s_vfs_rename_mutex; if (!inode_trylock(alias->d_parent->d_inode)) goto out_err; m2 = &alias->d_parent->d_inode->i_mutex; out_unalias: __d_move(alias, dentry, false); ret = 0; out_err: if (m2) mutex_unlock(m2); if (m1) mutex_unlock(m1); return ret; } /** * d_splice_alias - splice a disconnected dentry into the tree if one exists * @inode: the inode which may have a disconnected dentry * @dentry: a negative dentry which we want to point to the inode. * * If inode is a directory and has an IS_ROOT alias, then d_move that in * place of the given dentry and return it, else simply d_add the inode * to the dentry and return NULL. * * If a non-IS_ROOT directory is found, the filesystem is corrupt, and * we should error out: directories can't have multiple aliases. * * This is needed in the lookup routine of any filesystem that is exportable * (via knfsd) so that we can build dcache paths to directories effectively. * * If a dentry was found and moved, then it is returned. Otherwise NULL * is returned. This matches the expected return value of ->lookup. * * Cluster filesystems may call this function with a negative, hashed dentry. * In that case, we know that the inode will be a regular file, and also this * will only occur during atomic_open. So we need to check for the dentry * being already hashed only in the final case. */ struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) { if (IS_ERR(inode)) return ERR_CAST(inode); BUG_ON(!d_unhashed(dentry)); if (!inode) goto out; spin_lock(&inode->i_lock); if (S_ISDIR(inode->i_mode)) { struct dentry *new = __d_find_any_alias(inode); if (unlikely(new)) { /* The reference to new ensures it remains an alias */ spin_unlock(&inode->i_lock); write_seqlock(&rename_lock); if (unlikely(d_ancestor(new, dentry))) { write_sequnlock(&rename_lock); dput(new); new = ERR_PTR(-ELOOP); pr_warn_ratelimited( "VFS: Lookup of '%s' in %s %s" " would have caused loop\n", dentry->d_name.name, inode->i_sb->s_type->name, inode->i_sb->s_id); } else if (!IS_ROOT(new)) { int err = __d_unalias(inode, dentry, new); write_sequnlock(&rename_lock); if (err) { dput(new); new = ERR_PTR(err); } } else { __d_move(new, dentry, false); write_sequnlock(&rename_lock); security_d_instantiate(new, inode); } iput(inode); return new; } } out: __d_add(dentry, inode); return NULL; } EXPORT_SYMBOL(d_splice_alias); static int prepend(char **buffer, int *buflen, const char *str, int namelen) { *buflen -= namelen; if (*buflen < 0) return -ENAMETOOLONG; *buffer -= namelen; memcpy(*buffer, str, namelen); return 0; } /** * prepend_name - prepend a pathname in front of current buffer pointer * @buffer: buffer pointer * @buflen: allocated length of the buffer * @name: name string and length qstr structure * * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to * make sure that either the old or the new name pointer and length are * fetched. However, there may be mismatch between length and pointer. * The length cannot be trusted, we need to copy it byte-by-byte until * the length is reached or a null byte is found. It also prepends "/" at * the beginning of the name. The sequence number check at the caller will * retry it again when a d_move() does happen. So any garbage in the buffer * due to mismatched pointer and length will be discarded. * * Data dependency barrier is needed to make sure that we see that terminating * NUL. Alpha strikes again, film at 11... */ static int prepend_name(char **buffer, int *buflen, struct qstr *name) { const char *dname = ACCESS_ONCE(name->name); u32 dlen = ACCESS_ONCE(name->len); char *p; smp_read_barrier_depends(); *buflen -= dlen + 1; if (*buflen < 0) return -ENAMETOOLONG; p = *buffer -= dlen + 1; *p++ = '/'; while (dlen--) { char c = *dname++; if (!c) break; *p++ = c; } return 0; } /** * prepend_path - Prepend path string to a buffer * @path: the dentry/vfsmount to report * @root: root vfsmnt/dentry * @buffer: pointer to the end of the buffer * @buflen: pointer to buffer length * * The function will first try to write out the pathname without taking any * lock other than the RCU read lock to make sure that dentries won't go away. * It only checks the sequence number of the global rename_lock as any change * in the dentry's d_seq will be preceded by changes in the rename_lock * sequence number. If the sequence number had been changed, it will restart * the whole pathname back-tracing sequence again by taking the rename_lock. * In this case, there is no need to take the RCU read lock as the recursive * parent pointer references will keep the dentry chain alive as long as no * rename operation is performed. */ static int prepend_path(const struct path *path, const struct path *root, char **buffer, int *buflen) { struct dentry *dentry; struct vfsmount *vfsmnt; struct mount *mnt; int error = 0; unsigned seq, m_seq = 0; char *bptr; int blen; rcu_read_lock(); restart_mnt: read_seqbegin_or_lock(&mount_lock, &m_seq); seq = 0; rcu_read_lock(); restart: bptr = *buffer; blen = *buflen; error = 0; dentry = path->dentry; vfsmnt = path->mnt; mnt = real_mount(vfsmnt); read_seqbegin_or_lock(&rename_lock, &seq); while (dentry != root->dentry || vfsmnt != root->mnt) { struct dentry * parent; if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) { struct mount *parent = ACCESS_ONCE(mnt->mnt_parent); /* Escaped? */ if (dentry != vfsmnt->mnt_root) { bptr = *buffer; blen = *buflen; error = 3; break; } /* Global root? */ if (mnt != parent) { dentry = ACCESS_ONCE(mnt->mnt_mountpoint); mnt = parent; vfsmnt = &mnt->mnt; continue; } if (!error) error = is_mounted(vfsmnt) ? 1 : 2; break; } parent = dentry->d_parent; prefetch(parent); error = prepend_name(&bptr, &blen, &dentry->d_name); if (error) break; dentry = parent; } if (!(seq & 1)) rcu_read_unlock(); if (need_seqretry(&rename_lock, seq)) { seq = 1; goto restart; } done_seqretry(&rename_lock, seq); if (!(m_seq & 1)) rcu_read_unlock(); if (need_seqretry(&mount_lock, m_seq)) { m_seq = 1; goto restart_mnt; } done_seqretry(&mount_lock, m_seq); if (error >= 0 && bptr == *buffer) { if (--blen < 0) error = -ENAMETOOLONG; else *--bptr = '/'; } *buffer = bptr; *buflen = blen; return error; } /** * __d_path - return the path of a dentry * @path: the dentry/vfsmount to report * @root: root vfsmnt/dentry * @buf: buffer to return value in * @buflen: buffer length * * Convert a dentry into an ASCII path name. * * Returns a pointer into the buffer or an error code if the * path was too long. * * "buflen" should be positive. * * If the path is not reachable from the supplied root, return %NULL. */ char *__d_path(const struct path *path, const struct path *root, char *buf, int buflen) { char *res = buf + buflen; int error; prepend(&res, &buflen, "\0", 1); error = prepend_path(path, root, &res, &buflen); if (error < 0) return ERR_PTR(error); if (error > 0) return NULL; return res; } char *d_absolute_path(const struct path *path, char *buf, int buflen) { struct path root = {}; char *res = buf + buflen; int error; prepend(&res, &buflen, "\0", 1); error = prepend_path(path, &root, &res, &buflen); if (error > 1) error = -EINVAL; if (error < 0) return ERR_PTR(error); return res; } /* * same as __d_path but appends "(deleted)" for unlinked files. */ static int path_with_deleted(const struct path *path, const struct path *root, char **buf, int *buflen) { prepend(buf, buflen, "\0", 1); if (d_unlinked(path->dentry)) { int error = prepend(buf, buflen, " (deleted)", 10); if (error) return error; } return prepend_path(path, root, buf, buflen); } static int prepend_unreachable(char **buffer, int *buflen) { return prepend(buffer, buflen, "(unreachable)", 13); } static void get_fs_root_rcu(struct fs_struct *fs, struct path *root) { unsigned seq; do { seq = read_seqcount_begin(&fs->seq); *root = fs->root; } while (read_seqcount_retry(&fs->seq, seq)); } /** * d_path - return the path of a dentry * @path: path to report * @buf: buffer to return value in * @buflen: buffer length * * Convert a dentry into an ASCII path name. If the entry has been deleted * the string " (deleted)" is appended. Note that this is ambiguous. * * Returns a pointer into the buffer or an error code if the path was * too long. Note: Callers should use the returned pointer, not the passed * in buffer, to use the name! The implementation often starts at an offset * into the buffer, and may leave 0 bytes at the start. * * "buflen" should be positive. */ char *d_path(const struct path *path, char *buf, int buflen) { char *res = buf + buflen; struct path root; int error; /* * We have various synthetic filesystems that never get mounted. On * these filesystems dentries are never used for lookup purposes, and * thus don't need to be hashed. They also don't need a name until a * user wants to identify the object in /proc/pid/fd/. The little hack * below allows us to generate a name for these objects on demand: * * Some pseudo inodes are mountable. When they are mounted * path->dentry == path->mnt->mnt_root. In that case don't call d_dname * and instead have d_path return the mounted path. */ if (path->dentry->d_op && path->dentry->d_op->d_dname && (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root)) return path->dentry->d_op->d_dname(path->dentry, buf, buflen); rcu_read_lock(); get_fs_root_rcu(current->fs, &root); error = path_with_deleted(path, &root, &res, &buflen); rcu_read_unlock(); if (error < 0) res = ERR_PTR(error); return res; } EXPORT_SYMBOL(d_path); /* * Helper function for dentry_operations.d_dname() members */ char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen, const char *fmt, ...) { va_list args; char temp[64]; int sz; va_start(args, fmt); sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1; va_end(args); if (sz > sizeof(temp) || sz > buflen) return ERR_PTR(-ENAMETOOLONG); buffer += buflen - sz; return memcpy(buffer, temp, sz); } char *simple_dname(struct dentry *dentry, char *buffer, int buflen) { char *end = buffer + buflen; /* these dentries are never renamed, so d_lock is not needed */ if (prepend(&end, &buflen, " (deleted)", 11) || prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) || prepend(&end, &buflen, "/", 1)) end = ERR_PTR(-ENAMETOOLONG); return end; } EXPORT_SYMBOL(simple_dname); /* * Write full pathname from the root of the filesystem into the buffer. */ static char *__dentry_path(struct dentry *d, char *buf, int buflen) { struct dentry *dentry; char *end, *retval; int len, seq = 0; int error = 0; if (buflen < 2) goto Elong; rcu_read_lock(); restart: dentry = d; end = buf + buflen; len = buflen; prepend(&end, &len, "\0", 1); /* Get '/' right */ retval = end-1; *retval = '/'; read_seqbegin_or_lock(&rename_lock, &seq); while (!IS_ROOT(dentry)) { struct dentry *parent = dentry->d_parent; prefetch(parent); error = prepend_name(&end, &len, &dentry->d_name); if (error) break; retval = end; dentry = parent; } if (!(seq & 1)) rcu_read_unlock(); if (need_seqretry(&rename_lock, seq)) { seq = 1; goto restart; } done_seqretry(&rename_lock, seq); if (error) goto Elong; return retval; Elong: return ERR_PTR(-ENAMETOOLONG); } char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen) { return __dentry_path(dentry, buf, buflen); } EXPORT_SYMBOL(dentry_path_raw); char *dentry_path(struct dentry *dentry, char *buf, int buflen) { char *p = NULL; char *retval; if (d_unlinked(dentry)) { p = buf + buflen; if (prepend(&p, &buflen, "//deleted", 10) != 0) goto Elong; buflen++; } retval = __dentry_path(dentry, buf, buflen); if (!IS_ERR(retval) && p) *p = '/'; /* restore '/' overriden with '\0' */ return retval; Elong: return ERR_PTR(-ENAMETOOLONG); } static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root, struct path *pwd) { unsigned seq; do { seq = read_seqcount_begin(&fs->seq); *root = fs->root; *pwd = fs->pwd; } while (read_seqcount_retry(&fs->seq, seq)); } /* * NOTE! The user-level library version returns a * character pointer. The kernel system call just * returns the length of the buffer filled (which * includes the ending '\0' character), or a negative * error value. So libc would do something like * * char *getcwd(char * buf, size_t size) * { * int retval; * * retval = sys_getcwd(buf, size); * if (retval >= 0) * return buf; * errno = -retval; * return NULL; * } */ SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size) { int error; struct path pwd, root; char *page = __getname(); if (!page) return -ENOMEM; rcu_read_lock(); get_fs_root_and_pwd_rcu(current->fs, &root, &pwd); error = -ENOENT; if (!d_unlinked(pwd.dentry)) { unsigned long len; char *cwd = page + PATH_MAX; int buflen = PATH_MAX; prepend(&cwd, &buflen, "\0", 1); error = prepend_path(&pwd, &root, &cwd, &buflen); rcu_read_unlock(); if (error < 0) goto out; /* Unreachable from current root */ if (error > 0) { error = prepend_unreachable(&cwd, &buflen); if (error) goto out; } error = -ERANGE; len = PATH_MAX + page - cwd; if (len <= size) { error = len; if (copy_to_user(buf, cwd, len)) error = -EFAULT; } } else { rcu_read_unlock(); } out: __putname(page); return error; } /* * Test whether new_dentry is a subdirectory of old_dentry. * * Trivially implemented using the dcache structure */ /** * is_subdir - is new dentry a subdirectory of old_dentry * @new_dentry: new dentry * @old_dentry: old dentry * * Returns true if new_dentry is a subdirectory of the parent (at any depth). * Returns false otherwise. * Caller must ensure that "new_dentry" is pinned before calling is_subdir() */ bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) { bool result; unsigned seq; if (new_dentry == old_dentry) return true; do { /* for restarting inner loop in case of seq retry */ seq = read_seqbegin(&rename_lock); /* * Need rcu_readlock to protect against the d_parent trashing * due to d_move */ rcu_read_lock(); if (d_ancestor(old_dentry, new_dentry)) result = true; else result = false; rcu_read_unlock(); } while (read_seqretry(&rename_lock, seq)); return result; } static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry) { struct dentry *root = data; if (dentry != root) { if (d_unhashed(dentry) || !dentry->d_inode) return D_WALK_SKIP; if (!(dentry->d_flags & DCACHE_GENOCIDE)) { dentry->d_flags |= DCACHE_GENOCIDE; dentry->d_lockref.count--; } } return D_WALK_CONTINUE; } void d_genocide(struct dentry *parent) { d_walk(parent, parent, d_genocide_kill, NULL); } void d_tmpfile(struct dentry *dentry, struct inode *inode) { inode_dec_link_count(inode); BUG_ON(dentry->d_name.name != dentry->d_iname || !hlist_unhashed(&dentry->d_u.d_alias) || !d_unlinked(dentry)); spin_lock(&dentry->d_parent->d_lock); spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); dentry->d_name.len = sprintf(dentry->d_iname, "#%llu", (unsigned long long)inode->i_ino); spin_unlock(&dentry->d_lock); spin_unlock(&dentry->d_parent->d_lock); d_instantiate(dentry, inode); } EXPORT_SYMBOL(d_tmpfile); static __initdata unsigned long dhash_entries; static int __init set_dhash_entries(char *str) { if (!str) return 0; dhash_entries = simple_strtoul(str, &str, 0); return 1; } __setup("dhash_entries=", set_dhash_entries); static void __init dcache_init_early(void) { unsigned int loop; /* If hashes are distributed across NUMA nodes, defer * hash allocation until vmalloc space is available. */ if (hashdist) return; dentry_hashtable = alloc_large_system_hash("Dentry cache", sizeof(struct hlist_bl_head), dhash_entries, 13, HASH_EARLY, &d_hash_shift, &d_hash_mask, 0, 0); for (loop = 0; loop < (1U << d_hash_shift); loop++) INIT_HLIST_BL_HEAD(dentry_hashtable + loop); } static void __init dcache_init(void) { unsigned int loop; /* * A constructor could be added for stable state like the lists, * but it is probably not worth it because of the cache nature * of the dcache. */ dentry_cache = KMEM_CACHE(dentry, SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT); /* Hash may have been set up in dcache_init_early */ if (!hashdist) return; dentry_hashtable = alloc_large_system_hash("Dentry cache", sizeof(struct hlist_bl_head), dhash_entries, 13, 0, &d_hash_shift, &d_hash_mask, 0, 0); for (loop = 0; loop < (1U << d_hash_shift); loop++) INIT_HLIST_BL_HEAD(dentry_hashtable + loop); } /* SLAB cache for __getname() consumers */ struct kmem_cache *names_cachep __read_mostly; EXPORT_SYMBOL(names_cachep); EXPORT_SYMBOL(d_genocide); void __init vfs_caches_init_early(void) { dcache_init_early(); inode_init_early(); } void __init vfs_caches_init(void) { names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); dcache_init(); inode_init(); files_init(); files_maxfiles_init(); mnt_init(); bdev_cache_init(); chrdev_init(); }