/* * fs/f2fs/node.h * * Copyright (c) 2012 Samsung Electronics Co., Ltd. * http://www.samsung.com/ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ /* start node id of a node block dedicated to the given node id */ #define START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK) /* node block offset on the NAT area dedicated to the given start node id */ #define NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK) /* # of pages to perform synchronous readahead before building free nids */ #define FREE_NID_PAGES 4 #define DEF_RA_NID_PAGES 4 /* # of nid pages to be readaheaded */ /* maximum readahead size for node during getting data blocks */ #define MAX_RA_NODE 128 /* control the memory footprint threshold (10MB per 1GB ram) */ #define DEF_RAM_THRESHOLD 10 /* control dirty nats ratio threshold (default: 10% over max nid count) */ #define DEF_DIRTY_NAT_RATIO_THRESHOLD 10 /* vector size for gang look-up from nat cache that consists of radix tree */ #define NATVEC_SIZE 64 #define SETVEC_SIZE 32 /* return value for read_node_page */ #define LOCKED_PAGE 1 /* For flag in struct node_info */ enum { IS_CHECKPOINTED, /* is it checkpointed before? */ HAS_FSYNCED_INODE, /* is the inode fsynced before? */ HAS_LAST_FSYNC, /* has the latest node fsync mark? */ IS_DIRTY, /* this nat entry is dirty? */ }; /* * For node information */ struct node_info { nid_t nid; /* node id */ nid_t ino; /* inode number of the node's owner */ block_t blk_addr; /* block address of the node */ unsigned char version; /* version of the node */ unsigned char flag; /* for node information bits */ }; struct nat_entry { struct list_head list; /* for clean or dirty nat list */ struct node_info ni; /* in-memory node information */ }; #define nat_get_nid(nat) (nat->ni.nid) #define nat_set_nid(nat, n) (nat->ni.nid = n) #define nat_get_blkaddr(nat) (nat->ni.blk_addr) #define nat_set_blkaddr(nat, b) (nat->ni.blk_addr = b) #define nat_get_ino(nat) (nat->ni.ino) #define nat_set_ino(nat, i) (nat->ni.ino = i) #define nat_get_version(nat) (nat->ni.version) #define nat_set_version(nat, v) (nat->ni.version = v) #define inc_node_version(version) (++version) static inline void copy_node_info(struct node_info *dst, struct node_info *src) { dst->nid = src->nid; dst->ino = src->ino; dst->blk_addr = src->blk_addr; dst->version = src->version; /* should not copy flag here */ } static inline void set_nat_flag(struct nat_entry *ne, unsigned int type, bool set) { unsigned char mask = 0x01 << type; if (set) ne->ni.flag |= mask; else ne->ni.flag &= ~mask; } static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type) { unsigned char mask = 0x01 << type; return ne->ni.flag & mask; } static inline void nat_reset_flag(struct nat_entry *ne) { /* these states can be set only after checkpoint was done */ set_nat_flag(ne, IS_CHECKPOINTED, true); set_nat_flag(ne, HAS_FSYNCED_INODE, false); set_nat_flag(ne, HAS_LAST_FSYNC, true); } static inline void node_info_from_raw_nat(struct node_info *ni, struct f2fs_nat_entry *raw_ne) { ni->ino = le32_to_cpu(raw_ne->ino); ni->blk_addr = le32_to_cpu(raw_ne->block_addr); ni->version = raw_ne->version; } static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne, struct node_info *ni) { raw_ne->ino = cpu_to_le32(ni->ino); raw_ne->block_addr = cpu_to_le32(ni->blk_addr); raw_ne->version = ni->version; } static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi) { return NM_I(sbi)->dirty_nat_cnt >= NM_I(sbi)->max_nid * DEF_DIRTY_NAT_RATIO_THRESHOLD / 100; } enum mem_type { FREE_NIDS, /* indicates the free nid list */ NAT_ENTRIES, /* indicates the cached nat entry */ DIRTY_DENTS, /* indicates dirty dentry pages */ INO_ENTRIES, /* indicates inode entries */ EXTENT_CACHE, /* indicates extent cache */ BASE_CHECK, /* check kernel status */ }; struct nat_entry_set { struct list_head set_list; /* link with other nat sets */ struct list_head entry_list; /* link with dirty nat entries */ nid_t set; /* set number*/ unsigned int entry_cnt; /* the # of nat entries in set */ }; /* * For free nid mangement */ enum nid_state { NID_NEW, /* newly added to free nid list */ NID_ALLOC /* it is allocated */ }; struct free_nid { struct list_head list; /* for free node id list */ nid_t nid; /* node id */ int state; /* in use or not: NID_NEW or NID_ALLOC */ }; static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid) { struct f2fs_nm_info *nm_i = NM_I(sbi); struct free_nid *fnid; spin_lock(&nm_i->free_nid_list_lock); if (nm_i->fcnt <= 0) { spin_unlock(&nm_i->free_nid_list_lock); return; } fnid = list_entry(nm_i->free_nid_list.next, struct free_nid, list); *nid = fnid->nid; spin_unlock(&nm_i->free_nid_list_lock); } /* * inline functions */ static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr) { struct f2fs_nm_info *nm_i = NM_I(sbi); memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size); } static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start) { struct f2fs_nm_info *nm_i = NM_I(sbi); pgoff_t block_off; pgoff_t block_addr; int seg_off; block_off = NAT_BLOCK_OFFSET(start); seg_off = block_off >> sbi->log_blocks_per_seg; block_addr = (pgoff_t)(nm_i->nat_blkaddr + (seg_off << sbi->log_blocks_per_seg << 1) + (block_off & (sbi->blocks_per_seg - 1))); if (f2fs_test_bit(block_off, nm_i->nat_bitmap)) block_addr += sbi->blocks_per_seg; return block_addr; } static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi, pgoff_t block_addr) { struct f2fs_nm_info *nm_i = NM_I(sbi); block_addr -= nm_i->nat_blkaddr; if ((block_addr >> sbi->log_blocks_per_seg) % 2) block_addr -= sbi->blocks_per_seg; else block_addr += sbi->blocks_per_seg; return block_addr + nm_i->nat_blkaddr; } static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid) { unsigned int block_off = NAT_BLOCK_OFFSET(start_nid); f2fs_change_bit(block_off, nm_i->nat_bitmap); } static inline void fill_node_footer(struct page *page, nid_t nid, nid_t ino, unsigned int ofs, bool reset) { struct f2fs_node *rn = F2FS_NODE(page); unsigned int old_flag = 0; if (reset) memset(rn, 0, sizeof(*rn)); else old_flag = le32_to_cpu(rn->footer.flag); rn->footer.nid = cpu_to_le32(nid); rn->footer.ino = cpu_to_le32(ino); /* should remain old flag bits such as COLD_BIT_SHIFT */ rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) | (old_flag & OFFSET_BIT_MASK)); } static inline void copy_node_footer(struct page *dst, struct page *src) { struct f2fs_node *src_rn = F2FS_NODE(src); struct f2fs_node *dst_rn = F2FS_NODE(dst); memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer)); } static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr) { struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page)); struct f2fs_node *rn = F2FS_NODE(page); rn->footer.cp_ver = ckpt->checkpoint_ver; rn->footer.next_blkaddr = cpu_to_le32(blkaddr); } static inline nid_t ino_of_node(struct page *node_page) { struct f2fs_node *rn = F2FS_NODE(node_page); return le32_to_cpu(rn->footer.ino); } static inline nid_t nid_of_node(struct page *node_page) { struct f2fs_node *rn = F2FS_NODE(node_page); return le32_to_cpu(rn->footer.nid); } static inline unsigned int ofs_of_node(struct page *node_page) { struct f2fs_node *rn = F2FS_NODE(node_page); unsigned flag = le32_to_cpu(rn->footer.flag); return flag >> OFFSET_BIT_SHIFT; } static inline unsigned long long cpver_of_node(struct page *node_page) { struct f2fs_node *rn = F2FS_NODE(node_page); return le64_to_cpu(rn->footer.cp_ver); } static inline block_t next_blkaddr_of_node(struct page *node_page) { struct f2fs_node *rn = F2FS_NODE(node_page); return le32_to_cpu(rn->footer.next_blkaddr); } /* * f2fs assigns the following node offsets described as (num). * N = NIDS_PER_BLOCK * * Inode block (0) * |- direct node (1) * |- direct node (2) * |- indirect node (3) * | `- direct node (4 => 4 + N - 1) * |- indirect node (4 + N) * | `- direct node (5 + N => 5 + 2N - 1) * `- double indirect node (5 + 2N) * `- indirect node (6 + 2N) * `- direct node * ...... * `- indirect node ((6 + 2N) + x(N + 1)) * `- direct node * ...... * `- indirect node ((6 + 2N) + (N - 1)(N + 1)) * `- direct node */ static inline bool IS_DNODE(struct page *node_page) { unsigned int ofs = ofs_of_node(node_page); if (f2fs_has_xattr_block(ofs)) return false; if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK || ofs == 5 + 2 * NIDS_PER_BLOCK) return false; if (ofs >= 6 + 2 * NIDS_PER_BLOCK) { ofs -= 6 + 2 * NIDS_PER_BLOCK; if (!((long int)ofs % (NIDS_PER_BLOCK + 1))) return false; } return true; } static inline int set_nid(struct page *p, int off, nid_t nid, bool i) { struct f2fs_node *rn = F2FS_NODE(p); f2fs_wait_on_page_writeback(p, NODE); if (i) rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid); else rn->in.nid[off] = cpu_to_le32(nid); return set_page_dirty(p); } static inline nid_t get_nid(struct page *p, int off, bool i) { struct f2fs_node *rn = F2FS_NODE(p); if (i) return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]); return le32_to_cpu(rn->in.nid[off]); } /* * Coldness identification: * - Mark cold files in f2fs_inode_info * - Mark cold node blocks in their node footer * - Mark cold data pages in page cache */ static inline int is_cold_data(struct page *page) { return PageChecked(page); } static inline void set_cold_data(struct page *page) { SetPageChecked(page); } static inline void clear_cold_data(struct page *page) { ClearPageChecked(page); } static inline int is_node(struct page *page, int type) { struct f2fs_node *rn = F2FS_NODE(page); return le32_to_cpu(rn->footer.flag) & (1 << type); } #define is_cold_node(page) is_node(page, COLD_BIT_SHIFT) #define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT) #define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT) static inline void set_cold_node(struct inode *inode, struct page *page) { struct f2fs_node *rn = F2FS_NODE(page); unsigned int flag = le32_to_cpu(rn->footer.flag); if (S_ISDIR(inode->i_mode)) flag &= ~(0x1 << COLD_BIT_SHIFT); else flag |= (0x1 << COLD_BIT_SHIFT); rn->footer.flag = cpu_to_le32(flag); } static inline void set_mark(struct page *page, int mark, int type) { struct f2fs_node *rn = F2FS_NODE(page); unsigned int flag = le32_to_cpu(rn->footer.flag); if (mark) flag |= (0x1 << type); else flag &= ~(0x1 << type); rn->footer.flag = cpu_to_le32(flag); } #define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT) #define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT)