/* * Copyright (C) 2008 Red Hat, Inc., Eric Paris * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * fsnotify inode mark locking/lifetime/and refcnting * * REFCNT: * The group->recnt and mark->refcnt tell how many "things" in the kernel * currently are referencing the objects. Both kind of objects typically will * live inside the kernel with a refcnt of 2, one for its creation and one for * the reference a group and a mark hold to each other. * If you are holding the appropriate locks, you can take a reference and the * object itself is guaranteed to survive until the reference is dropped. * * LOCKING: * There are 3 locks involved with fsnotify inode marks and they MUST be taken * in order as follows: * * group->mark_mutex * mark->lock * mark->connector->lock * * group->mark_mutex protects the marks_list anchored inside a given group and * each mark is hooked via the g_list. It also protects the groups private * data (i.e group limits). * mark->lock protects the marks attributes like its masks and flags. * Furthermore it protects the access to a reference of the group that the mark * is assigned to as well as the access to a reference of the inode/vfsmount * that is being watched by the mark. * * mark->connector->lock protects the list of marks anchored inside an * inode / vfsmount and each mark is hooked via the i_list. * * A list of notification marks relating to inode / mnt is contained in * fsnotify_mark_connector. That structure is alive as long as there are any * marks in the list and is also protected by fsnotify_mark_srcu. A mark gets * detached from fsnotify_mark_connector when last reference to the mark is * dropped. Thus having mark reference is enough to protect mark->connector * pointer and to make sure fsnotify_mark_connector cannot disappear. Also * because we remove mark from g_list before dropping mark reference associated * with that, any mark found through g_list is guaranteed to have * mark->connector set until we drop group->mark_mutex. * * LIFETIME: * Inode marks survive between when they are added to an inode and when their * refcnt==0. Marks are also protected by fsnotify_mark_srcu. * * The inode mark can be cleared for a number of different reasons including: * - The inode is unlinked for the last time. (fsnotify_inode_remove) * - The inode is being evicted from cache. (fsnotify_inode_delete) * - The fs the inode is on is unmounted. (fsnotify_inode_delete/fsnotify_unmount_inodes) * - Something explicitly requests that it be removed. (fsnotify_destroy_mark) * - The fsnotify_group associated with the mark is going away and all such marks * need to be cleaned up. (fsnotify_clear_marks_by_group) * * This has the very interesting property of being able to run concurrently with * any (or all) other directions. */ #include #include #include #include #include #include #include #include #include #include #include #include "fsnotify.h" #define FSNOTIFY_REAPER_DELAY (1) /* 1 jiffy */ struct srcu_struct fsnotify_mark_srcu; struct kmem_cache *fsnotify_mark_connector_cachep; static DEFINE_SPINLOCK(destroy_lock); static LIST_HEAD(destroy_list); static struct fsnotify_mark_connector *connector_destroy_list; static void fsnotify_mark_destroy_workfn(struct work_struct *work); static DECLARE_DELAYED_WORK(reaper_work, fsnotify_mark_destroy_workfn); static void fsnotify_connector_destroy_workfn(struct work_struct *work); static DECLARE_WORK(connector_reaper_work, fsnotify_connector_destroy_workfn); void fsnotify_get_mark(struct fsnotify_mark *mark) { WARN_ON_ONCE(!refcount_read(&mark->refcnt)); refcount_inc(&mark->refcnt); } static void __fsnotify_recalc_mask(struct fsnotify_mark_connector *conn) { u32 new_mask = 0; struct fsnotify_mark *mark; assert_spin_locked(&conn->lock); hlist_for_each_entry(mark, &conn->list, obj_list) { if (mark->flags & FSNOTIFY_MARK_FLAG_ATTACHED) new_mask |= mark->mask; } if (conn->type == FSNOTIFY_OBJ_TYPE_INODE) conn->inode->i_fsnotify_mask = new_mask; else if (conn->type == FSNOTIFY_OBJ_TYPE_VFSMOUNT) real_mount(conn->mnt)->mnt_fsnotify_mask = new_mask; } /* * Calculate mask of events for a list of marks. The caller must make sure * connector and connector->inode cannot disappear under us. Callers achieve * this by holding a mark->lock or mark->group->mark_mutex for a mark on this * list. */ void fsnotify_recalc_mask(struct fsnotify_mark_connector *conn) { if (!conn) return; spin_lock(&conn->lock); __fsnotify_recalc_mask(conn); spin_unlock(&conn->lock); if (conn->type == FSNOTIFY_OBJ_TYPE_INODE) __fsnotify_update_child_dentry_flags(conn->inode); } /* Free all connectors queued for freeing once SRCU period ends */ static void fsnotify_connector_destroy_workfn(struct work_struct *work) { struct fsnotify_mark_connector *conn, *free; spin_lock(&destroy_lock); conn = connector_destroy_list; connector_destroy_list = NULL; spin_unlock(&destroy_lock); synchronize_srcu(&fsnotify_mark_srcu); while (conn) { free = conn; conn = conn->destroy_next; kmem_cache_free(fsnotify_mark_connector_cachep, free); } } static struct inode *fsnotify_detach_connector_from_object( struct fsnotify_mark_connector *conn) { struct inode *inode = NULL; if (conn->type == FSNOTIFY_OBJ_TYPE_INODE) { inode = conn->inode; rcu_assign_pointer(inode->i_fsnotify_marks, NULL); inode->i_fsnotify_mask = 0; conn->inode = NULL; conn->type = FSNOTIFY_OBJ_TYPE_DETACHED; } else if (conn->type == FSNOTIFY_OBJ_TYPE_VFSMOUNT) { rcu_assign_pointer(real_mount(conn->mnt)->mnt_fsnotify_marks, NULL); real_mount(conn->mnt)->mnt_fsnotify_mask = 0; conn->mnt = NULL; conn->type = FSNOTIFY_OBJ_TYPE_DETACHED; } return inode; } static void fsnotify_final_mark_destroy(struct fsnotify_mark *mark) { struct fsnotify_group *group = mark->group; if (WARN_ON_ONCE(!group)) return; group->ops->free_mark(mark); fsnotify_put_group(group); } void fsnotify_put_mark(struct fsnotify_mark *mark) { struct fsnotify_mark_connector *conn; struct inode *inode = NULL; bool free_conn = false; /* Catch marks that were actually never attached to object */ if (!mark->connector) { if (refcount_dec_and_test(&mark->refcnt)) fsnotify_final_mark_destroy(mark); return; } /* * We have to be careful so that traversals of obj_list under lock can * safely grab mark reference. */ if (!refcount_dec_and_lock(&mark->refcnt, &mark->connector->lock)) return; conn = mark->connector; hlist_del_init_rcu(&mark->obj_list); if (hlist_empty(&conn->list)) { inode = fsnotify_detach_connector_from_object(conn); free_conn = true; } else { __fsnotify_recalc_mask(conn); } mark->connector = NULL; spin_unlock(&conn->lock); iput(inode); if (free_conn) { spin_lock(&destroy_lock); conn->destroy_next = connector_destroy_list; connector_destroy_list = conn; spin_unlock(&destroy_lock); queue_work(system_unbound_wq, &connector_reaper_work); } /* * Note that we didn't update flags telling whether inode cares about * what's happening with children. We update these flags from * __fsnotify_parent() lazily when next event happens on one of our * children. */ spin_lock(&destroy_lock); list_add(&mark->g_list, &destroy_list); spin_unlock(&destroy_lock); queue_delayed_work(system_unbound_wq, &reaper_work, FSNOTIFY_REAPER_DELAY); } /* * Get mark reference when we found the mark via lockless traversal of object * list. Mark can be already removed from the list by now and on its way to be * destroyed once SRCU period ends. * * Also pin the group so it doesn't disappear under us. */ static bool fsnotify_get_mark_safe(struct fsnotify_mark *mark) { if (!mark) return true; if (refcount_inc_not_zero(&mark->refcnt)) { spin_lock(&mark->lock); if (mark->flags & FSNOTIFY_MARK_FLAG_ATTACHED) { /* mark is attached, group is still alive then */ atomic_inc(&mark->group->user_waits); spin_unlock(&mark->lock); return true; } spin_unlock(&mark->lock); fsnotify_put_mark(mark); } return false; } /* * Puts marks and wakes up group destruction if necessary. * * Pairs with fsnotify_get_mark_safe() */ static void fsnotify_put_mark_wake(struct fsnotify_mark *mark) { if (mark) { struct fsnotify_group *group = mark->group; fsnotify_put_mark(mark); /* * We abuse notification_waitq on group shutdown for waiting for * all marks pinned when waiting for userspace. */ if (atomic_dec_and_test(&group->user_waits) && group->shutdown) wake_up(&group->notification_waitq); } } bool fsnotify_prepare_user_wait(struct fsnotify_iter_info *iter_info) { /* This can fail if mark is being removed */ if (!fsnotify_get_mark_safe(iter_info->inode_mark)) return false; if (!fsnotify_get_mark_safe(iter_info->vfsmount_mark)) { fsnotify_put_mark_wake(iter_info->inode_mark); return false; } /* * Now that both marks are pinned by refcount in the inode / vfsmount * lists, we can drop SRCU lock, and safely resume the list iteration * once userspace returns. */ srcu_read_unlock(&fsnotify_mark_srcu, iter_info->srcu_idx); return true; } void fsnotify_finish_user_wait(struct fsnotify_iter_info *iter_info) { iter_info->srcu_idx = srcu_read_lock(&fsnotify_mark_srcu); fsnotify_put_mark_wake(iter_info->inode_mark); fsnotify_put_mark_wake(iter_info->vfsmount_mark); } /* * Mark mark as detached, remove it from group list. Mark still stays in object * list until its last reference is dropped. Note that we rely on mark being * removed from group list before corresponding reference to it is dropped. In * particular we rely on mark->connector being valid while we hold * group->mark_mutex if we found the mark through g_list. * * Must be called with group->mark_mutex held. The caller must either hold * reference to the mark or be protected by fsnotify_mark_srcu. */ void fsnotify_detach_mark(struct fsnotify_mark *mark) { struct fsnotify_group *group = mark->group; WARN_ON_ONCE(!mutex_is_locked(&group->mark_mutex)); WARN_ON_ONCE(!srcu_read_lock_held(&fsnotify_mark_srcu) && refcount_read(&mark->refcnt) < 1 + !!(mark->flags & FSNOTIFY_MARK_FLAG_ATTACHED)); spin_lock(&mark->lock); /* something else already called this function on this mark */ if (!(mark->flags & FSNOTIFY_MARK_FLAG_ATTACHED)) { spin_unlock(&mark->lock); return; } mark->flags &= ~FSNOTIFY_MARK_FLAG_ATTACHED; list_del_init(&mark->g_list); spin_unlock(&mark->lock); atomic_dec(&group->num_marks); /* Drop mark reference acquired in fsnotify_add_mark_locked() */ fsnotify_put_mark(mark); } /* * Free fsnotify mark. The mark is actually only marked as being freed. The * freeing is actually happening only once last reference to the mark is * dropped from a workqueue which first waits for srcu period end. * * Caller must have a reference to the mark or be protected by * fsnotify_mark_srcu. */ void fsnotify_free_mark(struct fsnotify_mark *mark) { struct fsnotify_group *group = mark->group; spin_lock(&mark->lock); /* something else already called this function on this mark */ if (!(mark->flags & FSNOTIFY_MARK_FLAG_ALIVE)) { spin_unlock(&mark->lock); return; } mark->flags &= ~FSNOTIFY_MARK_FLAG_ALIVE; spin_unlock(&mark->lock); /* * Some groups like to know that marks are being freed. This is a * callback to the group function to let it know that this mark * is being freed. */ if (group->ops->freeing_mark) group->ops->freeing_mark(mark, group); } void fsnotify_destroy_mark(struct fsnotify_mark *mark, struct fsnotify_group *group) { mutex_lock_nested(&group->mark_mutex, SINGLE_DEPTH_NESTING); fsnotify_detach_mark(mark); mutex_unlock(&group->mark_mutex); fsnotify_free_mark(mark); } /* * Sorting function for lists of fsnotify marks. * * Fanotify supports different notification classes (reflected as priority of * notification group). Events shall be passed to notification groups in * decreasing priority order. To achieve this marks in notification lists for * inodes and vfsmounts are sorted so that priorities of corresponding groups * are descending. * * Furthermore correct handling of the ignore mask requires processing inode * and vfsmount marks of each group together. Using the group address as * further sort criterion provides a unique sorting order and thus we can * merge inode and vfsmount lists of marks in linear time and find groups * present in both lists. * * A return value of 1 signifies that b has priority over a. * A return value of 0 signifies that the two marks have to be handled together. * A return value of -1 signifies that a has priority over b. */ int fsnotify_compare_groups(struct fsnotify_group *a, struct fsnotify_group *b) { if (a == b) return 0; if (!a) return 1; if (!b) return -1; if (a->priority < b->priority) return 1; if (a->priority > b->priority) return -1; if (a < b) return 1; return -1; } static int fsnotify_attach_connector_to_object( struct fsnotify_mark_connector __rcu **connp, struct inode *inode, struct vfsmount *mnt) { struct fsnotify_mark_connector *conn; conn = kmem_cache_alloc(fsnotify_mark_connector_cachep, GFP_KERNEL); if (!conn) return -ENOMEM; spin_lock_init(&conn->lock); INIT_HLIST_HEAD(&conn->list); if (inode) { conn->type = FSNOTIFY_OBJ_TYPE_INODE; conn->inode = igrab(inode); } else { conn->type = FSNOTIFY_OBJ_TYPE_VFSMOUNT; conn->mnt = mnt; } /* * cmpxchg() provides the barrier so that readers of *connp can see * only initialized structure */ if (cmpxchg(connp, NULL, conn)) { /* Someone else created list structure for us */ if (inode) iput(inode); kmem_cache_free(fsnotify_mark_connector_cachep, conn); } return 0; } /* * Get mark connector, make sure it is alive and return with its lock held. * This is for users that get connector pointer from inode or mount. Users that * hold reference to a mark on the list may directly lock connector->lock as * they are sure list cannot go away under them. */ static struct fsnotify_mark_connector *fsnotify_grab_connector( struct fsnotify_mark_connector __rcu **connp) { struct fsnotify_mark_connector *conn; int idx; idx = srcu_read_lock(&fsnotify_mark_srcu); conn = srcu_dereference(*connp, &fsnotify_mark_srcu); if (!conn) goto out; spin_lock(&conn->lock); if (conn->type == FSNOTIFY_OBJ_TYPE_DETACHED) { spin_unlock(&conn->lock); srcu_read_unlock(&fsnotify_mark_srcu, idx); return NULL; } out: srcu_read_unlock(&fsnotify_mark_srcu, idx); return conn; } /* * Add mark into proper place in given list of marks. These marks may be used * for the fsnotify backend to determine which event types should be delivered * to which group and for which inodes. These marks are ordered according to * priority, highest number first, and then by the group's location in memory. */ static int fsnotify_add_mark_list(struct fsnotify_mark *mark, struct inode *inode, struct vfsmount *mnt, int allow_dups) { struct fsnotify_mark *lmark, *last = NULL; struct fsnotify_mark_connector *conn; struct fsnotify_mark_connector __rcu **connp; int cmp; int err = 0; if (WARN_ON(!inode && !mnt)) return -EINVAL; if (inode) connp = &inode->i_fsnotify_marks; else connp = &real_mount(mnt)->mnt_fsnotify_marks; restart: spin_lock(&mark->lock); conn = fsnotify_grab_connector(connp); if (!conn) { spin_unlock(&mark->lock); err = fsnotify_attach_connector_to_object(connp, inode, mnt); if (err) return err; goto restart; } /* is mark the first mark? */ if (hlist_empty(&conn->list)) { hlist_add_head_rcu(&mark->obj_list, &conn->list); goto added; } /* should mark be in the middle of the current list? */ hlist_for_each_entry(lmark, &conn->list, obj_list) { last = lmark; if ((lmark->group == mark->group) && (lmark->flags & FSNOTIFY_MARK_FLAG_ATTACHED) && !allow_dups) { err = -EEXIST; goto out_err; } cmp = fsnotify_compare_groups(lmark->group, mark->group); if (cmp >= 0) { hlist_add_before_rcu(&mark->obj_list, &lmark->obj_list); goto added; } } BUG_ON(last == NULL); /* mark should be the last entry. last is the current last entry */ hlist_add_behind_rcu(&mark->obj_list, &last->obj_list); added: mark->connector = conn; out_err: spin_unlock(&conn->lock); spin_unlock(&mark->lock); return err; } /* * Attach an initialized mark to a given group and fs object. * These marks may be used for the fsnotify backend to determine which * event types should be delivered to which group. */ int fsnotify_add_mark_locked(struct fsnotify_mark *mark, struct inode *inode, struct vfsmount *mnt, int allow_dups) { struct fsnotify_group *group = mark->group; int ret = 0; BUG_ON(inode && mnt); BUG_ON(!inode && !mnt); BUG_ON(!mutex_is_locked(&group->mark_mutex)); /* * LOCKING ORDER!!!! * group->mark_mutex * mark->lock * mark->connector->lock */ spin_lock(&mark->lock); mark->flags |= FSNOTIFY_MARK_FLAG_ALIVE | FSNOTIFY_MARK_FLAG_ATTACHED; list_add(&mark->g_list, &group->marks_list); atomic_inc(&group->num_marks); fsnotify_get_mark(mark); /* for g_list */ spin_unlock(&mark->lock); ret = fsnotify_add_mark_list(mark, inode, mnt, allow_dups); if (ret) goto err; if (mark->mask) fsnotify_recalc_mask(mark->connector); return ret; err: spin_lock(&mark->lock); mark->flags &= ~(FSNOTIFY_MARK_FLAG_ALIVE | FSNOTIFY_MARK_FLAG_ATTACHED); list_del_init(&mark->g_list); spin_unlock(&mark->lock); atomic_dec(&group->num_marks); fsnotify_put_mark(mark); return ret; } int fsnotify_add_mark(struct fsnotify_mark *mark, struct inode *inode, struct vfsmount *mnt, int allow_dups) { int ret; struct fsnotify_group *group = mark->group; mutex_lock(&group->mark_mutex); ret = fsnotify_add_mark_locked(mark, inode, mnt, allow_dups); mutex_unlock(&group->mark_mutex); return ret; } /* * Given a list of marks, find the mark associated with given group. If found * take a reference to that mark and return it, else return NULL. */ struct fsnotify_mark *fsnotify_find_mark( struct fsnotify_mark_connector __rcu **connp, struct fsnotify_group *group) { struct fsnotify_mark_connector *conn; struct fsnotify_mark *mark; conn = fsnotify_grab_connector(connp); if (!conn) return NULL; hlist_for_each_entry(mark, &conn->list, obj_list) { if (mark->group == group && (mark->flags & FSNOTIFY_MARK_FLAG_ATTACHED)) { fsnotify_get_mark(mark); spin_unlock(&conn->lock); return mark; } } spin_unlock(&conn->lock); return NULL; } /* Clear any marks in a group with given type mask */ void fsnotify_clear_marks_by_group(struct fsnotify_group *group, unsigned int type_mask) { struct fsnotify_mark *lmark, *mark; LIST_HEAD(to_free); struct list_head *head = &to_free; /* Skip selection step if we want to clear all marks. */ if (type_mask == FSNOTIFY_OBJ_ALL_TYPES_MASK) { head = &group->marks_list; goto clear; } /* * We have to be really careful here. Anytime we drop mark_mutex, e.g. * fsnotify_clear_marks_by_inode() can come and free marks. Even in our * to_free list so we have to use mark_mutex even when accessing that * list. And freeing mark requires us to drop mark_mutex. So we can * reliably free only the first mark in the list. That's why we first * move marks to free to to_free list in one go and then free marks in * to_free list one by one. */ mutex_lock_nested(&group->mark_mutex, SINGLE_DEPTH_NESTING); list_for_each_entry_safe(mark, lmark, &group->marks_list, g_list) { if ((1U << mark->connector->type) & type_mask) list_move(&mark->g_list, &to_free); } mutex_unlock(&group->mark_mutex); clear: while (1) { mutex_lock_nested(&group->mark_mutex, SINGLE_DEPTH_NESTING); if (list_empty(head)) { mutex_unlock(&group->mark_mutex); break; } mark = list_first_entry(head, struct fsnotify_mark, g_list); fsnotify_get_mark(mark); fsnotify_detach_mark(mark); mutex_unlock(&group->mark_mutex); fsnotify_free_mark(mark); fsnotify_put_mark(mark); } } /* Destroy all marks attached to inode / vfsmount */ void fsnotify_destroy_marks(struct fsnotify_mark_connector __rcu **connp) { struct fsnotify_mark_connector *conn; struct fsnotify_mark *mark, *old_mark = NULL; struct inode *inode; conn = fsnotify_grab_connector(connp); if (!conn) return; /* * We have to be careful since we can race with e.g. * fsnotify_clear_marks_by_group() and once we drop the conn->lock, the * list can get modified. However we are holding mark reference and * thus our mark cannot be removed from obj_list so we can continue * iteration after regaining conn->lock. */ hlist_for_each_entry(mark, &conn->list, obj_list) { fsnotify_get_mark(mark); spin_unlock(&conn->lock); if (old_mark) fsnotify_put_mark(old_mark); old_mark = mark; fsnotify_destroy_mark(mark, mark->group); spin_lock(&conn->lock); } /* * Detach list from object now so that we don't pin inode until all * mark references get dropped. It would lead to strange results such * as delaying inode deletion or blocking unmount. */ inode = fsnotify_detach_connector_from_object(conn); spin_unlock(&conn->lock); if (old_mark) fsnotify_put_mark(old_mark); iput(inode); } /* * Nothing fancy, just initialize lists and locks and counters. */ void fsnotify_init_mark(struct fsnotify_mark *mark, struct fsnotify_group *group) { memset(mark, 0, sizeof(*mark)); spin_lock_init(&mark->lock); refcount_set(&mark->refcnt, 1); fsnotify_get_group(group); mark->group = group; } /* * Destroy all marks in destroy_list, waits for SRCU period to finish before * actually freeing marks. */ static void fsnotify_mark_destroy_workfn(struct work_struct *work) { struct fsnotify_mark *mark, *next; struct list_head private_destroy_list; spin_lock(&destroy_lock); /* exchange the list head */ list_replace_init(&destroy_list, &private_destroy_list); spin_unlock(&destroy_lock); synchronize_srcu(&fsnotify_mark_srcu); list_for_each_entry_safe(mark, next, &private_destroy_list, g_list) { list_del_init(&mark->g_list); fsnotify_final_mark_destroy(mark); } } /* Wait for all marks queued for destruction to be actually destroyed */ void fsnotify_wait_marks_destroyed(void) { flush_delayed_work(&reaper_work); }