/* -*- mode: c; c-basic-offset: 8; -*- * vim: noexpandtab sw=8 ts=8 sts=0: * * xattr.c * * Copyright (C) 2004, 2008 Oracle. All rights reserved. * * CREDITS: * Lots of code in this file is copy from linux/fs/ext3/xattr.c. * Copyright (C) 2001-2003 Andreas Gruenbacher, <agruen@suse.de> * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. */ #include <linux/capability.h> #include <linux/fs.h> #include <linux/types.h> #include <linux/slab.h> #include <linux/highmem.h> #include <linux/pagemap.h> #include <linux/uio.h> #include <linux/sched.h> #include <linux/splice.h> #include <linux/mount.h> #include <linux/writeback.h> #include <linux/falloc.h> #include <linux/sort.h> #include <linux/init.h> #include <linux/module.h> #include <linux/string.h> #include <linux/security.h> #include <cluster/masklog.h> #include "ocfs2.h" #include "alloc.h" #include "blockcheck.h" #include "dlmglue.h" #include "file.h" #include "symlink.h" #include "sysfile.h" #include "inode.h" #include "journal.h" #include "ocfs2_fs.h" #include "suballoc.h" #include "uptodate.h" #include "buffer_head_io.h" #include "super.h" #include "xattr.h" #include "refcounttree.h" #include "acl.h" #include "ocfs2_trace.h" struct ocfs2_xattr_def_value_root { struct ocfs2_xattr_value_root xv; struct ocfs2_extent_rec er; }; struct ocfs2_xattr_bucket { /* The inode these xattrs are associated with */ struct inode *bu_inode; /* The actual buffers that make up the bucket */ struct buffer_head *bu_bhs[OCFS2_XATTR_MAX_BLOCKS_PER_BUCKET]; /* How many blocks make up one bucket for this filesystem */ int bu_blocks; }; struct ocfs2_xattr_set_ctxt { handle_t *handle; struct ocfs2_alloc_context *meta_ac; struct ocfs2_alloc_context *data_ac; struct ocfs2_cached_dealloc_ctxt dealloc; int set_abort; }; #define OCFS2_XATTR_ROOT_SIZE (sizeof(struct ocfs2_xattr_def_value_root)) #define OCFS2_XATTR_INLINE_SIZE 80 #define OCFS2_XATTR_HEADER_GAP 4 #define OCFS2_XATTR_FREE_IN_IBODY (OCFS2_MIN_XATTR_INLINE_SIZE \ - sizeof(struct ocfs2_xattr_header) \ - OCFS2_XATTR_HEADER_GAP) #define OCFS2_XATTR_FREE_IN_BLOCK(ptr) ((ptr)->i_sb->s_blocksize \ - sizeof(struct ocfs2_xattr_block) \ - sizeof(struct ocfs2_xattr_header) \ - OCFS2_XATTR_HEADER_GAP) static struct ocfs2_xattr_def_value_root def_xv = { .xv.xr_list.l_count = cpu_to_le16(1), }; const struct xattr_handler *ocfs2_xattr_handlers[] = { &ocfs2_xattr_user_handler, &ocfs2_xattr_acl_access_handler, &ocfs2_xattr_acl_default_handler, &ocfs2_xattr_trusted_handler, &ocfs2_xattr_security_handler, NULL }; static const struct xattr_handler *ocfs2_xattr_handler_map[OCFS2_XATTR_MAX] = { [OCFS2_XATTR_INDEX_USER] = &ocfs2_xattr_user_handler, [OCFS2_XATTR_INDEX_POSIX_ACL_ACCESS] = &ocfs2_xattr_acl_access_handler, [OCFS2_XATTR_INDEX_POSIX_ACL_DEFAULT] = &ocfs2_xattr_acl_default_handler, [OCFS2_XATTR_INDEX_TRUSTED] = &ocfs2_xattr_trusted_handler, [OCFS2_XATTR_INDEX_SECURITY] = &ocfs2_xattr_security_handler, }; struct ocfs2_xattr_info { int xi_name_index; const char *xi_name; int xi_name_len; const void *xi_value; size_t xi_value_len; }; struct ocfs2_xattr_search { struct buffer_head *inode_bh; /* * xattr_bh point to the block buffer head which has extended attribute * when extended attribute in inode, xattr_bh is equal to inode_bh. */ struct buffer_head *xattr_bh; struct ocfs2_xattr_header *header; struct ocfs2_xattr_bucket *bucket; void *base; void *end; struct ocfs2_xattr_entry *here; int not_found; }; /* Operations on struct ocfs2_xa_entry */ struct ocfs2_xa_loc; struct ocfs2_xa_loc_operations { /* * Journal functions */ int (*xlo_journal_access)(handle_t *handle, struct ocfs2_xa_loc *loc, int type); void (*xlo_journal_dirty)(handle_t *handle, struct ocfs2_xa_loc *loc); /* * Return a pointer to the appropriate buffer in loc->xl_storage * at the given offset from loc->xl_header. */ void *(*xlo_offset_pointer)(struct ocfs2_xa_loc *loc, int offset); /* Can we reuse the existing entry for the new value? */ int (*xlo_can_reuse)(struct ocfs2_xa_loc *loc, struct ocfs2_xattr_info *xi); /* How much space is needed for the new value? */ int (*xlo_check_space)(struct ocfs2_xa_loc *loc, struct ocfs2_xattr_info *xi); /* * Return the offset of the first name+value pair. This is * the start of our downward-filling free space. */ int (*xlo_get_free_start)(struct ocfs2_xa_loc *loc); /* * Remove the name+value at this location. Do whatever is * appropriate with the remaining name+value pairs. */ void (*xlo_wipe_namevalue)(struct ocfs2_xa_loc *loc); /* Fill xl_entry with a new entry */ void (*xlo_add_entry)(struct ocfs2_xa_loc *loc, u32 name_hash); /* Add name+value storage to an entry */ void (*xlo_add_namevalue)(struct ocfs2_xa_loc *loc, int size); /* * Initialize the value buf's access and bh fields for this entry. * ocfs2_xa_fill_value_buf() will handle the xv pointer. */ void (*xlo_fill_value_buf)(struct ocfs2_xa_loc *loc, struct ocfs2_xattr_value_buf *vb); }; /* * Describes an xattr entry location. This is a memory structure * tracking the on-disk structure. */ struct ocfs2_xa_loc { /* This xattr belongs to this inode */ struct inode *xl_inode; /* The ocfs2_xattr_header inside the on-disk storage. Not NULL. */ struct ocfs2_xattr_header *xl_header; /* Bytes from xl_header to the end of the storage */ int xl_size; /* * The ocfs2_xattr_entry this location describes. If this is * NULL, this location describes the on-disk structure where it * would have been. */ struct ocfs2_xattr_entry *xl_entry; /* * Internal housekeeping */ /* Buffer(s) containing this entry */ void *xl_storage; /* Operations on the storage backing this location */ const struct ocfs2_xa_loc_operations *xl_ops; }; /* * Convenience functions to calculate how much space is needed for a * given name+value pair */ static int namevalue_size(int name_len, uint64_t value_len) { if (value_len > OCFS2_XATTR_INLINE_SIZE) return OCFS2_XATTR_SIZE(name_len) + OCFS2_XATTR_ROOT_SIZE; else return OCFS2_XATTR_SIZE(name_len) + OCFS2_XATTR_SIZE(value_len); } static int namevalue_size_xi(struct ocfs2_xattr_info *xi) { return namevalue_size(xi->xi_name_len, xi->xi_value_len); } static int namevalue_size_xe(struct ocfs2_xattr_entry *xe) { u64 value_len = le64_to_cpu(xe->xe_value_size); BUG_ON((value_len > OCFS2_XATTR_INLINE_SIZE) && ocfs2_xattr_is_local(xe)); return namevalue_size(xe->xe_name_len, value_len); } static int ocfs2_xattr_bucket_get_name_value(struct super_block *sb, struct ocfs2_xattr_header *xh, int index, int *block_off, int *new_offset); static int ocfs2_xattr_block_find(struct inode *inode, int name_index, const char *name, struct ocfs2_xattr_search *xs); static int ocfs2_xattr_index_block_find(struct inode *inode, struct buffer_head *root_bh, int name_index, const char *name, struct ocfs2_xattr_search *xs); static int ocfs2_xattr_tree_list_index_block(struct inode *inode, struct buffer_head *blk_bh, char *buffer, size_t buffer_size); static int ocfs2_xattr_create_index_block(struct inode *inode, struct ocfs2_xattr_search *xs, struct ocfs2_xattr_set_ctxt *ctxt); static int ocfs2_xattr_set_entry_index_block(struct inode *inode, struct ocfs2_xattr_info *xi, struct ocfs2_xattr_search *xs, struct ocfs2_xattr_set_ctxt *ctxt); typedef int (xattr_tree_rec_func)(struct inode *inode, struct buffer_head *root_bh, u64 blkno, u32 cpos, u32 len, void *para); static int ocfs2_iterate_xattr_index_block(struct inode *inode, struct buffer_head *root_bh, xattr_tree_rec_func *rec_func, void *para); static int ocfs2_delete_xattr_in_bucket(struct inode *inode, struct ocfs2_xattr_bucket *bucket, void *para); static int ocfs2_rm_xattr_cluster(struct inode *inode, struct buffer_head *root_bh, u64 blkno, u32 cpos, u32 len, void *para); static int ocfs2_mv_xattr_buckets(struct inode *inode, handle_t *handle, u64 src_blk, u64 last_blk, u64 to_blk, unsigned int start_bucket, u32 *first_hash); static int ocfs2_prepare_refcount_xattr(struct inode *inode, struct ocfs2_dinode *di, struct ocfs2_xattr_info *xi, struct ocfs2_xattr_search *xis, struct ocfs2_xattr_search *xbs, struct ocfs2_refcount_tree **ref_tree, int *meta_need, int *credits); static int ocfs2_get_xattr_tree_value_root(struct super_block *sb, struct ocfs2_xattr_bucket *bucket, int offset, struct ocfs2_xattr_value_root **xv, struct buffer_head **bh); static inline u16 ocfs2_xattr_buckets_per_cluster(struct ocfs2_super *osb) { return (1 << osb->s_clustersize_bits) / OCFS2_XATTR_BUCKET_SIZE; } static inline u16 ocfs2_blocks_per_xattr_bucket(struct super_block *sb) { return OCFS2_XATTR_BUCKET_SIZE / (1 << sb->s_blocksize_bits); } #define bucket_blkno(_b) ((_b)->bu_bhs[0]->b_blocknr) #define bucket_block(_b, _n) ((_b)->bu_bhs[(_n)]->b_data) #define bucket_xh(_b) ((struct ocfs2_xattr_header *)bucket_block((_b), 0)) static struct ocfs2_xattr_bucket *ocfs2_xattr_bucket_new(struct inode *inode) { struct ocfs2_xattr_bucket *bucket; int blks = ocfs2_blocks_per_xattr_bucket(inode->i_sb); BUG_ON(blks > OCFS2_XATTR_MAX_BLOCKS_PER_BUCKET); bucket = kzalloc(sizeof(struct ocfs2_xattr_bucket), GFP_NOFS); if (bucket) { bucket->bu_inode = inode; bucket->bu_blocks = blks; } return bucket; } static void ocfs2_xattr_bucket_relse(struct ocfs2_xattr_bucket *bucket) { int i; for (i = 0; i < bucket->bu_blocks; i++) { brelse(bucket->bu_bhs[i]); bucket->bu_bhs[i] = NULL; } } static void ocfs2_xattr_bucket_free(struct ocfs2_xattr_bucket *bucket) { if (bucket) { ocfs2_xattr_bucket_relse(bucket); bucket->bu_inode = NULL; kfree(bucket); } } /* * A bucket that has never been written to disk doesn't need to be * read. We just need the buffer_heads. Don't call this for * buckets that are already on disk. ocfs2_read_xattr_bucket() initializes * them fully. */ static int ocfs2_init_xattr_bucket(struct ocfs2_xattr_bucket *bucket, u64 xb_blkno) { int i, rc = 0; for (i = 0; i < bucket->bu_blocks; i++) { bucket->bu_bhs[i] = sb_getblk(bucket->bu_inode->i_sb, xb_blkno + i); if (!bucket->bu_bhs[i]) { rc = -EIO; mlog_errno(rc); break; } if (!ocfs2_buffer_uptodate(INODE_CACHE(bucket->bu_inode), bucket->bu_bhs[i])) ocfs2_set_new_buffer_uptodate(INODE_CACHE(bucket->bu_inode), bucket->bu_bhs[i]); } if (rc) ocfs2_xattr_bucket_relse(bucket); return rc; } /* Read the xattr bucket at xb_blkno */ static int ocfs2_read_xattr_bucket(struct ocfs2_xattr_bucket *bucket, u64 xb_blkno) { int rc; rc = ocfs2_read_blocks(INODE_CACHE(bucket->bu_inode), xb_blkno, bucket->bu_blocks, bucket->bu_bhs, 0, NULL); if (!rc) { spin_lock(&OCFS2_SB(bucket->bu_inode->i_sb)->osb_xattr_lock); rc = ocfs2_validate_meta_ecc_bhs(bucket->bu_inode->i_sb, bucket->bu_bhs, bucket->bu_blocks, &bucket_xh(bucket)->xh_check); spin_unlock(&OCFS2_SB(bucket->bu_inode->i_sb)->osb_xattr_lock); if (rc) mlog_errno(rc); } if (rc) ocfs2_xattr_bucket_relse(bucket); return rc; } static int ocfs2_xattr_bucket_journal_access(handle_t *handle, struct ocfs2_xattr_bucket *bucket, int type) { int i, rc = 0; for (i = 0; i < bucket->bu_blocks; i++) { rc = ocfs2_journal_access(handle, INODE_CACHE(bucket->bu_inode), bucket->bu_bhs[i], type); if (rc) { mlog_errno(rc); break; } } return rc; } static void ocfs2_xattr_bucket_journal_dirty(handle_t *handle, struct ocfs2_xattr_bucket *bucket) { int i; spin_lock(&OCFS2_SB(bucket->bu_inode->i_sb)->osb_xattr_lock); ocfs2_compute_meta_ecc_bhs(bucket->bu_inode->i_sb, bucket->bu_bhs, bucket->bu_blocks, &bucket_xh(bucket)->xh_check); spin_unlock(&OCFS2_SB(bucket->bu_inode->i_sb)->osb_xattr_lock); for (i = 0; i < bucket->bu_blocks; i++) ocfs2_journal_dirty(handle, bucket->bu_bhs[i]); } static void ocfs2_xattr_bucket_copy_data(struct ocfs2_xattr_bucket *dest, struct ocfs2_xattr_bucket *src) { int i; int blocksize = src->bu_inode->i_sb->s_blocksize; BUG_ON(dest->bu_blocks != src->bu_blocks); BUG_ON(dest->bu_inode != src->bu_inode); for (i = 0; i < src->bu_blocks; i++) { memcpy(bucket_block(dest, i), bucket_block(src, i), blocksize); } } static int ocfs2_validate_xattr_block(struct super_block *sb, struct buffer_head *bh) { int rc; struct ocfs2_xattr_block *xb = (struct ocfs2_xattr_block *)bh->b_data; trace_ocfs2_validate_xattr_block((unsigned long long)bh->b_blocknr); BUG_ON(!buffer_uptodate(bh)); /* * If the ecc fails, we return the error but otherwise * leave the filesystem running. We know any error is * local to this block. */ rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &xb->xb_check); if (rc) return rc; /* * Errors after here are fatal */ if (!OCFS2_IS_VALID_XATTR_BLOCK(xb)) { ocfs2_error(sb, "Extended attribute block #%llu has bad " "signature %.*s", (unsigned long long)bh->b_blocknr, 7, xb->xb_signature); return -EINVAL; } if (le64_to_cpu(xb->xb_blkno) != bh->b_blocknr) { ocfs2_error(sb, "Extended attribute block #%llu has an " "invalid xb_blkno of %llu", (unsigned long long)bh->b_blocknr, (unsigned long long)le64_to_cpu(xb->xb_blkno)); return -EINVAL; } if (le32_to_cpu(xb->xb_fs_generation) != OCFS2_SB(sb)->fs_generation) { ocfs2_error(sb, "Extended attribute block #%llu has an invalid " "xb_fs_generation of #%u", (unsigned long long)bh->b_blocknr, le32_to_cpu(xb->xb_fs_generation)); return -EINVAL; } return 0; } static int ocfs2_read_xattr_block(struct inode *inode, u64 xb_blkno, struct buffer_head **bh) { int rc; struct buffer_head *tmp = *bh; rc = ocfs2_read_block(INODE_CACHE(inode), xb_blkno, &tmp, ocfs2_validate_xattr_block); /* If ocfs2_read_block() got us a new bh, pass it up. */ if (!rc && !*bh) *bh = tmp; return rc; } static inline const char *ocfs2_xattr_prefix(int name_index) { const struct xattr_handler *handler = NULL; if (name_index > 0 && name_index < OCFS2_XATTR_MAX) handler = ocfs2_xattr_handler_map[name_index]; return handler ? handler->prefix : NULL; } static u32 ocfs2_xattr_name_hash(struct inode *inode, const char *name, int name_len) { /* Get hash value of uuid from super block */ u32 hash = OCFS2_SB(inode->i_sb)->uuid_hash; int i; /* hash extended attribute name */ for (i = 0; i < name_len; i++) { hash = (hash << OCFS2_HASH_SHIFT) ^ (hash >> (8*sizeof(hash) - OCFS2_HASH_SHIFT)) ^ *name++; } return hash; } static int ocfs2_xattr_entry_real_size(int name_len, size_t value_len) { return namevalue_size(name_len, value_len) + sizeof(struct ocfs2_xattr_entry); } static int ocfs2_xi_entry_usage(struct ocfs2_xattr_info *xi) { return namevalue_size_xi(xi) + sizeof(struct ocfs2_xattr_entry); } static int ocfs2_xe_entry_usage(struct ocfs2_xattr_entry *xe) { return namevalue_size_xe(xe) + sizeof(struct ocfs2_xattr_entry); } int ocfs2_calc_security_init(struct inode *dir, struct ocfs2_security_xattr_info *si, int *want_clusters, int *xattr_credits, struct ocfs2_alloc_context **xattr_ac) { int ret = 0; struct ocfs2_super *osb = OCFS2_SB(dir->i_sb); int s_size = ocfs2_xattr_entry_real_size(strlen(si->name), si->value_len); /* * The max space of security xattr taken inline is * 256(name) + 80(value) + 16(entry) = 352 bytes, * So reserve one metadata block for it is ok. */ if (dir->i_sb->s_blocksize == OCFS2_MIN_BLOCKSIZE || s_size > OCFS2_XATTR_FREE_IN_IBODY) { ret = ocfs2_reserve_new_metadata_blocks(osb, 1, xattr_ac); if (ret) { mlog_errno(ret); return ret; } *xattr_credits += OCFS2_XATTR_BLOCK_CREATE_CREDITS; } /* reserve clusters for xattr value which will be set in B tree*/ if (si->value_len > OCFS2_XATTR_INLINE_SIZE) { int new_clusters = ocfs2_clusters_for_bytes(dir->i_sb, si->value_len); *xattr_credits += ocfs2_clusters_to_blocks(dir->i_sb, new_clusters); *want_clusters += new_clusters; } return ret; } int ocfs2_calc_xattr_init(struct inode *dir, struct buffer_head *dir_bh, umode_t mode, struct ocfs2_security_xattr_info *si, int *want_clusters, int *xattr_credits, int *want_meta) { int ret = 0; struct ocfs2_super *osb = OCFS2_SB(dir->i_sb); int s_size = 0, a_size = 0, acl_len = 0, new_clusters; if (si->enable) s_size = ocfs2_xattr_entry_real_size(strlen(si->name), si->value_len); if (osb->s_mount_opt & OCFS2_MOUNT_POSIX_ACL) { acl_len = ocfs2_xattr_get_nolock(dir, dir_bh, OCFS2_XATTR_INDEX_POSIX_ACL_DEFAULT, "", NULL, 0); if (acl_len > 0) { a_size = ocfs2_xattr_entry_real_size(0, acl_len); if (S_ISDIR(mode)) a_size <<= 1; } else if (acl_len != 0 && acl_len != -ENODATA) { mlog_errno(ret); return ret; } } if (!(s_size + a_size)) return ret; /* * The max space of security xattr taken inline is * 256(name) + 80(value) + 16(entry) = 352 bytes, * The max space of acl xattr taken inline is * 80(value) + 16(entry) * 2(if directory) = 192 bytes, * when blocksize = 512, may reserve one more cluser for * xattr bucket, otherwise reserve one metadata block * for them is ok. * If this is a new directory with inline data, * we choose to reserve the entire inline area for * directory contents and force an external xattr block. */ if (dir->i_sb->s_blocksize == OCFS2_MIN_BLOCKSIZE || (S_ISDIR(mode) && ocfs2_supports_inline_data(osb)) || (s_size + a_size) > OCFS2_XATTR_FREE_IN_IBODY) { *want_meta = *want_meta + 1; *xattr_credits += OCFS2_XATTR_BLOCK_CREATE_CREDITS; } if (dir->i_sb->s_blocksize == OCFS2_MIN_BLOCKSIZE && (s_size + a_size) > OCFS2_XATTR_FREE_IN_BLOCK(dir)) { *want_clusters += 1; *xattr_credits += ocfs2_blocks_per_xattr_bucket(dir->i_sb); } /* * reserve credits and clusters for xattrs which has large value * and have to be set outside */ if (si->enable && si->value_len > OCFS2_XATTR_INLINE_SIZE) { new_clusters = ocfs2_clusters_for_bytes(dir->i_sb, si->value_len); *xattr_credits += ocfs2_clusters_to_blocks(dir->i_sb, new_clusters); *want_clusters += new_clusters; } if (osb->s_mount_opt & OCFS2_MOUNT_POSIX_ACL && acl_len > OCFS2_XATTR_INLINE_SIZE) { /* for directory, it has DEFAULT and ACCESS two types of acls */ new_clusters = (S_ISDIR(mode) ? 2 : 1) * ocfs2_clusters_for_bytes(dir->i_sb, acl_len); *xattr_credits += ocfs2_clusters_to_blocks(dir->i_sb, new_clusters); *want_clusters += new_clusters; } return ret; } static int ocfs2_xattr_extend_allocation(struct inode *inode, u32 clusters_to_add, struct ocfs2_xattr_value_buf *vb, struct ocfs2_xattr_set_ctxt *ctxt) { int status = 0, credits; handle_t *handle = ctxt->handle; enum ocfs2_alloc_restarted why; u32 prev_clusters, logical_start = le32_to_cpu(vb->vb_xv->xr_clusters); struct ocfs2_extent_tree et; ocfs2_init_xattr_value_extent_tree(&et, INODE_CACHE(inode), vb); while (clusters_to_add) { trace_ocfs2_xattr_extend_allocation(clusters_to_add); status = vb->vb_access(handle, INODE_CACHE(inode), vb->vb_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (status < 0) { mlog_errno(status); break; } prev_clusters = le32_to_cpu(vb->vb_xv->xr_clusters); status = ocfs2_add_clusters_in_btree(handle, &et, &logical_start, clusters_to_add, 0, ctxt->data_ac, ctxt->meta_ac, &why); if ((status < 0) && (status != -EAGAIN)) { if (status != -ENOSPC) mlog_errno(status); break; } ocfs2_journal_dirty(handle, vb->vb_bh); clusters_to_add -= le32_to_cpu(vb->vb_xv->xr_clusters) - prev_clusters; if (why != RESTART_NONE && clusters_to_add) { /* * We can only fail in case the alloc file doesn't give * up enough clusters. */ BUG_ON(why == RESTART_META); credits = ocfs2_calc_extend_credits(inode->i_sb, &vb->vb_xv->xr_list, clusters_to_add); status = ocfs2_extend_trans(handle, credits); if (status < 0) { status = -ENOMEM; mlog_errno(status); break; } } } return status; } static int __ocfs2_remove_xattr_range(struct inode *inode, struct ocfs2_xattr_value_buf *vb, u32 cpos, u32 phys_cpos, u32 len, unsigned int ext_flags, struct ocfs2_xattr_set_ctxt *ctxt) { int ret; u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos); handle_t *handle = ctxt->handle; struct ocfs2_extent_tree et; ocfs2_init_xattr_value_extent_tree(&et, INODE_CACHE(inode), vb); ret = vb->vb_access(handle, INODE_CACHE(inode), vb->vb_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_remove_extent(handle, &et, cpos, len, ctxt->meta_ac, &ctxt->dealloc); if (ret) { mlog_errno(ret); goto out; } le32_add_cpu(&vb->vb_xv->xr_clusters, -len); ocfs2_journal_dirty(handle, vb->vb_bh); if (ext_flags & OCFS2_EXT_REFCOUNTED) ret = ocfs2_decrease_refcount(inode, handle, ocfs2_blocks_to_clusters(inode->i_sb, phys_blkno), len, ctxt->meta_ac, &ctxt->dealloc, 1); else ret = ocfs2_cache_cluster_dealloc(&ctxt->dealloc, phys_blkno, len); if (ret) mlog_errno(ret); out: return ret; } static int ocfs2_xattr_shrink_size(struct inode *inode, u32 old_clusters, u32 new_clusters, struct ocfs2_xattr_value_buf *vb, struct ocfs2_xattr_set_ctxt *ctxt) { int ret = 0; unsigned int ext_flags; u32 trunc_len, cpos, phys_cpos, alloc_size; u64 block; if (old_clusters <= new_clusters) return 0; cpos = new_clusters; trunc_len = old_clusters - new_clusters; while (trunc_len) { ret = ocfs2_xattr_get_clusters(inode, cpos, &phys_cpos, &alloc_size, &vb->vb_xv->xr_list, &ext_flags); if (ret) { mlog_errno(ret); goto out; } if (alloc_size > trunc_len) alloc_size = trunc_len; ret = __ocfs2_remove_xattr_range(inode, vb, cpos, phys_cpos, alloc_size, ext_flags, ctxt); if (ret) { mlog_errno(ret); goto out; } block = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos); ocfs2_remove_xattr_clusters_from_cache(INODE_CACHE(inode), block, alloc_size); cpos += alloc_size; trunc_len -= alloc_size; } out: return ret; } static int ocfs2_xattr_value_truncate(struct inode *inode, struct ocfs2_xattr_value_buf *vb, int len, struct ocfs2_xattr_set_ctxt *ctxt) { int ret; u32 new_clusters = ocfs2_clusters_for_bytes(inode->i_sb, len); u32 old_clusters = le32_to_cpu(vb->vb_xv->xr_clusters); if (new_clusters == old_clusters) return 0; if (new_clusters > old_clusters) ret = ocfs2_xattr_extend_allocation(inode, new_clusters - old_clusters, vb, ctxt); else ret = ocfs2_xattr_shrink_size(inode, old_clusters, new_clusters, vb, ctxt); return ret; } static int ocfs2_xattr_list_entry(char *buffer, size_t size, size_t *result, const char *prefix, const char *name, int name_len) { char *p = buffer + *result; int prefix_len = strlen(prefix); int total_len = prefix_len + name_len + 1; *result += total_len; /* we are just looking for how big our buffer needs to be */ if (!size) return 0; if (*result > size) return -ERANGE; memcpy(p, prefix, prefix_len); memcpy(p + prefix_len, name, name_len); p[prefix_len + name_len] = '\0'; return 0; } static int ocfs2_xattr_list_entries(struct inode *inode, struct ocfs2_xattr_header *header, char *buffer, size_t buffer_size) { size_t result = 0; int i, type, ret; const char *prefix, *name; for (i = 0 ; i < le16_to_cpu(header->xh_count); i++) { struct ocfs2_xattr_entry *entry = &header->xh_entries[i]; type = ocfs2_xattr_get_type(entry); prefix = ocfs2_xattr_prefix(type); if (prefix) { name = (const char *)header + le16_to_cpu(entry->xe_name_offset); ret = ocfs2_xattr_list_entry(buffer, buffer_size, &result, prefix, name, entry->xe_name_len); if (ret) return ret; } } return result; } int ocfs2_has_inline_xattr_value_outside(struct inode *inode, struct ocfs2_dinode *di) { struct ocfs2_xattr_header *xh; int i; xh = (struct ocfs2_xattr_header *) ((void *)di + inode->i_sb->s_blocksize - le16_to_cpu(di->i_xattr_inline_size)); for (i = 0; i < le16_to_cpu(xh->xh_count); i++) if (!ocfs2_xattr_is_local(&xh->xh_entries[i])) return 1; return 0; } static int ocfs2_xattr_ibody_list(struct inode *inode, struct ocfs2_dinode *di, char *buffer, size_t buffer_size) { struct ocfs2_xattr_header *header = NULL; struct ocfs2_inode_info *oi = OCFS2_I(inode); int ret = 0; if (!(oi->ip_dyn_features & OCFS2_INLINE_XATTR_FL)) return ret; header = (struct ocfs2_xattr_header *) ((void *)di + inode->i_sb->s_blocksize - le16_to_cpu(di->i_xattr_inline_size)); ret = ocfs2_xattr_list_entries(inode, header, buffer, buffer_size); return ret; } static int ocfs2_xattr_block_list(struct inode *inode, struct ocfs2_dinode *di, char *buffer, size_t buffer_size) { struct buffer_head *blk_bh = NULL; struct ocfs2_xattr_block *xb; int ret = 0; if (!di->i_xattr_loc) return ret; ret = ocfs2_read_xattr_block(inode, le64_to_cpu(di->i_xattr_loc), &blk_bh); if (ret < 0) { mlog_errno(ret); return ret; } xb = (struct ocfs2_xattr_block *)blk_bh->b_data; if (!(le16_to_cpu(xb->xb_flags) & OCFS2_XATTR_INDEXED)) { struct ocfs2_xattr_header *header = &xb->xb_attrs.xb_header; ret = ocfs2_xattr_list_entries(inode, header, buffer, buffer_size); } else ret = ocfs2_xattr_tree_list_index_block(inode, blk_bh, buffer, buffer_size); brelse(blk_bh); return ret; } ssize_t ocfs2_listxattr(struct dentry *dentry, char *buffer, size_t size) { int ret = 0, i_ret = 0, b_ret = 0; struct buffer_head *di_bh = NULL; struct ocfs2_dinode *di = NULL; struct ocfs2_inode_info *oi = OCFS2_I(dentry->d_inode); if (!ocfs2_supports_xattr(OCFS2_SB(dentry->d_sb))) return -EOPNOTSUPP; if (!(oi->ip_dyn_features & OCFS2_HAS_XATTR_FL)) return ret; ret = ocfs2_inode_lock(dentry->d_inode, &di_bh, 0); if (ret < 0) { mlog_errno(ret); return ret; } di = (struct ocfs2_dinode *)di_bh->b_data; down_read(&oi->ip_xattr_sem); i_ret = ocfs2_xattr_ibody_list(dentry->d_inode, di, buffer, size); if (i_ret < 0) b_ret = 0; else { if (buffer) { buffer += i_ret; size -= i_ret; } b_ret = ocfs2_xattr_block_list(dentry->d_inode, di, buffer, size); if (b_ret < 0) i_ret = 0; } up_read(&oi->ip_xattr_sem); ocfs2_inode_unlock(dentry->d_inode, 0); brelse(di_bh); return i_ret + b_ret; } static int ocfs2_xattr_find_entry(int name_index, const char *name, struct ocfs2_xattr_search *xs) { struct ocfs2_xattr_entry *entry; size_t name_len; int i, cmp = 1; if (name == NULL) return -EINVAL; name_len = strlen(name); entry = xs->here; for (i = 0; i < le16_to_cpu(xs->header->xh_count); i++) { cmp = name_index - ocfs2_xattr_get_type(entry); if (!cmp) cmp = name_len - entry->xe_name_len; if (!cmp) cmp = memcmp(name, (xs->base + le16_to_cpu(entry->xe_name_offset)), name_len); if (cmp == 0) break; entry += 1; } xs->here = entry; return cmp ? -ENODATA : 0; } static int ocfs2_xattr_get_value_outside(struct inode *inode, struct ocfs2_xattr_value_root *xv, void *buffer, size_t len) { u32 cpos, p_cluster, num_clusters, bpc, clusters; u64 blkno; int i, ret = 0; size_t cplen, blocksize; struct buffer_head *bh = NULL; struct ocfs2_extent_list *el; el = &xv->xr_list; clusters = le32_to_cpu(xv->xr_clusters); bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1); blocksize = inode->i_sb->s_blocksize; cpos = 0; while (cpos < clusters) { ret = ocfs2_xattr_get_clusters(inode, cpos, &p_cluster, &num_clusters, el, NULL); if (ret) { mlog_errno(ret); goto out; } blkno = ocfs2_clusters_to_blocks(inode->i_sb, p_cluster); /* Copy ocfs2_xattr_value */ for (i = 0; i < num_clusters * bpc; i++, blkno++) { ret = ocfs2_read_block(INODE_CACHE(inode), blkno, &bh, NULL); if (ret) { mlog_errno(ret); goto out; } cplen = len >= blocksize ? blocksize : len; memcpy(buffer, bh->b_data, cplen); len -= cplen; buffer += cplen; brelse(bh); bh = NULL; if (len == 0) break; } cpos += num_clusters; } out: return ret; } static int ocfs2_xattr_ibody_get(struct inode *inode, int name_index, const char *name, void *buffer, size_t buffer_size, struct ocfs2_xattr_search *xs) { struct ocfs2_inode_info *oi = OCFS2_I(inode); struct ocfs2_dinode *di = (struct ocfs2_dinode *)xs->inode_bh->b_data; struct ocfs2_xattr_value_root *xv; size_t size; int ret = 0; if (!(oi->ip_dyn_features & OCFS2_INLINE_XATTR_FL)) return -ENODATA; xs->end = (void *)di + inode->i_sb->s_blocksize; xs->header = (struct ocfs2_xattr_header *) (xs->end - le16_to_cpu(di->i_xattr_inline_size)); xs->base = (void *)xs->header; xs->here = xs->header->xh_entries; ret = ocfs2_xattr_find_entry(name_index, name, xs); if (ret) return ret; size = le64_to_cpu(xs->here->xe_value_size); if (buffer) { if (size > buffer_size) return -ERANGE; if (ocfs2_xattr_is_local(xs->here)) { memcpy(buffer, (void *)xs->base + le16_to_cpu(xs->here->xe_name_offset) + OCFS2_XATTR_SIZE(xs->here->xe_name_len), size); } else { xv = (struct ocfs2_xattr_value_root *) (xs->base + le16_to_cpu( xs->here->xe_name_offset) + OCFS2_XATTR_SIZE(xs->here->xe_name_len)); ret = ocfs2_xattr_get_value_outside(inode, xv, buffer, size); if (ret < 0) { mlog_errno(ret); return ret; } } } return size; } static int ocfs2_xattr_block_get(struct inode *inode, int name_index, const char *name, void *buffer, size_t buffer_size, struct ocfs2_xattr_search *xs) { struct ocfs2_xattr_block *xb; struct ocfs2_xattr_value_root *xv; size_t size; int ret = -ENODATA, name_offset, name_len, i; int uninitialized_var(block_off); xs->bucket = ocfs2_xattr_bucket_new(inode); if (!xs->bucket) { ret = -ENOMEM; mlog_errno(ret); goto cleanup; } ret = ocfs2_xattr_block_find(inode, name_index, name, xs); if (ret) { mlog_errno(ret); goto cleanup; } if (xs->not_found) { ret = -ENODATA; goto cleanup; } xb = (struct ocfs2_xattr_block *)xs->xattr_bh->b_data; size = le64_to_cpu(xs->here->xe_value_size); if (buffer) { ret = -ERANGE; if (size > buffer_size) goto cleanup; name_offset = le16_to_cpu(xs->here->xe_name_offset); name_len = OCFS2_XATTR_SIZE(xs->here->xe_name_len); i = xs->here - xs->header->xh_entries; if (le16_to_cpu(xb->xb_flags) & OCFS2_XATTR_INDEXED) { ret = ocfs2_xattr_bucket_get_name_value(inode->i_sb, bucket_xh(xs->bucket), i, &block_off, &name_offset); xs->base = bucket_block(xs->bucket, block_off); } if (ocfs2_xattr_is_local(xs->here)) { memcpy(buffer, (void *)xs->base + name_offset + name_len, size); } else { xv = (struct ocfs2_xattr_value_root *) (xs->base + name_offset + name_len); ret = ocfs2_xattr_get_value_outside(inode, xv, buffer, size); if (ret < 0) { mlog_errno(ret); goto cleanup; } } } ret = size; cleanup: ocfs2_xattr_bucket_free(xs->bucket); brelse(xs->xattr_bh); xs->xattr_bh = NULL; return ret; } int ocfs2_xattr_get_nolock(struct inode *inode, struct buffer_head *di_bh, int name_index, const char *name, void *buffer, size_t buffer_size) { int ret; struct ocfs2_dinode *di = NULL; struct ocfs2_inode_info *oi = OCFS2_I(inode); struct ocfs2_xattr_search xis = { .not_found = -ENODATA, }; struct ocfs2_xattr_search xbs = { .not_found = -ENODATA, }; if (!ocfs2_supports_xattr(OCFS2_SB(inode->i_sb))) return -EOPNOTSUPP; if (!(oi->ip_dyn_features & OCFS2_HAS_XATTR_FL)) ret = -ENODATA; xis.inode_bh = xbs.inode_bh = di_bh; di = (struct ocfs2_dinode *)di_bh->b_data; ret = ocfs2_xattr_ibody_get(inode, name_index, name, buffer, buffer_size, &xis); if (ret == -ENODATA && di->i_xattr_loc) ret = ocfs2_xattr_block_get(inode, name_index, name, buffer, buffer_size, &xbs); return ret; } /* ocfs2_xattr_get() * * Copy an extended attribute into the buffer provided. * Buffer is NULL to compute the size of buffer required. */ static int ocfs2_xattr_get(struct inode *inode, int name_index, const char *name, void *buffer, size_t buffer_size) { int ret; struct buffer_head *di_bh = NULL; ret = ocfs2_inode_lock(inode, &di_bh, 0); if (ret < 0) { mlog_errno(ret); return ret; } down_read(&OCFS2_I(inode)->ip_xattr_sem); ret = ocfs2_xattr_get_nolock(inode, di_bh, name_index, name, buffer, buffer_size); up_read(&OCFS2_I(inode)->ip_xattr_sem); ocfs2_inode_unlock(inode, 0); brelse(di_bh); return ret; } static int __ocfs2_xattr_set_value_outside(struct inode *inode, handle_t *handle, struct ocfs2_xattr_value_buf *vb, const void *value, int value_len) { int ret = 0, i, cp_len; u16 blocksize = inode->i_sb->s_blocksize; u32 p_cluster, num_clusters; u32 cpos = 0, bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1); u32 clusters = ocfs2_clusters_for_bytes(inode->i_sb, value_len); u64 blkno; struct buffer_head *bh = NULL; unsigned int ext_flags; struct ocfs2_xattr_value_root *xv = vb->vb_xv; BUG_ON(clusters > le32_to_cpu(xv->xr_clusters)); while (cpos < clusters) { ret = ocfs2_xattr_get_clusters(inode, cpos, &p_cluster, &num_clusters, &xv->xr_list, &ext_flags); if (ret) { mlog_errno(ret); goto out; } BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED); blkno = ocfs2_clusters_to_blocks(inode->i_sb, p_cluster); for (i = 0; i < num_clusters * bpc; i++, blkno++) { ret = ocfs2_read_block(INODE_CACHE(inode), blkno, &bh, NULL); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_journal_access(handle, INODE_CACHE(inode), bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret < 0) { mlog_errno(ret); goto out; } cp_len = value_len > blocksize ? blocksize : value_len; memcpy(bh->b_data, value, cp_len); value_len -= cp_len; value += cp_len; if (cp_len < blocksize) memset(bh->b_data + cp_len, 0, blocksize - cp_len); ocfs2_journal_dirty(handle, bh); brelse(bh); bh = NULL; /* * XXX: do we need to empty all the following * blocks in this cluster? */ if (!value_len) break; } cpos += num_clusters; } out: brelse(bh); return ret; } static int ocfs2_xa_check_space_helper(int needed_space, int free_start, int num_entries) { int free_space; if (!needed_space) return 0; free_space = free_start - sizeof(struct ocfs2_xattr_header) - (num_entries * sizeof(struct ocfs2_xattr_entry)) - OCFS2_XATTR_HEADER_GAP; if (free_space < 0) return -EIO; if (free_space < needed_space) return -ENOSPC; return 0; } static int ocfs2_xa_journal_access(handle_t *handle, struct ocfs2_xa_loc *loc, int type) { return loc->xl_ops->xlo_journal_access(handle, loc, type); } static void ocfs2_xa_journal_dirty(handle_t *handle, struct ocfs2_xa_loc *loc) { loc->xl_ops->xlo_journal_dirty(handle, loc); } /* Give a pointer into the storage for the given offset */ static void *ocfs2_xa_offset_pointer(struct ocfs2_xa_loc *loc, int offset) { BUG_ON(offset >= loc->xl_size); return loc->xl_ops->xlo_offset_pointer(loc, offset); } /* * Wipe the name+value pair and allow the storage to reclaim it. This * must be followed by either removal of the entry or a call to * ocfs2_xa_add_namevalue(). */ static void ocfs2_xa_wipe_namevalue(struct ocfs2_xa_loc *loc) { loc->xl_ops->xlo_wipe_namevalue(loc); } /* * Find lowest offset to a name+value pair. This is the start of our * downward-growing free space. */ static int ocfs2_xa_get_free_start(struct ocfs2_xa_loc *loc) { return loc->xl_ops->xlo_get_free_start(loc); } /* Can we reuse loc->xl_entry for xi? */ static int ocfs2_xa_can_reuse_entry(struct ocfs2_xa_loc *loc, struct ocfs2_xattr_info *xi) { return loc->xl_ops->xlo_can_reuse(loc, xi); } /* How much free space is needed to set the new value */ static int ocfs2_xa_check_space(struct ocfs2_xa_loc *loc, struct ocfs2_xattr_info *xi) { return loc->xl_ops->xlo_check_space(loc, xi); } static void ocfs2_xa_add_entry(struct ocfs2_xa_loc *loc, u32 name_hash) { loc->xl_ops->xlo_add_entry(loc, name_hash); loc->xl_entry->xe_name_hash = cpu_to_le32(name_hash); /* * We can't leave the new entry's xe_name_offset at zero or * add_namevalue() will go nuts. We set it to the size of our * storage so that it can never be less than any other entry. */ loc->xl_entry->xe_name_offset = cpu_to_le16(loc->xl_size); } static void ocfs2_xa_add_namevalue(struct ocfs2_xa_loc *loc, struct ocfs2_xattr_info *xi) { int size = namevalue_size_xi(xi); int nameval_offset; char *nameval_buf; loc->xl_ops->xlo_add_namevalue(loc, size); loc->xl_entry->xe_value_size = cpu_to_le64(xi->xi_value_len); loc->xl_entry->xe_name_len = xi->xi_name_len; ocfs2_xattr_set_type(loc->xl_entry, xi->xi_name_index); ocfs2_xattr_set_local(loc->xl_entry, xi->xi_value_len <= OCFS2_XATTR_INLINE_SIZE); nameval_offset = le16_to_cpu(loc->xl_entry->xe_name_offset); nameval_buf = ocfs2_xa_offset_pointer(loc, nameval_offset); memset(nameval_buf, 0, size); memcpy(nameval_buf, xi->xi_name, xi->xi_name_len); } static void ocfs2_xa_fill_value_buf(struct ocfs2_xa_loc *loc, struct ocfs2_xattr_value_buf *vb) { int nameval_offset = le16_to_cpu(loc->xl_entry->xe_name_offset); int name_size = OCFS2_XATTR_SIZE(loc->xl_entry->xe_name_len); /* Value bufs are for value trees */ BUG_ON(ocfs2_xattr_is_local(loc->xl_entry)); BUG_ON(namevalue_size_xe(loc->xl_entry) != (name_size + OCFS2_XATTR_ROOT_SIZE)); loc->xl_ops->xlo_fill_value_buf(loc, vb); vb->vb_xv = (struct ocfs2_xattr_value_root *)ocfs2_xa_offset_pointer(loc, nameval_offset + name_size); } static int ocfs2_xa_block_journal_access(handle_t *handle, struct ocfs2_xa_loc *loc, int type) { struct buffer_head *bh = loc->xl_storage; ocfs2_journal_access_func access; if (loc->xl_size == (bh->b_size - offsetof(struct ocfs2_xattr_block, xb_attrs.xb_header))) access = ocfs2_journal_access_xb; else access = ocfs2_journal_access_di; return access(handle, INODE_CACHE(loc->xl_inode), bh, type); } static void ocfs2_xa_block_journal_dirty(handle_t *handle, struct ocfs2_xa_loc *loc) { struct buffer_head *bh = loc->xl_storage; ocfs2_journal_dirty(handle, bh); } static void *ocfs2_xa_block_offset_pointer(struct ocfs2_xa_loc *loc, int offset) { return (char *)loc->xl_header + offset; } static int ocfs2_xa_block_can_reuse(struct ocfs2_xa_loc *loc, struct ocfs2_xattr_info *xi) { /* * Block storage is strict. If the sizes aren't exact, we will * remove the old one and reinsert the new. */ return namevalue_size_xe(loc->xl_entry) == namevalue_size_xi(xi); } static int ocfs2_xa_block_get_free_start(struct ocfs2_xa_loc *loc) { struct ocfs2_xattr_header *xh = loc->xl_header; int i, count = le16_to_cpu(xh->xh_count); int offset, free_start = loc->xl_size; for (i = 0; i < count; i++) { offset = le16_to_cpu(xh->xh_entries[i].xe_name_offset); if (offset < free_start) free_start = offset; } return free_start; } static int ocfs2_xa_block_check_space(struct ocfs2_xa_loc *loc, struct ocfs2_xattr_info *xi) { int count = le16_to_cpu(loc->xl_header->xh_count); int free_start = ocfs2_xa_get_free_start(loc); int needed_space = ocfs2_xi_entry_usage(xi); /* * Block storage will reclaim the original entry before inserting * the new value, so we only need the difference. If the new * entry is smaller than the old one, we don't need anything. */ if (loc->xl_entry) { /* Don't need space if we're reusing! */ if (ocfs2_xa_can_reuse_entry(loc, xi)) needed_space = 0; else needed_space -= ocfs2_xe_entry_usage(loc->xl_entry); } if (needed_space < 0) needed_space = 0; return ocfs2_xa_check_space_helper(needed_space, free_start, count); } /* * Block storage for xattrs keeps the name+value pairs compacted. When * we remove one, we have to shift any that preceded it towards the end. */ static void ocfs2_xa_block_wipe_namevalue(struct ocfs2_xa_loc *loc) { int i, offset; int namevalue_offset, first_namevalue_offset, namevalue_size; struct ocfs2_xattr_entry *entry = loc->xl_entry; struct ocfs2_xattr_header *xh = loc->xl_header; int count = le16_to_cpu(xh->xh_count); namevalue_offset = le16_to_cpu(entry->xe_name_offset); namevalue_size = namevalue_size_xe(entry); first_namevalue_offset = ocfs2_xa_get_free_start(loc); /* Shift the name+value pairs */ memmove((char *)xh + first_namevalue_offset + namevalue_size, (char *)xh + first_namevalue_offset, namevalue_offset - first_namevalue_offset); memset((char *)xh + first_namevalue_offset, 0, namevalue_size); /* Now tell xh->xh_entries about it */ for (i = 0; i < count; i++) { offset = le16_to_cpu(xh->xh_entries[i].xe_name_offset); if (offset <= namevalue_offset) le16_add_cpu(&xh->xh_entries[i].xe_name_offset, namevalue_size); } /* * Note that we don't update xh_free_start or xh_name_value_len * because they're not used in block-stored xattrs. */ } static void ocfs2_xa_block_add_entry(struct ocfs2_xa_loc *loc, u32 name_hash) { int count = le16_to_cpu(loc->xl_header->xh_count); loc->xl_entry = &(loc->xl_header->xh_entries[count]); le16_add_cpu(&loc->xl_header->xh_count, 1); memset(loc->xl_entry, 0, sizeof(struct ocfs2_xattr_entry)); } static void ocfs2_xa_block_add_namevalue(struct ocfs2_xa_loc *loc, int size) { int free_start = ocfs2_xa_get_free_start(loc); loc->xl_entry->xe_name_offset = cpu_to_le16(free_start - size); } static void ocfs2_xa_block_fill_value_buf(struct ocfs2_xa_loc *loc, struct ocfs2_xattr_value_buf *vb) { struct buffer_head *bh = loc->xl_storage; if (loc->xl_size == (bh->b_size - offsetof(struct ocfs2_xattr_block, xb_attrs.xb_header))) vb->vb_access = ocfs2_journal_access_xb; else vb->vb_access = ocfs2_journal_access_di; vb->vb_bh = bh; } /* * Operations for xattrs stored in blocks. This includes inline inode * storage and unindexed ocfs2_xattr_blocks. */ static const struct ocfs2_xa_loc_operations ocfs2_xa_block_loc_ops = { .xlo_journal_access = ocfs2_xa_block_journal_access, .xlo_journal_dirty = ocfs2_xa_block_journal_dirty, .xlo_offset_pointer = ocfs2_xa_block_offset_pointer, .xlo_check_space = ocfs2_xa_block_check_space, .xlo_can_reuse = ocfs2_xa_block_can_reuse, .xlo_get_free_start = ocfs2_xa_block_get_free_start, .xlo_wipe_namevalue = ocfs2_xa_block_wipe_namevalue, .xlo_add_entry = ocfs2_xa_block_add_entry, .xlo_add_namevalue = ocfs2_xa_block_add_namevalue, .xlo_fill_value_buf = ocfs2_xa_block_fill_value_buf, }; static int ocfs2_xa_bucket_journal_access(handle_t *handle, struct ocfs2_xa_loc *loc, int type) { struct ocfs2_xattr_bucket *bucket = loc->xl_storage; return ocfs2_xattr_bucket_journal_access(handle, bucket, type); } static void ocfs2_xa_bucket_journal_dirty(handle_t *handle, struct ocfs2_xa_loc *loc) { struct ocfs2_xattr_bucket *bucket = loc->xl_storage; ocfs2_xattr_bucket_journal_dirty(handle, bucket); } static void *ocfs2_xa_bucket_offset_pointer(struct ocfs2_xa_loc *loc, int offset) { struct ocfs2_xattr_bucket *bucket = loc->xl_storage; int block, block_offset; /* The header is at the front of the bucket */ block = offset >> loc->xl_inode->i_sb->s_blocksize_bits; block_offset = offset % loc->xl_inode->i_sb->s_blocksize; return bucket_block(bucket, block) + block_offset; } static int ocfs2_xa_bucket_can_reuse(struct ocfs2_xa_loc *loc, struct ocfs2_xattr_info *xi) { return namevalue_size_xe(loc->xl_entry) >= namevalue_size_xi(xi); } static int ocfs2_xa_bucket_get_free_start(struct ocfs2_xa_loc *loc) { struct ocfs2_xattr_bucket *bucket = loc->xl_storage; return le16_to_cpu(bucket_xh(bucket)->xh_free_start); } static int ocfs2_bucket_align_free_start(struct super_block *sb, int free_start, int size) { /* * We need to make sure that the name+value pair fits within * one block. */ if (((free_start - size) >> sb->s_blocksize_bits) != ((free_start - 1) >> sb->s_blocksize_bits)) free_start -= free_start % sb->s_blocksize; return free_start; } static int ocfs2_xa_bucket_check_space(struct ocfs2_xa_loc *loc, struct ocfs2_xattr_info *xi) { int rc; int count = le16_to_cpu(loc->xl_header->xh_count); int free_start = ocfs2_xa_get_free_start(loc); int needed_space = ocfs2_xi_entry_usage(xi); int size = namevalue_size_xi(xi); struct super_block *sb = loc->xl_inode->i_sb; /* * Bucket storage does not reclaim name+value pairs it cannot * reuse. They live as holes until the bucket fills, and then * the bucket is defragmented. However, the bucket can reclaim * the ocfs2_xattr_entry. */ if (loc->xl_entry) { /* Don't need space if we're reusing! */ if (ocfs2_xa_can_reuse_entry(loc, xi)) needed_space = 0; else needed_space -= sizeof(struct ocfs2_xattr_entry); } BUG_ON(needed_space < 0); if (free_start < size) { if (needed_space) return -ENOSPC; } else { /* * First we check if it would fit in the first place. * Below, we align the free start to a block. This may * slide us below the minimum gap. By checking unaligned * first, we avoid that error. */ rc = ocfs2_xa_check_space_helper(needed_space, free_start, count); if (rc) return rc; free_start = ocfs2_bucket_align_free_start(sb, free_start, size); } return ocfs2_xa_check_space_helper(needed_space, free_start, count); } static void ocfs2_xa_bucket_wipe_namevalue(struct ocfs2_xa_loc *loc) { le16_add_cpu(&loc->xl_header->xh_name_value_len, -namevalue_size_xe(loc->xl_entry)); } static void ocfs2_xa_bucket_add_entry(struct ocfs2_xa_loc *loc, u32 name_hash) { struct ocfs2_xattr_header *xh = loc->xl_header; int count = le16_to_cpu(xh->xh_count); int low = 0, high = count - 1, tmp; struct ocfs2_xattr_entry *tmp_xe; /* * We keep buckets sorted by name_hash, so we need to find * our insert place. */ while (low <= high && count) { tmp = (low + high) / 2; tmp_xe = &xh->xh_entries[tmp]; if (name_hash > le32_to_cpu(tmp_xe->xe_name_hash)) low = tmp + 1; else if (name_hash < le32_to_cpu(tmp_xe->xe_name_hash)) high = tmp - 1; else { low = tmp; break; } } if (low != count) memmove(&xh->xh_entries[low + 1], &xh->xh_entries[low], ((count - low) * sizeof(struct ocfs2_xattr_entry))); le16_add_cpu(&xh->xh_count, 1); loc->xl_entry = &xh->xh_entries[low]; memset(loc->xl_entry, 0, sizeof(struct ocfs2_xattr_entry)); } static void ocfs2_xa_bucket_add_namevalue(struct ocfs2_xa_loc *loc, int size) { int free_start = ocfs2_xa_get_free_start(loc); struct ocfs2_xattr_header *xh = loc->xl_header; struct super_block *sb = loc->xl_inode->i_sb; int nameval_offset; free_start = ocfs2_bucket_align_free_start(sb, free_start, size); nameval_offset = free_start - size; loc->xl_entry->xe_name_offset = cpu_to_le16(nameval_offset); xh->xh_free_start = cpu_to_le16(nameval_offset); le16_add_cpu(&xh->xh_name_value_len, size); } static void ocfs2_xa_bucket_fill_value_buf(struct ocfs2_xa_loc *loc, struct ocfs2_xattr_value_buf *vb) { struct ocfs2_xattr_bucket *bucket = loc->xl_storage; struct super_block *sb = loc->xl_inode->i_sb; int nameval_offset = le16_to_cpu(loc->xl_entry->xe_name_offset); int size = namevalue_size_xe(loc->xl_entry); int block_offset = nameval_offset >> sb->s_blocksize_bits; /* Values are not allowed to straddle block boundaries */ BUG_ON(block_offset != ((nameval_offset + size - 1) >> sb->s_blocksize_bits)); /* We expect the bucket to be filled in */ BUG_ON(!bucket->bu_bhs[block_offset]); vb->vb_access = ocfs2_journal_access; vb->vb_bh = bucket->bu_bhs[block_offset]; } /* Operations for xattrs stored in buckets. */ static const struct ocfs2_xa_loc_operations ocfs2_xa_bucket_loc_ops = { .xlo_journal_access = ocfs2_xa_bucket_journal_access, .xlo_journal_dirty = ocfs2_xa_bucket_journal_dirty, .xlo_offset_pointer = ocfs2_xa_bucket_offset_pointer, .xlo_check_space = ocfs2_xa_bucket_check_space, .xlo_can_reuse = ocfs2_xa_bucket_can_reuse, .xlo_get_free_start = ocfs2_xa_bucket_get_free_start, .xlo_wipe_namevalue = ocfs2_xa_bucket_wipe_namevalue, .xlo_add_entry = ocfs2_xa_bucket_add_entry, .xlo_add_namevalue = ocfs2_xa_bucket_add_namevalue, .xlo_fill_value_buf = ocfs2_xa_bucket_fill_value_buf, }; static unsigned int ocfs2_xa_value_clusters(struct ocfs2_xa_loc *loc) { struct ocfs2_xattr_value_buf vb; if (ocfs2_xattr_is_local(loc->xl_entry)) return 0; ocfs2_xa_fill_value_buf(loc, &vb); return le32_to_cpu(vb.vb_xv->xr_clusters); } static int ocfs2_xa_value_truncate(struct ocfs2_xa_loc *loc, u64 bytes, struct ocfs2_xattr_set_ctxt *ctxt) { int trunc_rc, access_rc; struct ocfs2_xattr_value_buf vb; ocfs2_xa_fill_value_buf(loc, &vb); trunc_rc = ocfs2_xattr_value_truncate(loc->xl_inode, &vb, bytes, ctxt); /* * The caller of ocfs2_xa_value_truncate() has already called * ocfs2_xa_journal_access on the loc. However, The truncate code * calls ocfs2_extend_trans(). This may commit the previous * transaction and open a new one. If this is a bucket, truncate * could leave only vb->vb_bh set up for journaling. Meanwhile, * the caller is expecting to dirty the entire bucket. So we must * reset the journal work. We do this even if truncate has failed, * as it could have failed after committing the extend. */ access_rc = ocfs2_xa_journal_access(ctxt->handle, loc, OCFS2_JOURNAL_ACCESS_WRITE); /* Errors in truncate take precedence */ return trunc_rc ? trunc_rc : access_rc; } static void ocfs2_xa_remove_entry(struct ocfs2_xa_loc *loc) { int index, count; struct ocfs2_xattr_header *xh = loc->xl_header; struct ocfs2_xattr_entry *entry = loc->xl_entry; ocfs2_xa_wipe_namevalue(loc); loc->xl_entry = NULL; le16_add_cpu(&xh->xh_count, -1); count = le16_to_cpu(xh->xh_count); /* * Only zero out the entry if there are more remaining. This is * important for an empty bucket, as it keeps track of the * bucket's hash value. It doesn't hurt empty block storage. */ if (count) { index = ((char *)entry - (char *)&xh->xh_entries) / sizeof(struct ocfs2_xattr_entry); memmove(&xh->xh_entries[index], &xh->xh_entries[index + 1], (count - index) * sizeof(struct ocfs2_xattr_entry)); memset(&xh->xh_entries[count], 0, sizeof(struct ocfs2_xattr_entry)); } } /* * If we have a problem adjusting the size of an external value during * ocfs2_xa_prepare_entry() or ocfs2_xa_remove(), we may have an xattr * in an intermediate state. For example, the value may be partially * truncated. * * If the value tree hasn't changed, the extend/truncate went nowhere. * We have nothing to do. The caller can treat it as a straight error. * * If the value tree got partially truncated, we now have a corrupted * extended attribute. We're going to wipe its entry and leak the * clusters. Better to leak some storage than leave a corrupt entry. * * If the value tree grew, it obviously didn't grow enough for the * new entry. We're not going to try and reclaim those clusters either. * If there was already an external value there (orig_clusters != 0), * the new clusters are attached safely and we can just leave the old * value in place. If there was no external value there, we remove * the entry. * * This way, the xattr block we store in the journal will be consistent. * If the size change broke because of the journal, no changes will hit * disk anyway. */ static void ocfs2_xa_cleanup_value_truncate(struct ocfs2_xa_loc *loc, const char *what, unsigned int orig_clusters) { unsigned int new_clusters = ocfs2_xa_value_clusters(loc); char *nameval_buf = ocfs2_xa_offset_pointer(loc, le16_to_cpu(loc->xl_entry->xe_name_offset)); if (new_clusters < orig_clusters) { mlog(ML_ERROR, "Partial truncate while %s xattr %.*s. Leaking " "%u clusters and removing the entry\n", what, loc->xl_entry->xe_name_len, nameval_buf, orig_clusters - new_clusters); ocfs2_xa_remove_entry(loc); } else if (!orig_clusters) { mlog(ML_ERROR, "Unable to allocate an external value for xattr " "%.*s safely. Leaking %u clusters and removing the " "entry\n", loc->xl_entry->xe_name_len, nameval_buf, new_clusters - orig_clusters); ocfs2_xa_remove_entry(loc); } else if (new_clusters > orig_clusters) mlog(ML_ERROR, "Unable to grow xattr %.*s safely. %u new clusters " "have been added, but the value will not be " "modified\n", loc->xl_entry->xe_name_len, nameval_buf, new_clusters - orig_clusters); } static int ocfs2_xa_remove(struct ocfs2_xa_loc *loc, struct ocfs2_xattr_set_ctxt *ctxt) { int rc = 0; unsigned int orig_clusters; if (!ocfs2_xattr_is_local(loc->xl_entry)) { orig_clusters = ocfs2_xa_value_clusters(loc); rc = ocfs2_xa_value_truncate(loc, 0, ctxt); if (rc) { mlog_errno(rc); /* * Since this is remove, we can return 0 if * ocfs2_xa_cleanup_value_truncate() is going to * wipe the entry anyway. So we check the * cluster count as well. */ if (orig_clusters != ocfs2_xa_value_clusters(loc)) rc = 0; ocfs2_xa_cleanup_value_truncate(loc, "removing", orig_clusters); if (rc) goto out; } } ocfs2_xa_remove_entry(loc); out: return rc; } static void ocfs2_xa_install_value_root(struct ocfs2_xa_loc *loc) { int name_size = OCFS2_XATTR_SIZE(loc->xl_entry->xe_name_len); char *nameval_buf; nameval_buf = ocfs2_xa_offset_pointer(loc, le16_to_cpu(loc->xl_entry->xe_name_offset)); memcpy(nameval_buf + name_size, &def_xv, OCFS2_XATTR_ROOT_SIZE); } /* * Take an existing entry and make it ready for the new value. This * won't allocate space, but it may free space. It should be ready for * ocfs2_xa_prepare_entry() to finish the work. */ static int ocfs2_xa_reuse_entry(struct ocfs2_xa_loc *loc, struct ocfs2_xattr_info *xi, struct ocfs2_xattr_set_ctxt *ctxt) { int rc = 0; int name_size = OCFS2_XATTR_SIZE(xi->xi_name_len); unsigned int orig_clusters; char *nameval_buf; int xe_local = ocfs2_xattr_is_local(loc->xl_entry); int xi_local = xi->xi_value_len <= OCFS2_XATTR_INLINE_SIZE; BUG_ON(OCFS2_XATTR_SIZE(loc->xl_entry->xe_name_len) != name_size); nameval_buf = ocfs2_xa_offset_pointer(loc, le16_to_cpu(loc->xl_entry->xe_name_offset)); if (xe_local) { memset(nameval_buf + name_size, 0, namevalue_size_xe(loc->xl_entry) - name_size); if (!xi_local) ocfs2_xa_install_value_root(loc); } else { orig_clusters = ocfs2_xa_value_clusters(loc); if (xi_local) { rc = ocfs2_xa_value_truncate(loc, 0, ctxt); if (rc < 0) mlog_errno(rc); else memset(nameval_buf + name_size, 0, namevalue_size_xe(loc->xl_entry) - name_size); } else if (le64_to_cpu(loc->xl_entry->xe_value_size) > xi->xi_value_len) { rc = ocfs2_xa_value_truncate(loc, xi->xi_value_len, ctxt); if (rc < 0) mlog_errno(rc); } if (rc) { ocfs2_xa_cleanup_value_truncate(loc, "reusing", orig_clusters); goto out; } } loc->xl_entry->xe_value_size = cpu_to_le64(xi->xi_value_len); ocfs2_xattr_set_local(loc->xl_entry, xi_local); out: return rc; } /* * Prepares loc->xl_entry to receive the new xattr. This includes * properly setting up the name+value pair region. If loc->xl_entry * already exists, it will take care of modifying it appropriately. * * Note that this modifies the data. You did journal_access already, * right? */ static int ocfs2_xa_prepare_entry(struct ocfs2_xa_loc *loc, struct ocfs2_xattr_info *xi, u32 name_hash, struct ocfs2_xattr_set_ctxt *ctxt) { int rc = 0; unsigned int orig_clusters; __le64 orig_value_size = 0; rc = ocfs2_xa_check_space(loc, xi); if (rc) goto out; if (loc->xl_entry) { if (ocfs2_xa_can_reuse_entry(loc, xi)) { orig_value_size = loc->xl_entry->xe_value_size; rc = ocfs2_xa_reuse_entry(loc, xi, ctxt); if (rc) goto out; goto alloc_value; } if (!ocfs2_xattr_is_local(loc->xl_entry)) { orig_clusters = ocfs2_xa_value_clusters(loc); rc = ocfs2_xa_value_truncate(loc, 0, ctxt); if (rc) { mlog_errno(rc); ocfs2_xa_cleanup_value_truncate(loc, "overwriting", orig_clusters); goto out; } } ocfs2_xa_wipe_namevalue(loc); } else ocfs2_xa_add_entry(loc, name_hash); /* * If we get here, we have a blank entry. Fill it. We grow our * name+value pair back from the end. */ ocfs2_xa_add_namevalue(loc, xi); if (xi->xi_value_len > OCFS2_XATTR_INLINE_SIZE) ocfs2_xa_install_value_root(loc); alloc_value: if (xi->xi_value_len > OCFS2_XATTR_INLINE_SIZE) { orig_clusters = ocfs2_xa_value_clusters(loc); rc = ocfs2_xa_value_truncate(loc, xi->xi_value_len, ctxt); if (rc < 0) { ctxt->set_abort = 1; ocfs2_xa_cleanup_value_truncate(loc, "growing", orig_clusters); /* * If we were growing an existing value, * ocfs2_xa_cleanup_value_truncate() won't remove * the entry. We need to restore the original value * size. */ if (loc->xl_entry) { BUG_ON(!orig_value_size); loc->xl_entry->xe_value_size = orig_value_size; } mlog_errno(rc); } } out: return rc; } /* * Store the value portion of the name+value pair. This will skip * values that are stored externally. Their tree roots were set up * by ocfs2_xa_prepare_entry(). */ static int ocfs2_xa_store_value(struct ocfs2_xa_loc *loc, struct ocfs2_xattr_info *xi, struct ocfs2_xattr_set_ctxt *ctxt) { int rc = 0; int nameval_offset = le16_to_cpu(loc->xl_entry->xe_name_offset); int name_size = OCFS2_XATTR_SIZE(xi->xi_name_len); char *nameval_buf; struct ocfs2_xattr_value_buf vb; nameval_buf = ocfs2_xa_offset_pointer(loc, nameval_offset); if (xi->xi_value_len > OCFS2_XATTR_INLINE_SIZE) { ocfs2_xa_fill_value_buf(loc, &vb); rc = __ocfs2_xattr_set_value_outside(loc->xl_inode, ctxt->handle, &vb, xi->xi_value, xi->xi_value_len); } else memcpy(nameval_buf + name_size, xi->xi_value, xi->xi_value_len); return rc; } static int ocfs2_xa_set(struct ocfs2_xa_loc *loc, struct ocfs2_xattr_info *xi, struct ocfs2_xattr_set_ctxt *ctxt) { int ret; u32 name_hash = ocfs2_xattr_name_hash(loc->xl_inode, xi->xi_name, xi->xi_name_len); ret = ocfs2_xa_journal_access(ctxt->handle, loc, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out; } /* * From here on out, everything is going to modify the buffer a * little. Errors are going to leave the xattr header in a * sane state. Thus, even with errors we dirty the sucker. */ /* Don't worry, we are never called with !xi_value and !xl_entry */ if (!xi->xi_value) { ret = ocfs2_xa_remove(loc, ctxt); goto out_dirty; } ret = ocfs2_xa_prepare_entry(loc, xi, name_hash, ctxt); if (ret) { if (ret != -ENOSPC) mlog_errno(ret); goto out_dirty; } ret = ocfs2_xa_store_value(loc, xi, ctxt); if (ret) mlog_errno(ret); out_dirty: ocfs2_xa_journal_dirty(ctxt->handle, loc); out: return ret; } static void ocfs2_init_dinode_xa_loc(struct ocfs2_xa_loc *loc, struct inode *inode, struct buffer_head *bh, struct ocfs2_xattr_entry *entry) { struct ocfs2_dinode *di = (struct ocfs2_dinode *)bh->b_data; BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_XATTR_FL)); loc->xl_inode = inode; loc->xl_ops = &ocfs2_xa_block_loc_ops; loc->xl_storage = bh; loc->xl_entry = entry; loc->xl_size = le16_to_cpu(di->i_xattr_inline_size); loc->xl_header = (struct ocfs2_xattr_header *)(bh->b_data + bh->b_size - loc->xl_size); } static void ocfs2_init_xattr_block_xa_loc(struct ocfs2_xa_loc *loc, struct inode *inode, struct buffer_head *bh, struct ocfs2_xattr_entry *entry) { struct ocfs2_xattr_block *xb = (struct ocfs2_xattr_block *)bh->b_data; BUG_ON(le16_to_cpu(xb->xb_flags) & OCFS2_XATTR_INDEXED); loc->xl_inode = inode; loc->xl_ops = &ocfs2_xa_block_loc_ops; loc->xl_storage = bh; loc->xl_header = &(xb->xb_attrs.xb_header); loc->xl_entry = entry; loc->xl_size = bh->b_size - offsetof(struct ocfs2_xattr_block, xb_attrs.xb_header); } static void ocfs2_init_xattr_bucket_xa_loc(struct ocfs2_xa_loc *loc, struct ocfs2_xattr_bucket *bucket, struct ocfs2_xattr_entry *entry) { loc->xl_inode = bucket->bu_inode; loc->xl_ops = &ocfs2_xa_bucket_loc_ops; loc->xl_storage = bucket; loc->xl_header = bucket_xh(bucket); loc->xl_entry = entry; loc->xl_size = OCFS2_XATTR_BUCKET_SIZE; } /* * In xattr remove, if it is stored outside and refcounted, we may have * the chance to split the refcount tree. So need the allocators. */ static int ocfs2_lock_xattr_remove_allocators(struct inode *inode, struct ocfs2_xattr_value_root *xv, struct ocfs2_caching_info *ref_ci, struct buffer_head *ref_root_bh, struct ocfs2_alloc_context **meta_ac, int *ref_credits) { int ret, meta_add = 0; u32 p_cluster, num_clusters; unsigned int ext_flags; *ref_credits = 0; ret = ocfs2_xattr_get_clusters(inode, 0, &p_cluster, &num_clusters, &xv->xr_list, &ext_flags); if (ret) { mlog_errno(ret); goto out; } if (!(ext_flags & OCFS2_EXT_REFCOUNTED)) goto out; ret = ocfs2_refcounted_xattr_delete_need(inode, ref_ci, ref_root_bh, xv, &meta_add, ref_credits); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_reserve_new_metadata_blocks(OCFS2_SB(inode->i_sb), meta_add, meta_ac); if (ret) mlog_errno(ret); out: return ret; } static int ocfs2_remove_value_outside(struct inode*inode, struct ocfs2_xattr_value_buf *vb, struct ocfs2_xattr_header *header, struct ocfs2_caching_info *ref_ci, struct buffer_head *ref_root_bh) { int ret = 0, i, ref_credits; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct ocfs2_xattr_set_ctxt ctxt = { NULL, NULL, }; void *val; ocfs2_init_dealloc_ctxt(&ctxt.dealloc); for (i = 0; i < le16_to_cpu(header->xh_count); i++) { struct ocfs2_xattr_entry *entry = &header->xh_entries[i]; if (ocfs2_xattr_is_local(entry)) continue; val = (void *)header + le16_to_cpu(entry->xe_name_offset); vb->vb_xv = (struct ocfs2_xattr_value_root *) (val + OCFS2_XATTR_SIZE(entry->xe_name_len)); ret = ocfs2_lock_xattr_remove_allocators(inode, vb->vb_xv, ref_ci, ref_root_bh, &ctxt.meta_ac, &ref_credits); ctxt.handle = ocfs2_start_trans(osb, ref_credits + ocfs2_remove_extent_credits(osb->sb)); if (IS_ERR(ctxt.handle)) { ret = PTR_ERR(ctxt.handle); mlog_errno(ret); break; } ret = ocfs2_xattr_value_truncate(inode, vb, 0, &ctxt); ocfs2_commit_trans(osb, ctxt.handle); if (ctxt.meta_ac) { ocfs2_free_alloc_context(ctxt.meta_ac); ctxt.meta_ac = NULL; } if (ret < 0) { mlog_errno(ret); break; } } if (ctxt.meta_ac) ocfs2_free_alloc_context(ctxt.meta_ac); ocfs2_schedule_truncate_log_flush(osb, 1); ocfs2_run_deallocs(osb, &ctxt.dealloc); return ret; } static int ocfs2_xattr_ibody_remove(struct inode *inode, struct buffer_head *di_bh, struct ocfs2_caching_info *ref_ci, struct buffer_head *ref_root_bh) { struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; struct ocfs2_xattr_header *header; int ret; struct ocfs2_xattr_value_buf vb = { .vb_bh = di_bh, .vb_access = ocfs2_journal_access_di, }; header = (struct ocfs2_xattr_header *) ((void *)di + inode->i_sb->s_blocksize - le16_to_cpu(di->i_xattr_inline_size)); ret = ocfs2_remove_value_outside(inode, &vb, header, ref_ci, ref_root_bh); return ret; } struct ocfs2_rm_xattr_bucket_para { struct ocfs2_caching_info *ref_ci; struct buffer_head *ref_root_bh; }; static int ocfs2_xattr_block_remove(struct inode *inode, struct buffer_head *blk_bh, struct ocfs2_caching_info *ref_ci, struct buffer_head *ref_root_bh) { struct ocfs2_xattr_block *xb; int ret = 0; struct ocfs2_xattr_value_buf vb = { .vb_bh = blk_bh, .vb_access = ocfs2_journal_access_xb, }; struct ocfs2_rm_xattr_bucket_para args = { .ref_ci = ref_ci, .ref_root_bh = ref_root_bh, }; xb = (struct ocfs2_xattr_block *)blk_bh->b_data; if (!(le16_to_cpu(xb->xb_flags) & OCFS2_XATTR_INDEXED)) { struct ocfs2_xattr_header *header = &(xb->xb_attrs.xb_header); ret = ocfs2_remove_value_outside(inode, &vb, header, ref_ci, ref_root_bh); } else ret = ocfs2_iterate_xattr_index_block(inode, blk_bh, ocfs2_rm_xattr_cluster, &args); return ret; } static int ocfs2_xattr_free_block(struct inode *inode, u64 block, struct ocfs2_caching_info *ref_ci, struct buffer_head *ref_root_bh) { struct inode *xb_alloc_inode; struct buffer_head *xb_alloc_bh = NULL; struct buffer_head *blk_bh = NULL; struct ocfs2_xattr_block *xb; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); handle_t *handle; int ret = 0; u64 blk, bg_blkno; u16 bit; ret = ocfs2_read_xattr_block(inode, block, &blk_bh); if (ret < 0) { mlog_errno(ret); goto out; } ret = ocfs2_xattr_block_remove(inode, blk_bh, ref_ci, ref_root_bh); if (ret < 0) { mlog_errno(ret); goto out; } xb = (struct ocfs2_xattr_block *)blk_bh->b_data; blk = le64_to_cpu(xb->xb_blkno); bit = le16_to_cpu(xb->xb_suballoc_bit); if (xb->xb_suballoc_loc) bg_blkno = le64_to_cpu(xb->xb_suballoc_loc); else bg_blkno = ocfs2_which_suballoc_group(blk, bit); xb_alloc_inode = ocfs2_get_system_file_inode(osb, EXTENT_ALLOC_SYSTEM_INODE, le16_to_cpu(xb->xb_suballoc_slot)); if (!xb_alloc_inode) { ret = -ENOMEM; mlog_errno(ret); goto out; } mutex_lock(&xb_alloc_inode->i_mutex); ret = ocfs2_inode_lock(xb_alloc_inode, &xb_alloc_bh, 1); if (ret < 0) { mlog_errno(ret); goto out_mutex; } handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE); if (IS_ERR(handle)) { ret = PTR_ERR(handle); mlog_errno(ret); goto out_unlock; } ret = ocfs2_free_suballoc_bits(handle, xb_alloc_inode, xb_alloc_bh, bit, bg_blkno, 1); if (ret < 0) mlog_errno(ret); ocfs2_commit_trans(osb, handle); out_unlock: ocfs2_inode_unlock(xb_alloc_inode, 1); brelse(xb_alloc_bh); out_mutex: mutex_unlock(&xb_alloc_inode->i_mutex); iput(xb_alloc_inode); out: brelse(blk_bh); return ret; } /* * ocfs2_xattr_remove() * * Free extended attribute resources associated with this inode. */ int ocfs2_xattr_remove(struct inode *inode, struct buffer_head *di_bh) { struct ocfs2_inode_info *oi = OCFS2_I(inode); struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; struct ocfs2_refcount_tree *ref_tree = NULL; struct buffer_head *ref_root_bh = NULL; struct ocfs2_caching_info *ref_ci = NULL; handle_t *handle; int ret; if (!ocfs2_supports_xattr(OCFS2_SB(inode->i_sb))) return 0; if (!(oi->ip_dyn_features & OCFS2_HAS_XATTR_FL)) return 0; if (OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) { ret = ocfs2_lock_refcount_tree(OCFS2_SB(inode->i_sb), le64_to_cpu(di->i_refcount_loc), 1, &ref_tree, &ref_root_bh); if (ret) { mlog_errno(ret); goto out; } ref_ci = &ref_tree->rf_ci; } if (oi->ip_dyn_features & OCFS2_INLINE_XATTR_FL) { ret = ocfs2_xattr_ibody_remove(inode, di_bh, ref_ci, ref_root_bh); if (ret < 0) { mlog_errno(ret); goto out; } } if (di->i_xattr_loc) { ret = ocfs2_xattr_free_block(inode, le64_to_cpu(di->i_xattr_loc), ref_ci, ref_root_bh); if (ret < 0) { mlog_errno(ret); goto out; } } handle = ocfs2_start_trans((OCFS2_SB(inode->i_sb)), OCFS2_INODE_UPDATE_CREDITS); if (IS_ERR(handle)) { ret = PTR_ERR(handle); mlog_errno(ret); goto out; } ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out_commit; } di->i_xattr_loc = 0; spin_lock(&oi->ip_lock); oi->ip_dyn_features &= ~(OCFS2_INLINE_XATTR_FL | OCFS2_HAS_XATTR_FL); di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); spin_unlock(&oi->ip_lock); ocfs2_journal_dirty(handle, di_bh); out_commit: ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle); out: if (ref_tree) ocfs2_unlock_refcount_tree(OCFS2_SB(inode->i_sb), ref_tree, 1); brelse(ref_root_bh); return ret; } static int ocfs2_xattr_has_space_inline(struct inode *inode, struct ocfs2_dinode *di) { struct ocfs2_inode_info *oi = OCFS2_I(inode); unsigned int xattrsize = OCFS2_SB(inode->i_sb)->s_xattr_inline_size; int free; if (xattrsize < OCFS2_MIN_XATTR_INLINE_SIZE) return 0; if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { struct ocfs2_inline_data *idata = &di->id2.i_data; free = le16_to_cpu(idata->id_count) - le64_to_cpu(di->i_size); } else if (ocfs2_inode_is_fast_symlink(inode)) { free = ocfs2_fast_symlink_chars(inode->i_sb) - le64_to_cpu(di->i_size); } else { struct ocfs2_extent_list *el = &di->id2.i_list; free = (le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec)) * sizeof(struct ocfs2_extent_rec); } if (free >= xattrsize) return 1; return 0; } /* * ocfs2_xattr_ibody_find() * * Find extended attribute in inode block and * fill search info into struct ocfs2_xattr_search. */ static int ocfs2_xattr_ibody_find(struct inode *inode, int name_index, const char *name, struct ocfs2_xattr_search *xs) { struct ocfs2_inode_info *oi = OCFS2_I(inode); struct ocfs2_dinode *di = (struct ocfs2_dinode *)xs->inode_bh->b_data; int ret; int has_space = 0; if (inode->i_sb->s_blocksize == OCFS2_MIN_BLOCKSIZE) return 0; if (!(oi->ip_dyn_features & OCFS2_INLINE_XATTR_FL)) { down_read(&oi->ip_alloc_sem); has_space = ocfs2_xattr_has_space_inline(inode, di); up_read(&oi->ip_alloc_sem); if (!has_space) return 0; } xs->xattr_bh = xs->inode_bh; xs->end = (void *)di + inode->i_sb->s_blocksize; if (oi->ip_dyn_features & OCFS2_INLINE_XATTR_FL) xs->header = (struct ocfs2_xattr_header *) (xs->end - le16_to_cpu(di->i_xattr_inline_size)); else xs->header = (struct ocfs2_xattr_header *) (xs->end - OCFS2_SB(inode->i_sb)->s_xattr_inline_size); xs->base = (void *)xs->header; xs->here = xs->header->xh_entries; /* Find the named attribute. */ if (oi->ip_dyn_features & OCFS2_INLINE_XATTR_FL) { ret = ocfs2_xattr_find_entry(name_index, name, xs); if (ret && ret != -ENODATA) return ret; xs->not_found = ret; } return 0; } static int ocfs2_xattr_ibody_init(struct inode *inode, struct buffer_head *di_bh, struct ocfs2_xattr_set_ctxt *ctxt) { int ret; struct ocfs2_inode_info *oi = OCFS2_I(inode); struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); unsigned int xattrsize = osb->s_xattr_inline_size; if (!ocfs2_xattr_has_space_inline(inode, di)) { ret = -ENOSPC; goto out; } ret = ocfs2_journal_access_di(ctxt->handle, INODE_CACHE(inode), di_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out; } /* * Adjust extent record count or inline data size * to reserve space for extended attribute. */ if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { struct ocfs2_inline_data *idata = &di->id2.i_data; le16_add_cpu(&idata->id_count, -xattrsize); } else if (!(ocfs2_inode_is_fast_symlink(inode))) { struct ocfs2_extent_list *el = &di->id2.i_list; le16_add_cpu(&el->l_count, -(xattrsize / sizeof(struct ocfs2_extent_rec))); } di->i_xattr_inline_size = cpu_to_le16(xattrsize); spin_lock(&oi->ip_lock); oi->ip_dyn_features |= OCFS2_INLINE_XATTR_FL|OCFS2_HAS_XATTR_FL; di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features); spin_unlock(&oi->ip_lock); ocfs2_journal_dirty(ctxt->handle, di_bh); out: return ret; } /* * ocfs2_xattr_ibody_set() * * Set, replace or remove an extended attribute into inode block. * */ static int ocfs2_xattr_ibody_set(struct inode *inode, struct ocfs2_xattr_info *xi, struct ocfs2_xattr_search *xs, struct ocfs2_xattr_set_ctxt *ctxt) { int ret; struct ocfs2_inode_info *oi = OCFS2_I(inode); struct ocfs2_dinode *di = (struct ocfs2_dinode *)xs->inode_bh->b_data; struct ocfs2_xa_loc loc; if (inode->i_sb->s_blocksize == OCFS2_MIN_BLOCKSIZE) return -ENOSPC; down_write(&oi->ip_alloc_sem); if (!(oi->ip_dyn_features & OCFS2_INLINE_XATTR_FL)) { if (!ocfs2_xattr_has_space_inline(inode, di)) { ret = -ENOSPC; goto out; } } if (!(oi->ip_dyn_features & OCFS2_INLINE_XATTR_FL)) { ret = ocfs2_xattr_ibody_init(inode, xs->inode_bh, ctxt); if (ret) { if (ret != -ENOSPC) mlog_errno(ret); goto out; } } ocfs2_init_dinode_xa_loc(&loc, inode, xs->inode_bh, xs->not_found ? NULL : xs->here); ret = ocfs2_xa_set(&loc, xi, ctxt); if (ret) { if (ret != -ENOSPC) mlog_errno(ret); goto out; } xs->here = loc.xl_entry; out: up_write(&oi->ip_alloc_sem); return ret; } /* * ocfs2_xattr_block_find() * * Find extended attribute in external block and * fill search info into struct ocfs2_xattr_search. */ static int ocfs2_xattr_block_find(struct inode *inode, int name_index, const char *name, struct ocfs2_xattr_search *xs) { struct ocfs2_dinode *di = (struct ocfs2_dinode *)xs->inode_bh->b_data; struct buffer_head *blk_bh = NULL; struct ocfs2_xattr_block *xb; int ret = 0; if (!di->i_xattr_loc) return ret; ret = ocfs2_read_xattr_block(inode, le64_to_cpu(di->i_xattr_loc), &blk_bh); if (ret < 0) { mlog_errno(ret); return ret; } xs->xattr_bh = blk_bh; xb = (struct ocfs2_xattr_block *)blk_bh->b_data; if (!(le16_to_cpu(xb->xb_flags) & OCFS2_XATTR_INDEXED)) { xs->header = &xb->xb_attrs.xb_header; xs->base = (void *)xs->header; xs->end = (void *)(blk_bh->b_data) + blk_bh->b_size; xs->here = xs->header->xh_entries; ret = ocfs2_xattr_find_entry(name_index, name, xs); } else ret = ocfs2_xattr_index_block_find(inode, blk_bh, name_index, name, xs); if (ret && ret != -ENODATA) { xs->xattr_bh = NULL; goto cleanup; } xs->not_found = ret; return 0; cleanup: brelse(blk_bh); return ret; } static int ocfs2_create_xattr_block(struct inode *inode, struct buffer_head *inode_bh, struct ocfs2_xattr_set_ctxt *ctxt, int indexed, struct buffer_head **ret_bh) { int ret; u16 suballoc_bit_start; u32 num_got; u64 suballoc_loc, first_blkno; struct ocfs2_dinode *di = (struct ocfs2_dinode *)inode_bh->b_data; struct buffer_head *new_bh = NULL; struct ocfs2_xattr_block *xblk; ret = ocfs2_journal_access_di(ctxt->handle, INODE_CACHE(inode), inode_bh, OCFS2_JOURNAL_ACCESS_CREATE); if (ret < 0) { mlog_errno(ret); goto end; } ret = ocfs2_claim_metadata(ctxt->handle, ctxt->meta_ac, 1, &suballoc_loc, &suballoc_bit_start, &num_got, &first_blkno); if (ret < 0) { mlog_errno(ret); goto end; } new_bh = sb_getblk(inode->i_sb, first_blkno); ocfs2_set_new_buffer_uptodate(INODE_CACHE(inode), new_bh); ret = ocfs2_journal_access_xb(ctxt->handle, INODE_CACHE(inode), new_bh, OCFS2_JOURNAL_ACCESS_CREATE); if (ret < 0) { mlog_errno(ret); goto end; } /* Initialize ocfs2_xattr_block */ xblk = (struct ocfs2_xattr_block *)new_bh->b_data; memset(xblk, 0, inode->i_sb->s_blocksize); strcpy((void *)xblk, OCFS2_XATTR_BLOCK_SIGNATURE); xblk->xb_suballoc_slot = cpu_to_le16(ctxt->meta_ac->ac_alloc_slot); xblk->xb_suballoc_loc = cpu_to_le64(suballoc_loc); xblk->xb_suballoc_bit = cpu_to_le16(suballoc_bit_start); xblk->xb_fs_generation = cpu_to_le32(OCFS2_SB(inode->i_sb)->fs_generation); xblk->xb_blkno = cpu_to_le64(first_blkno); if (indexed) { struct ocfs2_xattr_tree_root *xr = &xblk->xb_attrs.xb_root; xr->xt_clusters = cpu_to_le32(1); xr->xt_last_eb_blk = 0; xr->xt_list.l_tree_depth = 0; xr->xt_list.l_count = cpu_to_le16( ocfs2_xattr_recs_per_xb(inode->i_sb)); xr->xt_list.l_next_free_rec = cpu_to_le16(1); xblk->xb_flags = cpu_to_le16(OCFS2_XATTR_INDEXED); } ocfs2_journal_dirty(ctxt->handle, new_bh); /* Add it to the inode */ di->i_xattr_loc = cpu_to_le64(first_blkno); spin_lock(&OCFS2_I(inode)->ip_lock); OCFS2_I(inode)->ip_dyn_features |= OCFS2_HAS_XATTR_FL; di->i_dyn_features = cpu_to_le16(OCFS2_I(inode)->ip_dyn_features); spin_unlock(&OCFS2_I(inode)->ip_lock); ocfs2_journal_dirty(ctxt->handle, inode_bh); *ret_bh = new_bh; new_bh = NULL; end: brelse(new_bh); return ret; } /* * ocfs2_xattr_block_set() * * Set, replace or remove an extended attribute into external block. * */ static int ocfs2_xattr_block_set(struct inode *inode, struct ocfs2_xattr_info *xi, struct ocfs2_xattr_search *xs, struct ocfs2_xattr_set_ctxt *ctxt) { struct buffer_head *new_bh = NULL; struct ocfs2_xattr_block *xblk = NULL; int ret; struct ocfs2_xa_loc loc; if (!xs->xattr_bh) { ret = ocfs2_create_xattr_block(inode, xs->inode_bh, ctxt, 0, &new_bh); if (ret) { mlog_errno(ret); goto end; } xs->xattr_bh = new_bh; xblk = (struct ocfs2_xattr_block *)xs->xattr_bh->b_data; xs->header = &xblk->xb_attrs.xb_header; xs->base = (void *)xs->header; xs->end = (void *)xblk + inode->i_sb->s_blocksize; xs->here = xs->header->xh_entries; } else xblk = (struct ocfs2_xattr_block *)xs->xattr_bh->b_data; if (!(le16_to_cpu(xblk->xb_flags) & OCFS2_XATTR_INDEXED)) { ocfs2_init_xattr_block_xa_loc(&loc, inode, xs->xattr_bh, xs->not_found ? NULL : xs->here); ret = ocfs2_xa_set(&loc, xi, ctxt); if (!ret) xs->here = loc.xl_entry; else if ((ret != -ENOSPC) || ctxt->set_abort) goto end; else { ret = ocfs2_xattr_create_index_block(inode, xs, ctxt); if (ret) goto end; } } if (le16_to_cpu(xblk->xb_flags) & OCFS2_XATTR_INDEXED) ret = ocfs2_xattr_set_entry_index_block(inode, xi, xs, ctxt); end: return ret; } /* Check whether the new xattr can be inserted into the inode. */ static int ocfs2_xattr_can_be_in_inode(struct inode *inode, struct ocfs2_xattr_info *xi, struct ocfs2_xattr_search *xs) { struct ocfs2_xattr_entry *last; int free, i; size_t min_offs = xs->end - xs->base; if (!xs->header) return 0; last = xs->header->xh_entries; for (i = 0; i < le16_to_cpu(xs->header->xh_count); i++) { size_t offs = le16_to_cpu(last->xe_name_offset); if (offs < min_offs) min_offs = offs; last += 1; } free = min_offs - ((void *)last - xs->base) - OCFS2_XATTR_HEADER_GAP; if (free < 0) return 0; BUG_ON(!xs->not_found); if (free >= (sizeof(struct ocfs2_xattr_entry) + namevalue_size_xi(xi))) return 1; return 0; } static int ocfs2_calc_xattr_set_need(struct inode *inode, struct ocfs2_dinode *di, struct ocfs2_xattr_info *xi, struct ocfs2_xattr_search *xis, struct ocfs2_xattr_search *xbs, int *clusters_need, int *meta_need, int *credits_need) { int ret = 0, old_in_xb = 0; int clusters_add = 0, meta_add = 0, credits = 0; struct buffer_head *bh = NULL; struct ocfs2_xattr_block *xb = NULL; struct ocfs2_xattr_entry *xe = NULL; struct ocfs2_xattr_value_root *xv = NULL; char *base = NULL; int name_offset, name_len = 0; u32 new_clusters = ocfs2_clusters_for_bytes(inode->i_sb, xi->xi_value_len); u64 value_size; /* * Calculate the clusters we need to write. * No matter whether we replace an old one or add a new one, * we need this for writing. */ if (xi->xi_value_len > OCFS2_XATTR_INLINE_SIZE) credits += new_clusters * ocfs2_clusters_to_blocks(inode->i_sb, 1); if (xis->not_found && xbs->not_found) { credits += ocfs2_blocks_per_xattr_bucket(inode->i_sb); if (xi->xi_value_len > OCFS2_XATTR_INLINE_SIZE) { clusters_add += new_clusters; credits += ocfs2_calc_extend_credits(inode->i_sb, &def_xv.xv.xr_list, new_clusters); } goto meta_guess; } if (!xis->not_found) { xe = xis->here; name_offset = le16_to_cpu(xe->xe_name_offset); name_len = OCFS2_XATTR_SIZE(xe->xe_name_len); base = xis->base; credits += OCFS2_INODE_UPDATE_CREDITS; } else { int i, block_off = 0; xb = (struct ocfs2_xattr_block *)xbs->xattr_bh->b_data; xe = xbs->here; name_offset = le16_to_cpu(xe->xe_name_offset); name_len = OCFS2_XATTR_SIZE(xe->xe_name_len); i = xbs->here - xbs->header->xh_entries; old_in_xb = 1; if (le16_to_cpu(xb->xb_flags) & OCFS2_XATTR_INDEXED) { ret = ocfs2_xattr_bucket_get_name_value(inode->i_sb, bucket_xh(xbs->bucket), i, &block_off, &name_offset); base = bucket_block(xbs->bucket, block_off); credits += ocfs2_blocks_per_xattr_bucket(inode->i_sb); } else { base = xbs->base; credits += OCFS2_XATTR_BLOCK_UPDATE_CREDITS; } } /* * delete a xattr doesn't need metadata and cluster allocation. * so just calculate the credits and return. * * The credits for removing the value tree will be extended * by ocfs2_remove_extent itself. */ if (!xi->xi_value) { if (!ocfs2_xattr_is_local(xe)) credits += ocfs2_remove_extent_credits(inode->i_sb); goto out; } /* do cluster allocation guess first. */ value_size = le64_to_cpu(xe->xe_value_size); if (old_in_xb) { /* * In xattr set, we always try to set the xe in inode first, * so if it can be inserted into inode successfully, the old * one will be removed from the xattr block, and this xattr * will be inserted into inode as a new xattr in inode. */ if (ocfs2_xattr_can_be_in_inode(inode, xi, xis)) { clusters_add += new_clusters; credits += ocfs2_remove_extent_credits(inode->i_sb) + OCFS2_INODE_UPDATE_CREDITS; if (!ocfs2_xattr_is_local(xe)) credits += ocfs2_calc_extend_credits( inode->i_sb, &def_xv.xv.xr_list, new_clusters); goto out; } } if (xi->xi_value_len > OCFS2_XATTR_INLINE_SIZE) { /* the new values will be stored outside. */ u32 old_clusters = 0; if (!ocfs2_xattr_is_local(xe)) { old_clusters = ocfs2_clusters_for_bytes(inode->i_sb, value_size); xv = (struct ocfs2_xattr_value_root *) (base + name_offset + name_len); value_size = OCFS2_XATTR_ROOT_SIZE; } else xv = &def_xv.xv; if (old_clusters >= new_clusters) { credits += ocfs2_remove_extent_credits(inode->i_sb); goto out; } else { meta_add += ocfs2_extend_meta_needed(&xv->xr_list); clusters_add += new_clusters - old_clusters; credits += ocfs2_calc_extend_credits(inode->i_sb, &xv->xr_list, new_clusters - old_clusters); if (value_size >= OCFS2_XATTR_ROOT_SIZE) goto out; } } else { /* * Now the new value will be stored inside. So if the new * value is smaller than the size of value root or the old * value, we don't need any allocation, otherwise we have * to guess metadata allocation. */ if ((ocfs2_xattr_is_local(xe) && (value_size >= xi->xi_value_len)) || (!ocfs2_xattr_is_local(xe) && OCFS2_XATTR_ROOT_SIZE >= xi->xi_value_len)) goto out; } meta_guess: /* calculate metadata allocation. */ if (di->i_xattr_loc) { if (!xbs->xattr_bh) { ret = ocfs2_read_xattr_block(inode, le64_to_cpu(di->i_xattr_loc), &bh); if (ret) { mlog_errno(ret); goto out; } xb = (struct ocfs2_xattr_block *)bh->b_data; } else xb = (struct ocfs2_xattr_block *)xbs->xattr_bh->b_data; /* * If there is already an xattr tree, good, we can calculate * like other b-trees. Otherwise we may have the chance of * create a tree, the credit calculation is borrowed from * ocfs2_calc_extend_credits with root_el = NULL. And the * new tree will be cluster based, so no meta is needed. */ if (le16_to_cpu(xb->xb_flags) & OCFS2_XATTR_INDEXED) { struct ocfs2_extent_list *el = &xb->xb_attrs.xb_root.xt_list; meta_add += ocfs2_extend_meta_needed(el); credits += ocfs2_calc_extend_credits(inode->i_sb, el, 1); } else credits += OCFS2_SUBALLOC_ALLOC + 1; /* * This cluster will be used either for new bucket or for * new xattr block. * If the cluster size is the same as the bucket size, one * more is needed since we may need to extend the bucket * also. */ clusters_add += 1; credits += ocfs2_blocks_per_xattr_bucket(inode->i_sb); if (OCFS2_XATTR_BUCKET_SIZE == OCFS2_SB(inode->i_sb)->s_clustersize) { credits += ocfs2_blocks_per_xattr_bucket(inode->i_sb); clusters_add += 1; } } else { meta_add += 1; credits += OCFS2_XATTR_BLOCK_CREATE_CREDITS; } out: if (clusters_need) *clusters_need = clusters_add; if (meta_need) *meta_need = meta_add; if (credits_need) *credits_need = credits; brelse(bh); return ret; } static int ocfs2_init_xattr_set_ctxt(struct inode *inode, struct ocfs2_dinode *di, struct ocfs2_xattr_info *xi, struct ocfs2_xattr_search *xis, struct ocfs2_xattr_search *xbs, struct ocfs2_xattr_set_ctxt *ctxt, int extra_meta, int *credits) { int clusters_add, meta_add, ret; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); memset(ctxt, 0, sizeof(struct ocfs2_xattr_set_ctxt)); ocfs2_init_dealloc_ctxt(&ctxt->dealloc); ret = ocfs2_calc_xattr_set_need(inode, di, xi, xis, xbs, &clusters_add, &meta_add, credits); if (ret) { mlog_errno(ret); return ret; } meta_add += extra_meta; trace_ocfs2_init_xattr_set_ctxt(xi->xi_name, meta_add, clusters_add, *credits); if (meta_add) { ret = ocfs2_reserve_new_metadata_blocks(osb, meta_add, &ctxt->meta_ac); if (ret) { mlog_errno(ret); goto out; } } if (clusters_add) { ret = ocfs2_reserve_clusters(osb, clusters_add, &ctxt->data_ac); if (ret) mlog_errno(ret); } out: if (ret) { if (ctxt->meta_ac) { ocfs2_free_alloc_context(ctxt->meta_ac); ctxt->meta_ac = NULL; } /* * We cannot have an error and a non null ctxt->data_ac. */ } return ret; } static int __ocfs2_xattr_set_handle(struct inode *inode, struct ocfs2_dinode *di, struct ocfs2_xattr_info *xi, struct ocfs2_xattr_search *xis, struct ocfs2_xattr_search *xbs, struct ocfs2_xattr_set_ctxt *ctxt) { int ret = 0, credits, old_found; if (!xi->xi_value) { /* Remove existing extended attribute */ if (!xis->not_found) ret = ocfs2_xattr_ibody_set(inode, xi, xis, ctxt); else if (!xbs->not_found) ret = ocfs2_xattr_block_set(inode, xi, xbs, ctxt); } else { /* We always try to set extended attribute into inode first*/ ret = ocfs2_xattr_ibody_set(inode, xi, xis, ctxt); if (!ret && !xbs->not_found) { /* * If succeed and that extended attribute existing in * external block, then we will remove it. */ xi->xi_value = NULL; xi->xi_value_len = 0; old_found = xis->not_found; xis->not_found = -ENODATA; ret = ocfs2_calc_xattr_set_need(inode, di, xi, xis, xbs, NULL, NULL, &credits); xis->not_found = old_found; if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_extend_trans(ctxt->handle, credits); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_xattr_block_set(inode, xi, xbs, ctxt); } else if ((ret == -ENOSPC) && !ctxt->set_abort) { if (di->i_xattr_loc && !xbs->xattr_bh) { ret = ocfs2_xattr_block_find(inode, xi->xi_name_index, xi->xi_name, xbs); if (ret) goto out; old_found = xis->not_found; xis->not_found = -ENODATA; ret = ocfs2_calc_xattr_set_need(inode, di, xi, xis, xbs, NULL, NULL, &credits); xis->not_found = old_found; if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_extend_trans(ctxt->handle, credits); if (ret) { mlog_errno(ret); goto out; } } /* * If no space in inode, we will set extended attribute * into external block. */ ret = ocfs2_xattr_block_set(inode, xi, xbs, ctxt); if (ret) goto out; if (!xis->not_found) { /* * If succeed and that extended attribute * existing in inode, we will remove it. */ xi->xi_value = NULL; xi->xi_value_len = 0; xbs->not_found = -ENODATA; ret = ocfs2_calc_xattr_set_need(inode, di, xi, xis, xbs, NULL, NULL, &credits); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_extend_trans(ctxt->handle, credits); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_xattr_ibody_set(inode, xi, xis, ctxt); } } } if (!ret) { /* Update inode ctime. */ ret = ocfs2_journal_access_di(ctxt->handle, INODE_CACHE(inode), xis->inode_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out; } inode->i_ctime = CURRENT_TIME; di->i_ctime = cpu_to_le64(inode->i_ctime.tv_sec); di->i_ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); ocfs2_journal_dirty(ctxt->handle, xis->inode_bh); } out: return ret; } /* * This function only called duing creating inode * for init security/acl xattrs of the new inode. * All transanction credits have been reserved in mknod. */ int ocfs2_xattr_set_handle(handle_t *handle, struct inode *inode, struct buffer_head *di_bh, int name_index, const char *name, const void *value, size_t value_len, int flags, struct ocfs2_alloc_context *meta_ac, struct ocfs2_alloc_context *data_ac) { struct ocfs2_dinode *di; int ret; struct ocfs2_xattr_info xi = { .xi_name_index = name_index, .xi_name = name, .xi_name_len = strlen(name), .xi_value = value, .xi_value_len = value_len, }; struct ocfs2_xattr_search xis = { .not_found = -ENODATA, }; struct ocfs2_xattr_search xbs = { .not_found = -ENODATA, }; struct ocfs2_xattr_set_ctxt ctxt = { .handle = handle, .meta_ac = meta_ac, .data_ac = data_ac, }; if (!ocfs2_supports_xattr(OCFS2_SB(inode->i_sb))) return -EOPNOTSUPP; /* * In extreme situation, may need xattr bucket when * block size is too small. And we have already reserved * the credits for bucket in mknod. */ if (inode->i_sb->s_blocksize == OCFS2_MIN_BLOCKSIZE) { xbs.bucket = ocfs2_xattr_bucket_new(inode); if (!xbs.bucket) { mlog_errno(-ENOMEM); return -ENOMEM; } } xis.inode_bh = xbs.inode_bh = di_bh; di = (struct ocfs2_dinode *)di_bh->b_data; down_write(&OCFS2_I(inode)->ip_xattr_sem); ret = ocfs2_xattr_ibody_find(inode, name_index, name, &xis); if (ret) goto cleanup; if (xis.not_found) { ret = ocfs2_xattr_block_find(inode, name_index, name, &xbs); if (ret) goto cleanup; } ret = __ocfs2_xattr_set_handle(inode, di, &xi, &xis, &xbs, &ctxt); cleanup: up_write(&OCFS2_I(inode)->ip_xattr_sem); brelse(xbs.xattr_bh); ocfs2_xattr_bucket_free(xbs.bucket); return ret; } /* * ocfs2_xattr_set() * * Set, replace or remove an extended attribute for this inode. * value is NULL to remove an existing extended attribute, else either * create or replace an extended attribute. */ int ocfs2_xattr_set(struct inode *inode, int name_index, const char *name, const void *value, size_t value_len, int flags) { struct buffer_head *di_bh = NULL; struct ocfs2_dinode *di; int ret, credits, ref_meta = 0, ref_credits = 0; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct inode *tl_inode = osb->osb_tl_inode; struct ocfs2_xattr_set_ctxt ctxt = { NULL, NULL, }; struct ocfs2_refcount_tree *ref_tree = NULL; struct ocfs2_xattr_info xi = { .xi_name_index = name_index, .xi_name = name, .xi_name_len = strlen(name), .xi_value = value, .xi_value_len = value_len, }; struct ocfs2_xattr_search xis = { .not_found = -ENODATA, }; struct ocfs2_xattr_search xbs = { .not_found = -ENODATA, }; if (!ocfs2_supports_xattr(OCFS2_SB(inode->i_sb))) return -EOPNOTSUPP; /* * Only xbs will be used on indexed trees. xis doesn't need a * bucket. */ xbs.bucket = ocfs2_xattr_bucket_new(inode); if (!xbs.bucket) { mlog_errno(-ENOMEM); return -ENOMEM; } ret = ocfs2_inode_lock(inode, &di_bh, 1); if (ret < 0) { mlog_errno(ret); goto cleanup_nolock; } xis.inode_bh = xbs.inode_bh = di_bh; di = (struct ocfs2_dinode *)di_bh->b_data; down_write(&OCFS2_I(inode)->ip_xattr_sem); /* * Scan inode and external block to find the same name * extended attribute and collect search information. */ ret = ocfs2_xattr_ibody_find(inode, name_index, name, &xis); if (ret) goto cleanup; if (xis.not_found) { ret = ocfs2_xattr_block_find(inode, name_index, name, &xbs); if (ret) goto cleanup; } if (xis.not_found && xbs.not_found) { ret = -ENODATA; if (flags & XATTR_REPLACE) goto cleanup; ret = 0; if (!value) goto cleanup; } else { ret = -EEXIST; if (flags & XATTR_CREATE) goto cleanup; } /* Check whether the value is refcounted and do some preparation. */ if (OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL && (!xis.not_found || !xbs.not_found)) { ret = ocfs2_prepare_refcount_xattr(inode, di, &xi, &xis, &xbs, &ref_tree, &ref_meta, &ref_credits); if (ret) { mlog_errno(ret); goto cleanup; } } mutex_lock(&tl_inode->i_mutex); if (ocfs2_truncate_log_needs_flush(osb)) { ret = __ocfs2_flush_truncate_log(osb); if (ret < 0) { mutex_unlock(&tl_inode->i_mutex); mlog_errno(ret); goto cleanup; } } mutex_unlock(&tl_inode->i_mutex); ret = ocfs2_init_xattr_set_ctxt(inode, di, &xi, &xis, &xbs, &ctxt, ref_meta, &credits); if (ret) { mlog_errno(ret); goto cleanup; } /* we need to update inode's ctime field, so add credit for it. */ credits += OCFS2_INODE_UPDATE_CREDITS; ctxt.handle = ocfs2_start_trans(osb, credits + ref_credits); if (IS_ERR(ctxt.handle)) { ret = PTR_ERR(ctxt.handle); mlog_errno(ret); goto cleanup; } ret = __ocfs2_xattr_set_handle(inode, di, &xi, &xis, &xbs, &ctxt); ocfs2_commit_trans(osb, ctxt.handle); if (ctxt.data_ac) ocfs2_free_alloc_context(ctxt.data_ac); if (ctxt.meta_ac) ocfs2_free_alloc_context(ctxt.meta_ac); if (ocfs2_dealloc_has_cluster(&ctxt.dealloc)) ocfs2_schedule_truncate_log_flush(osb, 1); ocfs2_run_deallocs(osb, &ctxt.dealloc); cleanup: if (ref_tree) ocfs2_unlock_refcount_tree(osb, ref_tree, 1); up_write(&OCFS2_I(inode)->ip_xattr_sem); if (!value && !ret) { ret = ocfs2_try_remove_refcount_tree(inode, di_bh); if (ret) mlog_errno(ret); } ocfs2_inode_unlock(inode, 1); cleanup_nolock: brelse(di_bh); brelse(xbs.xattr_bh); ocfs2_xattr_bucket_free(xbs.bucket); return ret; } /* * Find the xattr extent rec which may contains name_hash. * e_cpos will be the first name hash of the xattr rec. * el must be the ocfs2_xattr_header.xb_attrs.xb_root.xt_list. */ static int ocfs2_xattr_get_rec(struct inode *inode, u32 name_hash, u64 *p_blkno, u32 *e_cpos, u32 *num_clusters, struct ocfs2_extent_list *el) { int ret = 0, i; struct buffer_head *eb_bh = NULL; struct ocfs2_extent_block *eb; struct ocfs2_extent_rec *rec = NULL; u64 e_blkno = 0; if (el->l_tree_depth) { ret = ocfs2_find_leaf(INODE_CACHE(inode), el, name_hash, &eb_bh); if (ret) { mlog_errno(ret); goto out; } eb = (struct ocfs2_extent_block *) eb_bh->b_data; el = &eb->h_list; if (el->l_tree_depth) { ocfs2_error(inode->i_sb, "Inode %lu has non zero tree depth in " "xattr tree block %llu\n", inode->i_ino, (unsigned long long)eb_bh->b_blocknr); ret = -EROFS; goto out; } } for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) { rec = &el->l_recs[i]; if (le32_to_cpu(rec->e_cpos) <= name_hash) { e_blkno = le64_to_cpu(rec->e_blkno); break; } } if (!e_blkno) { ocfs2_error(inode->i_sb, "Inode %lu has bad extent " "record (%u, %u, 0) in xattr", inode->i_ino, le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec)); ret = -EROFS; goto out; } *p_blkno = le64_to_cpu(rec->e_blkno); *num_clusters = le16_to_cpu(rec->e_leaf_clusters); if (e_cpos) *e_cpos = le32_to_cpu(rec->e_cpos); out: brelse(eb_bh); return ret; } typedef int (xattr_bucket_func)(struct inode *inode, struct ocfs2_xattr_bucket *bucket, void *para); static int ocfs2_find_xe_in_bucket(struct inode *inode, struct ocfs2_xattr_bucket *bucket, int name_index, const char *name, u32 name_hash, u16 *xe_index, int *found) { int i, ret = 0, cmp = 1, block_off, new_offset; struct ocfs2_xattr_header *xh = bucket_xh(bucket); size_t name_len = strlen(name); struct ocfs2_xattr_entry *xe = NULL; char *xe_name; /* * We don't use binary search in the bucket because there * may be multiple entries with the same name hash. */ for (i = 0; i < le16_to_cpu(xh->xh_count); i++) { xe = &xh->xh_entries[i]; if (name_hash > le32_to_cpu(xe->xe_name_hash)) continue; else if (name_hash < le32_to_cpu(xe->xe_name_hash)) break; cmp = name_index - ocfs2_xattr_get_type(xe); if (!cmp) cmp = name_len - xe->xe_name_len; if (cmp) continue; ret = ocfs2_xattr_bucket_get_name_value(inode->i_sb, xh, i, &block_off, &new_offset); if (ret) { mlog_errno(ret); break; } xe_name = bucket_block(bucket, block_off) + new_offset; if (!memcmp(name, xe_name, name_len)) { *xe_index = i; *found = 1; ret = 0; break; } } return ret; } /* * Find the specified xattr entry in a series of buckets. * This series start from p_blkno and last for num_clusters. * The ocfs2_xattr_header.xh_num_buckets of the first bucket contains * the num of the valid buckets. * * Return the buffer_head this xattr should reside in. And if the xattr's * hash is in the gap of 2 buckets, return the lower bucket. */ static int ocfs2_xattr_bucket_find(struct inode *inode, int name_index, const char *name, u32 name_hash, u64 p_blkno, u32 first_hash, u32 num_clusters, struct ocfs2_xattr_search *xs) { int ret, found = 0; struct ocfs2_xattr_header *xh = NULL; struct ocfs2_xattr_entry *xe = NULL; u16 index = 0; u16 blk_per_bucket = ocfs2_blocks_per_xattr_bucket(inode->i_sb); int low_bucket = 0, bucket, high_bucket; struct ocfs2_xattr_bucket *search; u32 last_hash; u64 blkno, lower_blkno = 0; search = ocfs2_xattr_bucket_new(inode); if (!search) { ret = -ENOMEM; mlog_errno(ret); goto out; } ret = ocfs2_read_xattr_bucket(search, p_blkno); if (ret) { mlog_errno(ret); goto out; } xh = bucket_xh(search); high_bucket = le16_to_cpu(xh->xh_num_buckets) - 1; while (low_bucket <= high_bucket) { ocfs2_xattr_bucket_relse(search); bucket = (low_bucket + high_bucket) / 2; blkno = p_blkno + bucket * blk_per_bucket; ret = ocfs2_read_xattr_bucket(search, blkno); if (ret) { mlog_errno(ret); goto out; } xh = bucket_xh(search); xe = &xh->xh_entries[0]; if (name_hash < le32_to_cpu(xe->xe_name_hash)) { high_bucket = bucket - 1; continue; } /* * Check whether the hash of the last entry in our * bucket is larger than the search one. for an empty * bucket, the last one is also the first one. */ if (xh->xh_count) xe = &xh->xh_entries[le16_to_cpu(xh->xh_count) - 1]; last_hash = le32_to_cpu(xe->xe_name_hash); /* record lower_blkno which may be the insert place. */ lower_blkno = blkno; if (name_hash > le32_to_cpu(xe->xe_name_hash)) { low_bucket = bucket + 1; continue; } /* the searched xattr should reside in this bucket if exists. */ ret = ocfs2_find_xe_in_bucket(inode, search, name_index, name, name_hash, &index, &found); if (ret) { mlog_errno(ret); goto out; } break; } /* * Record the bucket we have found. * When the xattr's hash value is in the gap of 2 buckets, we will * always set it to the previous bucket. */ if (!lower_blkno) lower_blkno = p_blkno; /* This should be in cache - we just read it during the search */ ret = ocfs2_read_xattr_bucket(xs->bucket, lower_blkno); if (ret) { mlog_errno(ret); goto out; } xs->header = bucket_xh(xs->bucket); xs->base = bucket_block(xs->bucket, 0); xs->end = xs->base + inode->i_sb->s_blocksize; if (found) { xs->here = &xs->header->xh_entries[index]; trace_ocfs2_xattr_bucket_find(OCFS2_I(inode)->ip_blkno, name, name_index, name_hash, (unsigned long long)bucket_blkno(xs->bucket), index); } else ret = -ENODATA; out: ocfs2_xattr_bucket_free(search); return ret; } static int ocfs2_xattr_index_block_find(struct inode *inode, struct buffer_head *root_bh, int name_index, const char *name, struct ocfs2_xattr_search *xs) { int ret; struct ocfs2_xattr_block *xb = (struct ocfs2_xattr_block *)root_bh->b_data; struct ocfs2_xattr_tree_root *xb_root = &xb->xb_attrs.xb_root; struct ocfs2_extent_list *el = &xb_root->xt_list; u64 p_blkno = 0; u32 first_hash, num_clusters = 0; u32 name_hash = ocfs2_xattr_name_hash(inode, name, strlen(name)); if (le16_to_cpu(el->l_next_free_rec) == 0) return -ENODATA; trace_ocfs2_xattr_index_block_find(OCFS2_I(inode)->ip_blkno, name, name_index, name_hash, (unsigned long long)root_bh->b_blocknr, -1); ret = ocfs2_xattr_get_rec(inode, name_hash, &p_blkno, &first_hash, &num_clusters, el); if (ret) { mlog_errno(ret); goto out; } BUG_ON(p_blkno == 0 || num_clusters == 0 || first_hash > name_hash); trace_ocfs2_xattr_index_block_find_rec(OCFS2_I(inode)->ip_blkno, name, name_index, first_hash, (unsigned long long)p_blkno, num_clusters); ret = ocfs2_xattr_bucket_find(inode, name_index, name, name_hash, p_blkno, first_hash, num_clusters, xs); out: return ret; } static int ocfs2_iterate_xattr_buckets(struct inode *inode, u64 blkno, u32 clusters, xattr_bucket_func *func, void *para) { int i, ret = 0; u32 bpc = ocfs2_xattr_buckets_per_cluster(OCFS2_SB(inode->i_sb)); u32 num_buckets = clusters * bpc; struct ocfs2_xattr_bucket *bucket; bucket = ocfs2_xattr_bucket_new(inode); if (!bucket) { mlog_errno(-ENOMEM); return -ENOMEM; } trace_ocfs2_iterate_xattr_buckets( (unsigned long long)OCFS2_I(inode)->ip_blkno, (unsigned long long)blkno, clusters); for (i = 0; i < num_buckets; i++, blkno += bucket->bu_blocks) { ret = ocfs2_read_xattr_bucket(bucket, blkno); if (ret) { mlog_errno(ret); break; } /* * The real bucket num in this series of blocks is stored * in the 1st bucket. */ if (i == 0) num_buckets = le16_to_cpu(bucket_xh(bucket)->xh_num_buckets); trace_ocfs2_iterate_xattr_bucket((unsigned long long)blkno, le32_to_cpu(bucket_xh(bucket)->xh_entries[0].xe_name_hash)); if (func) { ret = func(inode, bucket, para); if (ret && ret != -ERANGE) mlog_errno(ret); /* Fall through to bucket_relse() */ } ocfs2_xattr_bucket_relse(bucket); if (ret) break; } ocfs2_xattr_bucket_free(bucket); return ret; } struct ocfs2_xattr_tree_list { char *buffer; size_t buffer_size; size_t result; }; static int ocfs2_xattr_bucket_get_name_value(struct super_block *sb, struct ocfs2_xattr_header *xh, int index, int *block_off, int *new_offset) { u16 name_offset; if (index < 0 || index >= le16_to_cpu(xh->xh_count)) return -EINVAL; name_offset = le16_to_cpu(xh->xh_entries[index].xe_name_offset); *block_off = name_offset >> sb->s_blocksize_bits; *new_offset = name_offset % sb->s_blocksize; return 0; } static int ocfs2_list_xattr_bucket(struct inode *inode, struct ocfs2_xattr_bucket *bucket, void *para) { int ret = 0, type; struct ocfs2_xattr_tree_list *xl = (struct ocfs2_xattr_tree_list *)para; int i, block_off, new_offset; const char *prefix, *name; for (i = 0 ; i < le16_to_cpu(bucket_xh(bucket)->xh_count); i++) { struct ocfs2_xattr_entry *entry = &bucket_xh(bucket)->xh_entries[i]; type = ocfs2_xattr_get_type(entry); prefix = ocfs2_xattr_prefix(type); if (prefix) { ret = ocfs2_xattr_bucket_get_name_value(inode->i_sb, bucket_xh(bucket), i, &block_off, &new_offset); if (ret) break; name = (const char *)bucket_block(bucket, block_off) + new_offset; ret = ocfs2_xattr_list_entry(xl->buffer, xl->buffer_size, &xl->result, prefix, name, entry->xe_name_len); if (ret) break; } } return ret; } static int ocfs2_iterate_xattr_index_block(struct inode *inode, struct buffer_head *blk_bh, xattr_tree_rec_func *rec_func, void *para) { struct ocfs2_xattr_block *xb = (struct ocfs2_xattr_block *)blk_bh->b_data; struct ocfs2_extent_list *el = &xb->xb_attrs.xb_root.xt_list; int ret = 0; u32 name_hash = UINT_MAX, e_cpos = 0, num_clusters = 0; u64 p_blkno = 0; if (!el->l_next_free_rec || !rec_func) return 0; while (name_hash > 0) { ret = ocfs2_xattr_get_rec(inode, name_hash, &p_blkno, &e_cpos, &num_clusters, el); if (ret) { mlog_errno(ret); break; } ret = rec_func(inode, blk_bh, p_blkno, e_cpos, num_clusters, para); if (ret) { if (ret != -ERANGE) mlog_errno(ret); break; } if (e_cpos == 0) break; name_hash = e_cpos - 1; } return ret; } static int ocfs2_list_xattr_tree_rec(struct inode *inode, struct buffer_head *root_bh, u64 blkno, u32 cpos, u32 len, void *para) { return ocfs2_iterate_xattr_buckets(inode, blkno, len, ocfs2_list_xattr_bucket, para); } static int ocfs2_xattr_tree_list_index_block(struct inode *inode, struct buffer_head *blk_bh, char *buffer, size_t buffer_size) { int ret; struct ocfs2_xattr_tree_list xl = { .buffer = buffer, .buffer_size = buffer_size, .result = 0, }; ret = ocfs2_iterate_xattr_index_block(inode, blk_bh, ocfs2_list_xattr_tree_rec, &xl); if (ret) { mlog_errno(ret); goto out; } ret = xl.result; out: return ret; } static int cmp_xe(const void *a, const void *b) { const struct ocfs2_xattr_entry *l = a, *r = b; u32 l_hash = le32_to_cpu(l->xe_name_hash); u32 r_hash = le32_to_cpu(r->xe_name_hash); if (l_hash > r_hash) return 1; if (l_hash < r_hash) return -1; return 0; } static void swap_xe(void *a, void *b, int size) { struct ocfs2_xattr_entry *l = a, *r = b, tmp; tmp = *l; memcpy(l, r, sizeof(struct ocfs2_xattr_entry)); memcpy(r, &tmp, sizeof(struct ocfs2_xattr_entry)); } /* * When the ocfs2_xattr_block is filled up, new bucket will be created * and all the xattr entries will be moved to the new bucket. * The header goes at the start of the bucket, and the names+values are * filled from the end. This is why *target starts as the last buffer. * Note: we need to sort the entries since they are not saved in order * in the ocfs2_xattr_block. */ static void ocfs2_cp_xattr_block_to_bucket(struct inode *inode, struct buffer_head *xb_bh, struct ocfs2_xattr_bucket *bucket) { int i, blocksize = inode->i_sb->s_blocksize; int blks = ocfs2_blocks_per_xattr_bucket(inode->i_sb); u16 offset, size, off_change; struct ocfs2_xattr_entry *xe; struct ocfs2_xattr_block *xb = (struct ocfs2_xattr_block *)xb_bh->b_data; struct ocfs2_xattr_header *xb_xh = &xb->xb_attrs.xb_header; struct ocfs2_xattr_header *xh = bucket_xh(bucket); u16 count = le16_to_cpu(xb_xh->xh_count); char *src = xb_bh->b_data; char *target = bucket_block(bucket, blks - 1); trace_ocfs2_cp_xattr_block_to_bucket_begin( (unsigned long long)xb_bh->b_blocknr, (unsigned long long)bucket_blkno(bucket)); for (i = 0; i < blks; i++) memset(bucket_block(bucket, i), 0, blocksize); /* * Since the xe_name_offset is based on ocfs2_xattr_header, * there is a offset change corresponding to the change of * ocfs2_xattr_header's position. */ off_change = offsetof(struct ocfs2_xattr_block, xb_attrs.xb_header); xe = &xb_xh->xh_entries[count - 1]; offset = le16_to_cpu(xe->xe_name_offset) + off_change; size = blocksize - offset; /* copy all the names and values. */ memcpy(target + offset, src + offset, size); /* Init new header now. */ xh->xh_count = xb_xh->xh_count; xh->xh_num_buckets = cpu_to_le16(1); xh->xh_name_value_len = cpu_to_le16(size); xh->xh_free_start = cpu_to_le16(OCFS2_XATTR_BUCKET_SIZE - size); /* copy all the entries. */ target = bucket_block(bucket, 0); offset = offsetof(struct ocfs2_xattr_header, xh_entries); size = count * sizeof(struct ocfs2_xattr_entry); memcpy(target + offset, (char *)xb_xh + offset, size); /* Change the xe offset for all the xe because of the move. */ off_change = OCFS2_XATTR_BUCKET_SIZE - blocksize + offsetof(struct ocfs2_xattr_block, xb_attrs.xb_header); for (i = 0; i < count; i++) le16_add_cpu(&xh->xh_entries[i].xe_name_offset, off_change); trace_ocfs2_cp_xattr_block_to_bucket_end(offset, size, off_change); sort(target + offset, count, sizeof(struct ocfs2_xattr_entry), cmp_xe, swap_xe); } /* * After we move xattr from block to index btree, we have to * update ocfs2_xattr_search to the new xe and base. * * When the entry is in xattr block, xattr_bh indicates the storage place. * While if the entry is in index b-tree, "bucket" indicates the * real place of the xattr. */ static void ocfs2_xattr_update_xattr_search(struct inode *inode, struct ocfs2_xattr_search *xs, struct buffer_head *old_bh) { char *buf = old_bh->b_data; struct ocfs2_xattr_block *old_xb = (struct ocfs2_xattr_block *)buf; struct ocfs2_xattr_header *old_xh = &old_xb->xb_attrs.xb_header; int i; xs->header = bucket_xh(xs->bucket); xs->base = bucket_block(xs->bucket, 0); xs->end = xs->base + inode->i_sb->s_blocksize; if (xs->not_found) return; i = xs->here - old_xh->xh_entries; xs->here = &xs->header->xh_entries[i]; } static int ocfs2_xattr_create_index_block(struct inode *inode, struct ocfs2_xattr_search *xs, struct ocfs2_xattr_set_ctxt *ctxt) { int ret; u32 bit_off, len; u64 blkno; handle_t *handle = ctxt->handle; struct ocfs2_inode_info *oi = OCFS2_I(inode); struct buffer_head *xb_bh = xs->xattr_bh; struct ocfs2_xattr_block *xb = (struct ocfs2_xattr_block *)xb_bh->b_data; struct ocfs2_xattr_tree_root *xr; u16 xb_flags = le16_to_cpu(xb->xb_flags); trace_ocfs2_xattr_create_index_block_begin( (unsigned long long)xb_bh->b_blocknr); BUG_ON(xb_flags & OCFS2_XATTR_INDEXED); BUG_ON(!xs->bucket); /* * XXX: * We can use this lock for now, and maybe move to a dedicated mutex * if performance becomes a problem later. */ down_write(&oi->ip_alloc_sem); ret = ocfs2_journal_access_xb(handle, INODE_CACHE(inode), xb_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out; } ret = __ocfs2_claim_clusters(handle, ctxt->data_ac, 1, 1, &bit_off, &len); if (ret) { mlog_errno(ret); goto out; } /* * The bucket may spread in many blocks, and * we will only touch the 1st block and the last block * in the whole bucket(one for entry and one for data). */ blkno = ocfs2_clusters_to_blocks(inode->i_sb, bit_off); trace_ocfs2_xattr_create_index_block((unsigned long long)blkno); ret = ocfs2_init_xattr_bucket(xs->bucket, blkno); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_xattr_bucket_journal_access(handle, xs->bucket, OCFS2_JOURNAL_ACCESS_CREATE); if (ret) { mlog_errno(ret); goto out; } ocfs2_cp_xattr_block_to_bucket(inode, xb_bh, xs->bucket); ocfs2_xattr_bucket_journal_dirty(handle, xs->bucket); ocfs2_xattr_update_xattr_search(inode, xs, xb_bh); /* Change from ocfs2_xattr_header to ocfs2_xattr_tree_root */ memset(&xb->xb_attrs, 0, inode->i_sb->s_blocksize - offsetof(struct ocfs2_xattr_block, xb_attrs)); xr = &xb->xb_attrs.xb_root; xr->xt_clusters = cpu_to_le32(1); xr->xt_last_eb_blk = 0; xr->xt_list.l_tree_depth = 0; xr->xt_list.l_count = cpu_to_le16(ocfs2_xattr_recs_per_xb(inode->i_sb)); xr->xt_list.l_next_free_rec = cpu_to_le16(1); xr->xt_list.l_recs[0].e_cpos = 0; xr->xt_list.l_recs[0].e_blkno = cpu_to_le64(blkno); xr->xt_list.l_recs[0].e_leaf_clusters = cpu_to_le16(1); xb->xb_flags = cpu_to_le16(xb_flags | OCFS2_XATTR_INDEXED); ocfs2_journal_dirty(handle, xb_bh); out: up_write(&oi->ip_alloc_sem); return ret; } static int cmp_xe_offset(const void *a, const void *b) { const struct ocfs2_xattr_entry *l = a, *r = b; u32 l_name_offset = le16_to_cpu(l->xe_name_offset); u32 r_name_offset = le16_to_cpu(r->xe_name_offset); if (l_name_offset < r_name_offset) return 1; if (l_name_offset > r_name_offset) return -1; return 0; } /* * defrag a xattr bucket if we find that the bucket has some * holes beteen name/value pairs. * We will move all the name/value pairs to the end of the bucket * so that we can spare some space for insertion. */ static int ocfs2_defrag_xattr_bucket(struct inode *inode, handle_t *handle, struct ocfs2_xattr_bucket *bucket) { int ret, i; size_t end, offset, len; struct ocfs2_xattr_header *xh; char *entries, *buf, *bucket_buf = NULL; u64 blkno = bucket_blkno(bucket); u16 xh_free_start; size_t blocksize = inode->i_sb->s_blocksize; struct ocfs2_xattr_entry *xe; /* * In order to make the operation more efficient and generic, * we copy all the blocks into a contiguous memory and do the * defragment there, so if anything is error, we will not touch * the real block. */ bucket_buf = kmalloc(OCFS2_XATTR_BUCKET_SIZE, GFP_NOFS); if (!bucket_buf) { ret = -EIO; goto out; } buf = bucket_buf; for (i = 0; i < bucket->bu_blocks; i++, buf += blocksize) memcpy(buf, bucket_block(bucket, i), blocksize); ret = ocfs2_xattr_bucket_journal_access(handle, bucket, OCFS2_JOURNAL_ACCESS_WRITE); if (ret < 0) { mlog_errno(ret); goto out; } xh = (struct ocfs2_xattr_header *)bucket_buf; entries = (char *)xh->xh_entries; xh_free_start = le16_to_cpu(xh->xh_free_start); trace_ocfs2_defrag_xattr_bucket( (unsigned long long)blkno, le16_to_cpu(xh->xh_count), xh_free_start, le16_to_cpu(xh->xh_name_value_len)); /* * sort all the entries by their offset. * the largest will be the first, so that we can * move them to the end one by one. */ sort(entries, le16_to_cpu(xh->xh_count), sizeof(struct ocfs2_xattr_entry), cmp_xe_offset, swap_xe); /* Move all name/values to the end of the bucket. */ xe = xh->xh_entries; end = OCFS2_XATTR_BUCKET_SIZE; for (i = 0; i < le16_to_cpu(xh->xh_count); i++, xe++) { offset = le16_to_cpu(xe->xe_name_offset); len = namevalue_size_xe(xe); /* * We must make sure that the name/value pair * exist in the same block. So adjust end to * the previous block end if needed. */ if (((end - len) / blocksize != (end - 1) / blocksize)) end = end - end % blocksize; if (end > offset + len) { memmove(bucket_buf + end - len, bucket_buf + offset, len); xe->xe_name_offset = cpu_to_le16(end - len); } mlog_bug_on_msg(end < offset + len, "Defrag check failed for " "bucket %llu\n", (unsigned long long)blkno); end -= len; } mlog_bug_on_msg(xh_free_start > end, "Defrag check failed for " "bucket %llu\n", (unsigned long long)blkno); if (xh_free_start == end) goto out; memset(bucket_buf + xh_free_start, 0, end - xh_free_start); xh->xh_free_start = cpu_to_le16(end); /* sort the entries by their name_hash. */ sort(entries, le16_to_cpu(xh->xh_count), sizeof(struct ocfs2_xattr_entry), cmp_xe, swap_xe); buf = bucket_buf; for (i = 0; i < bucket->bu_blocks; i++, buf += blocksize) memcpy(bucket_block(bucket, i), buf, blocksize); ocfs2_xattr_bucket_journal_dirty(handle, bucket); out: kfree(bucket_buf); return ret; } /* * prev_blkno points to the start of an existing extent. new_blkno * points to a newly allocated extent. Because we know each of our * clusters contains more than bucket, we can easily split one cluster * at a bucket boundary. So we take the last cluster of the existing * extent and split it down the middle. We move the last half of the * buckets in the last cluster of the existing extent over to the new * extent. * * first_bh is the buffer at prev_blkno so we can update the existing * extent's bucket count. header_bh is the bucket were we were hoping * to insert our xattr. If the bucket move places the target in the new * extent, we'll update first_bh and header_bh after modifying the old * extent. * * first_hash will be set as the 1st xe's name_hash in the new extent. */ static int ocfs2_mv_xattr_bucket_cross_cluster(struct inode *inode, handle_t *handle, struct ocfs2_xattr_bucket *first, struct ocfs2_xattr_bucket *target, u64 new_blkno, u32 num_clusters, u32 *first_hash) { int ret; struct super_block *sb = inode->i_sb; int blks_per_bucket = ocfs2_blocks_per_xattr_bucket(sb); int num_buckets = ocfs2_xattr_buckets_per_cluster(OCFS2_SB(sb)); int to_move = num_buckets / 2; u64 src_blkno; u64 last_cluster_blkno = bucket_blkno(first) + ((num_clusters - 1) * ocfs2_clusters_to_blocks(sb, 1)); BUG_ON(le16_to_cpu(bucket_xh(first)->xh_num_buckets) < num_buckets); BUG_ON(OCFS2_XATTR_BUCKET_SIZE == OCFS2_SB(sb)->s_clustersize); trace_ocfs2_mv_xattr_bucket_cross_cluster( (unsigned long long)last_cluster_blkno, (unsigned long long)new_blkno); ret = ocfs2_mv_xattr_buckets(inode, handle, bucket_blkno(first), last_cluster_blkno, new_blkno, to_move, first_hash); if (ret) { mlog_errno(ret); goto out; } /* This is the first bucket that got moved */ src_blkno = last_cluster_blkno + (to_move * blks_per_bucket); /* * If the target bucket was part of the moved buckets, we need to * update first and target. */ if (bucket_blkno(target) >= src_blkno) { /* Find the block for the new target bucket */ src_blkno = new_blkno + (bucket_blkno(target) - src_blkno); ocfs2_xattr_bucket_relse(first); ocfs2_xattr_bucket_relse(target); /* * These shouldn't fail - the buffers are in the * journal from ocfs2_cp_xattr_bucket(). */ ret = ocfs2_read_xattr_bucket(first, new_blkno); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_read_xattr_bucket(target, src_blkno); if (ret) mlog_errno(ret); } out: return ret; } /* * Find the suitable pos when we divide a bucket into 2. * We have to make sure the xattrs with the same hash value exist * in the same bucket. * * If this ocfs2_xattr_header covers more than one hash value, find a * place where the hash value changes. Try to find the most even split. * The most common case is that all entries have different hash values, * and the first check we make will find a place to split. */ static int ocfs2_xattr_find_divide_pos(struct ocfs2_xattr_header *xh) { struct ocfs2_xattr_entry *entries = xh->xh_entries; int count = le16_to_cpu(xh->xh_count); int delta, middle = count / 2; /* * We start at the middle. Each step gets farther away in both * directions. We therefore hit the change in hash value * nearest to the middle. Note that this loop does not execute for * count < 2. */ for (delta = 0; delta < middle; delta++) { /* Let's check delta earlier than middle */ if (cmp_xe(&entries[middle - delta - 1], &entries[middle - delta])) return middle - delta; /* For even counts, don't walk off the end */ if ((middle + delta + 1) == count) continue; /* Now try delta past middle */ if (cmp_xe(&entries[middle + delta], &entries[middle + delta + 1])) return middle + delta + 1; } /* Every entry had the same hash */ return count; } /* * Move some xattrs in old bucket(blk) to new bucket(new_blk). * first_hash will record the 1st hash of the new bucket. * * Normally half of the xattrs will be moved. But we have to make * sure that the xattrs with the same hash value are stored in the * same bucket. If all the xattrs in this bucket have the same hash * value, the new bucket will be initialized as an empty one and the * first_hash will be initialized as (hash_value+1). */ static int ocfs2_divide_xattr_bucket(struct inode *inode, handle_t *handle, u64 blk, u64 new_blk, u32 *first_hash, int new_bucket_head) { int ret, i; int count, start, len, name_value_len = 0, name_offset = 0; struct ocfs2_xattr_bucket *s_bucket = NULL, *t_bucket = NULL; struct ocfs2_xattr_header *xh; struct ocfs2_xattr_entry *xe; int blocksize = inode->i_sb->s_blocksize; trace_ocfs2_divide_xattr_bucket_begin((unsigned long long)blk, (unsigned long long)new_blk); s_bucket = ocfs2_xattr_bucket_new(inode); t_bucket = ocfs2_xattr_bucket_new(inode); if (!s_bucket || !t_bucket) { ret = -ENOMEM; mlog_errno(ret); goto out; } ret = ocfs2_read_xattr_bucket(s_bucket, blk); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_xattr_bucket_journal_access(handle, s_bucket, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out; } /* * Even if !new_bucket_head, we're overwriting t_bucket. Thus, * there's no need to read it. */ ret = ocfs2_init_xattr_bucket(t_bucket, new_blk); if (ret) { mlog_errno(ret); goto out; } /* * Hey, if we're overwriting t_bucket, what difference does * ACCESS_CREATE vs ACCESS_WRITE make? See the comment in the * same part of ocfs2_cp_xattr_bucket(). */ ret = ocfs2_xattr_bucket_journal_access(handle, t_bucket, new_bucket_head ? OCFS2_JOURNAL_ACCESS_CREATE : OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out; } xh = bucket_xh(s_bucket); count = le16_to_cpu(xh->xh_count); start = ocfs2_xattr_find_divide_pos(xh); if (start == count) { xe = &xh->xh_entries[start-1]; /* * initialized a new empty bucket here. * The hash value is set as one larger than * that of the last entry in the previous bucket. */ for (i = 0; i < t_bucket->bu_blocks; i++) memset(bucket_block(t_bucket, i), 0, blocksize); xh = bucket_xh(t_bucket); xh->xh_free_start = cpu_to_le16(blocksize); xh->xh_entries[0].xe_name_hash = xe->xe_name_hash; le32_add_cpu(&xh->xh_entries[0].xe_name_hash, 1); goto set_num_buckets; } /* copy the whole bucket to the new first. */ ocfs2_xattr_bucket_copy_data(t_bucket, s_bucket); /* update the new bucket. */ xh = bucket_xh(t_bucket); /* * Calculate the total name/value len and xh_free_start for * the old bucket first. */ name_offset = OCFS2_XATTR_BUCKET_SIZE; name_value_len = 0; for (i = 0; i < start; i++) { xe = &xh->xh_entries[i]; name_value_len += namevalue_size_xe(xe); if (le16_to_cpu(xe->xe_name_offset) < name_offset) name_offset = le16_to_cpu(xe->xe_name_offset); } /* * Now begin the modification to the new bucket. * * In the new bucket, We just move the xattr entry to the beginning * and don't touch the name/value. So there will be some holes in the * bucket, and they will be removed when ocfs2_defrag_xattr_bucket is * called. */ xe = &xh->xh_entries[start]; len = sizeof(struct ocfs2_xattr_entry) * (count - start); trace_ocfs2_divide_xattr_bucket_move(len, (int)((char *)xe - (char *)xh), (int)((char *)xh->xh_entries - (char *)xh)); memmove((char *)xh->xh_entries, (char *)xe, len); xe = &xh->xh_entries[count - start]; len = sizeof(struct ocfs2_xattr_entry) * start; memset((char *)xe, 0, len); le16_add_cpu(&xh->xh_count, -start); le16_add_cpu(&xh->xh_name_value_len, -name_value_len); /* Calculate xh_free_start for the new bucket. */ xh->xh_free_start = cpu_to_le16(OCFS2_XATTR_BUCKET_SIZE); for (i = 0; i < le16_to_cpu(xh->xh_count); i++) { xe = &xh->xh_entries[i]; if (le16_to_cpu(xe->xe_name_offset) < le16_to_cpu(xh->xh_free_start)) xh->xh_free_start = xe->xe_name_offset; } set_num_buckets: /* set xh->xh_num_buckets for the new xh. */ if (new_bucket_head) xh->xh_num_buckets = cpu_to_le16(1); else xh->xh_num_buckets = 0; ocfs2_xattr_bucket_journal_dirty(handle, t_bucket); /* store the first_hash of the new bucket. */ if (first_hash) *first_hash = le32_to_cpu(xh->xh_entries[0].xe_name_hash); /* * Now only update the 1st block of the old bucket. If we * just added a new empty bucket, there is no need to modify * it. */ if (start == count) goto out; xh = bucket_xh(s_bucket); memset(&xh->xh_entries[start], 0, sizeof(struct ocfs2_xattr_entry) * (count - start)); xh->xh_count = cpu_to_le16(start); xh->xh_free_start = cpu_to_le16(name_offset); xh->xh_name_value_len = cpu_to_le16(name_value_len); ocfs2_xattr_bucket_journal_dirty(handle, s_bucket); out: ocfs2_xattr_bucket_free(s_bucket); ocfs2_xattr_bucket_free(t_bucket); return ret; } /* * Copy xattr from one bucket to another bucket. * * The caller must make sure that the journal transaction * has enough space for journaling. */ static int ocfs2_cp_xattr_bucket(struct inode *inode, handle_t *handle, u64 s_blkno, u64 t_blkno, int t_is_new) { int ret; struct ocfs2_xattr_bucket *s_bucket = NULL, *t_bucket = NULL; BUG_ON(s_blkno == t_blkno); trace_ocfs2_cp_xattr_bucket((unsigned long long)s_blkno, (unsigned long long)t_blkno, t_is_new); s_bucket = ocfs2_xattr_bucket_new(inode); t_bucket = ocfs2_xattr_bucket_new(inode); if (!s_bucket || !t_bucket) { ret = -ENOMEM; mlog_errno(ret); goto out; } ret = ocfs2_read_xattr_bucket(s_bucket, s_blkno); if (ret) goto out; /* * Even if !t_is_new, we're overwriting t_bucket. Thus, * there's no need to read it. */ ret = ocfs2_init_xattr_bucket(t_bucket, t_blkno); if (ret) goto out; /* * Hey, if we're overwriting t_bucket, what difference does * ACCESS_CREATE vs ACCESS_WRITE make? Well, if we allocated a new * cluster to fill, we came here from * ocfs2_mv_xattr_buckets(), and it is really new - * ACCESS_CREATE is required. But we also might have moved data * out of t_bucket before extending back into it. * ocfs2_add_new_xattr_bucket() can do this - its call to * ocfs2_add_new_xattr_cluster() may have created a new extent * and copied out the end of the old extent. Then it re-extends * the old extent back to create space for new xattrs. That's * how we get here, and the bucket isn't really new. */ ret = ocfs2_xattr_bucket_journal_access(handle, t_bucket, t_is_new ? OCFS2_JOURNAL_ACCESS_CREATE : OCFS2_JOURNAL_ACCESS_WRITE); if (ret) goto out; ocfs2_xattr_bucket_copy_data(t_bucket, s_bucket); ocfs2_xattr_bucket_journal_dirty(handle, t_bucket); out: ocfs2_xattr_bucket_free(t_bucket); ocfs2_xattr_bucket_free(s_bucket); return ret; } /* * src_blk points to the start of an existing extent. last_blk points to * last cluster in that extent. to_blk points to a newly allocated * extent. We copy the buckets from the cluster at last_blk to the new * extent. If start_bucket is non-zero, we skip that many buckets before * we start copying. The new extent's xh_num_buckets gets set to the * number of buckets we copied. The old extent's xh_num_buckets shrinks * by the same amount. */ static int ocfs2_mv_xattr_buckets(struct inode *inode, handle_t *handle, u64 src_blk, u64 last_blk, u64 to_blk, unsigned int start_bucket, u32 *first_hash) { int i, ret, credits; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); int blks_per_bucket = ocfs2_blocks_per_xattr_bucket(inode->i_sb); int num_buckets = ocfs2_xattr_buckets_per_cluster(osb); struct ocfs2_xattr_bucket *old_first, *new_first; trace_ocfs2_mv_xattr_buckets((unsigned long long)last_blk, (unsigned long long)to_blk); BUG_ON(start_bucket >= num_buckets); if (start_bucket) { num_buckets -= start_bucket; last_blk += (start_bucket * blks_per_bucket); } /* The first bucket of the original extent */ old_first = ocfs2_xattr_bucket_new(inode); /* The first bucket of the new extent */ new_first = ocfs2_xattr_bucket_new(inode); if (!old_first || !new_first) { ret = -ENOMEM; mlog_errno(ret); goto out; } ret = ocfs2_read_xattr_bucket(old_first, src_blk); if (ret) { mlog_errno(ret); goto out; } /* * We need to update the first bucket of the old extent and all * the buckets going to the new extent. */ credits = ((num_buckets + 1) * blks_per_bucket); ret = ocfs2_extend_trans(handle, credits); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_xattr_bucket_journal_access(handle, old_first, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out; } for (i = 0; i < num_buckets; i++) { ret = ocfs2_cp_xattr_bucket(inode, handle, last_blk + (i * blks_per_bucket), to_blk + (i * blks_per_bucket), 1); if (ret) { mlog_errno(ret); goto out; } } /* * Get the new bucket ready before we dirty anything * (This actually shouldn't fail, because we already dirtied * it once in ocfs2_cp_xattr_bucket()). */ ret = ocfs2_read_xattr_bucket(new_first, to_blk); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_xattr_bucket_journal_access(handle, new_first, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out; } /* Now update the headers */ le16_add_cpu(&bucket_xh(old_first)->xh_num_buckets, -num_buckets); ocfs2_xattr_bucket_journal_dirty(handle, old_first); bucket_xh(new_first)->xh_num_buckets = cpu_to_le16(num_buckets); ocfs2_xattr_bucket_journal_dirty(handle, new_first); if (first_hash) *first_hash = le32_to_cpu(bucket_xh(new_first)->xh_entries[0].xe_name_hash); out: ocfs2_xattr_bucket_free(new_first); ocfs2_xattr_bucket_free(old_first); return ret; } /* * Move some xattrs in this cluster to the new cluster. * This function should only be called when bucket size == cluster size. * Otherwise ocfs2_mv_xattr_bucket_cross_cluster should be used instead. */ static int ocfs2_divide_xattr_cluster(struct inode *inode, handle_t *handle, u64 prev_blk, u64 new_blk, u32 *first_hash) { u16 blk_per_bucket = ocfs2_blocks_per_xattr_bucket(inode->i_sb); int ret, credits = 2 * blk_per_bucket; BUG_ON(OCFS2_XATTR_BUCKET_SIZE < OCFS2_SB(inode->i_sb)->s_clustersize); ret = ocfs2_extend_trans(handle, credits); if (ret) { mlog_errno(ret); return ret; } /* Move half of the xattr in start_blk to the next bucket. */ return ocfs2_divide_xattr_bucket(inode, handle, prev_blk, new_blk, first_hash, 1); } /* * Move some xattrs from the old cluster to the new one since they are not * contiguous in ocfs2 xattr tree. * * new_blk starts a new separate cluster, and we will move some xattrs from * prev_blk to it. v_start will be set as the first name hash value in this * new cluster so that it can be used as e_cpos during tree insertion and * don't collide with our original b-tree operations. first_bh and header_bh * will also be updated since they will be used in ocfs2_extend_xattr_bucket * to extend the insert bucket. * * The problem is how much xattr should we move to the new one and when should * we update first_bh and header_bh? * 1. If cluster size > bucket size, that means the previous cluster has more * than 1 bucket, so just move half nums of bucket into the new cluster and * update the first_bh and header_bh if the insert bucket has been moved * to the new cluster. * 2. If cluster_size == bucket_size: * a) If the previous extent rec has more than one cluster and the insert * place isn't in the last cluster, copy the entire last cluster to the * new one. This time, we don't need to upate the first_bh and header_bh * since they will not be moved into the new cluster. * b) Otherwise, move the bottom half of the xattrs in the last cluster into * the new one. And we set the extend flag to zero if the insert place is * moved into the new allocated cluster since no extend is needed. */ static int ocfs2_adjust_xattr_cross_cluster(struct inode *inode, handle_t *handle, struct ocfs2_xattr_bucket *first, struct ocfs2_xattr_bucket *target, u64 new_blk, u32 prev_clusters, u32 *v_start, int *extend) { int ret; trace_ocfs2_adjust_xattr_cross_cluster( (unsigned long long)bucket_blkno(first), (unsigned long long)new_blk, prev_clusters); if (ocfs2_xattr_buckets_per_cluster(OCFS2_SB(inode->i_sb)) > 1) { ret = ocfs2_mv_xattr_bucket_cross_cluster(inode, handle, first, target, new_blk, prev_clusters, v_start); if (ret) mlog_errno(ret); } else { /* The start of the last cluster in the first extent */ u64 last_blk = bucket_blkno(first) + ((prev_clusters - 1) * ocfs2_clusters_to_blocks(inode->i_sb, 1)); if (prev_clusters > 1 && bucket_blkno(target) != last_blk) { ret = ocfs2_mv_xattr_buckets(inode, handle, bucket_blkno(first), last_blk, new_blk, 0, v_start); if (ret) mlog_errno(ret); } else { ret = ocfs2_divide_xattr_cluster(inode, handle, last_blk, new_blk, v_start); if (ret) mlog_errno(ret); if ((bucket_blkno(target) == last_blk) && extend) *extend = 0; } } return ret; } /* * Add a new cluster for xattr storage. * * If the new cluster is contiguous with the previous one, it will be * appended to the same extent record, and num_clusters will be updated. * If not, we will insert a new extent for it and move some xattrs in * the last cluster into the new allocated one. * We also need to limit the maximum size of a btree leaf, otherwise we'll * lose the benefits of hashing because we'll have to search large leaves. * So now the maximum size is OCFS2_MAX_XATTR_TREE_LEAF_SIZE(or clustersize, * if it's bigger). * * first_bh is the first block of the previous extent rec and header_bh * indicates the bucket we will insert the new xattrs. They will be updated * when the header_bh is moved into the new cluster. */ static int ocfs2_add_new_xattr_cluster(struct inode *inode, struct buffer_head *root_bh, struct ocfs2_xattr_bucket *first, struct ocfs2_xattr_bucket *target, u32 *num_clusters, u32 prev_cpos, int *extend, struct ocfs2_xattr_set_ctxt *ctxt) { int ret; u16 bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1); u32 prev_clusters = *num_clusters; u32 clusters_to_add = 1, bit_off, num_bits, v_start = 0; u64 block; handle_t *handle = ctxt->handle; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct ocfs2_extent_tree et; trace_ocfs2_add_new_xattr_cluster_begin( (unsigned long long)OCFS2_I(inode)->ip_blkno, (unsigned long long)bucket_blkno(first), prev_cpos, prev_clusters); ocfs2_init_xattr_tree_extent_tree(&et, INODE_CACHE(inode), root_bh); ret = ocfs2_journal_access_xb(handle, INODE_CACHE(inode), root_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret < 0) { mlog_errno(ret); goto leave; } ret = __ocfs2_claim_clusters(handle, ctxt->data_ac, 1, clusters_to_add, &bit_off, &num_bits); if (ret < 0) { if (ret != -ENOSPC) mlog_errno(ret); goto leave; } BUG_ON(num_bits > clusters_to_add); block = ocfs2_clusters_to_blocks(osb->sb, bit_off); trace_ocfs2_add_new_xattr_cluster((unsigned long long)block, num_bits); if (bucket_blkno(first) + (prev_clusters * bpc) == block && (prev_clusters + num_bits) << osb->s_clustersize_bits <= OCFS2_MAX_XATTR_TREE_LEAF_SIZE) { /* * If this cluster is contiguous with the old one and * adding this new cluster, we don't surpass the limit of * OCFS2_MAX_XATTR_TREE_LEAF_SIZE, cool. We will let it be * initialized and used like other buckets in the previous * cluster. * So add it as a contiguous one. The caller will handle * its init process. */ v_start = prev_cpos + prev_clusters; *num_clusters = prev_clusters + num_bits; } else { ret = ocfs2_adjust_xattr_cross_cluster(inode, handle, first, target, block, prev_clusters, &v_start, extend); if (ret) { mlog_errno(ret); goto leave; } } trace_ocfs2_add_new_xattr_cluster_insert((unsigned long long)block, v_start, num_bits); ret = ocfs2_insert_extent(handle, &et, v_start, block, num_bits, 0, ctxt->meta_ac); if (ret < 0) { mlog_errno(ret); goto leave; } ocfs2_journal_dirty(handle, root_bh); leave: return ret; } /* * We are given an extent. 'first' is the bucket at the very front of * the extent. The extent has space for an additional bucket past * bucket_xh(first)->xh_num_buckets. 'target_blkno' is the block number * of the target bucket. We wish to shift every bucket past the target * down one, filling in that additional space. When we get back to the * target, we split the target between itself and the now-empty bucket * at target+1 (aka, target_blkno + blks_per_bucket). */ static int ocfs2_extend_xattr_bucket(struct inode *inode, handle_t *handle, struct ocfs2_xattr_bucket *first, u64 target_blk, u32 num_clusters) { int ret, credits; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); u16 blk_per_bucket = ocfs2_blocks_per_xattr_bucket(inode->i_sb); u64 end_blk; u16 new_bucket = le16_to_cpu(bucket_xh(first)->xh_num_buckets); trace_ocfs2_extend_xattr_bucket((unsigned long long)target_blk, (unsigned long long)bucket_blkno(first), num_clusters, new_bucket); /* The extent must have room for an additional bucket */ BUG_ON(new_bucket >= (num_clusters * ocfs2_xattr_buckets_per_cluster(osb))); /* end_blk points to the last existing bucket */ end_blk = bucket_blkno(first) + ((new_bucket - 1) * blk_per_bucket); /* * end_blk is the start of the last existing bucket. * Thus, (end_blk - target_blk) covers the target bucket and * every bucket after it up to, but not including, the last * existing bucket. Then we add the last existing bucket, the * new bucket, and the first bucket (3 * blk_per_bucket). */ credits = (end_blk - target_blk) + (3 * blk_per_bucket); ret = ocfs2_extend_trans(handle, credits); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_xattr_bucket_journal_access(handle, first, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out; } while (end_blk != target_blk) { ret = ocfs2_cp_xattr_bucket(inode, handle, end_blk, end_blk + blk_per_bucket, 0); if (ret) goto out; end_blk -= blk_per_bucket; } /* Move half of the xattr in target_blkno to the next bucket. */ ret = ocfs2_divide_xattr_bucket(inode, handle, target_blk, target_blk + blk_per_bucket, NULL, 0); le16_add_cpu(&bucket_xh(first)->xh_num_buckets, 1); ocfs2_xattr_bucket_journal_dirty(handle, first); out: return ret; } /* * Add new xattr bucket in an extent record and adjust the buckets * accordingly. xb_bh is the ocfs2_xattr_block, and target is the * bucket we want to insert into. * * In the easy case, we will move all the buckets after target down by * one. Half of target's xattrs will be moved to the next bucket. * * If current cluster is full, we'll allocate a new one. This may not * be contiguous. The underlying calls will make sure that there is * space for the insert, shifting buckets around if necessary. * 'target' may be moved by those calls. */ static int ocfs2_add_new_xattr_bucket(struct inode *inode, struct buffer_head *xb_bh, struct ocfs2_xattr_bucket *target, struct ocfs2_xattr_set_ctxt *ctxt) { struct ocfs2_xattr_block *xb = (struct ocfs2_xattr_block *)xb_bh->b_data; struct ocfs2_xattr_tree_root *xb_root = &xb->xb_attrs.xb_root; struct ocfs2_extent_list *el = &xb_root->xt_list; u32 name_hash = le32_to_cpu(bucket_xh(target)->xh_entries[0].xe_name_hash); struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); int ret, num_buckets, extend = 1; u64 p_blkno; u32 e_cpos, num_clusters; /* The bucket at the front of the extent */ struct ocfs2_xattr_bucket *first; trace_ocfs2_add_new_xattr_bucket( (unsigned long long)bucket_blkno(target)); /* The first bucket of the original extent */ first = ocfs2_xattr_bucket_new(inode); if (!first) { ret = -ENOMEM; mlog_errno(ret); goto out; } ret = ocfs2_xattr_get_rec(inode, name_hash, &p_blkno, &e_cpos, &num_clusters, el); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_read_xattr_bucket(first, p_blkno); if (ret) { mlog_errno(ret); goto out; } num_buckets = ocfs2_xattr_buckets_per_cluster(osb) * num_clusters; if (num_buckets == le16_to_cpu(bucket_xh(first)->xh_num_buckets)) { /* * This can move first+target if the target bucket moves * to the new extent. */ ret = ocfs2_add_new_xattr_cluster(inode, xb_bh, first, target, &num_clusters, e_cpos, &extend, ctxt); if (ret) { mlog_errno(ret); goto out; } } if (extend) { ret = ocfs2_extend_xattr_bucket(inode, ctxt->handle, first, bucket_blkno(target), num_clusters); if (ret) mlog_errno(ret); } out: ocfs2_xattr_bucket_free(first); return ret; } static inline char *ocfs2_xattr_bucket_get_val(struct inode *inode, struct ocfs2_xattr_bucket *bucket, int offs) { int block_off = offs >> inode->i_sb->s_blocksize_bits; offs = offs % inode->i_sb->s_blocksize; return bucket_block(bucket, block_off) + offs; } /* * Truncate the specified xe_off entry in xattr bucket. * bucket is indicated by header_bh and len is the new length. * Both the ocfs2_xattr_value_root and the entry will be updated here. * * Copy the new updated xe and xe_value_root to new_xe and new_xv if needed. */ static int ocfs2_xattr_bucket_value_truncate(struct inode *inode, struct ocfs2_xattr_bucket *bucket, int xe_off, int len, struct ocfs2_xattr_set_ctxt *ctxt) { int ret, offset; u64 value_blk; struct ocfs2_xattr_entry *xe; struct ocfs2_xattr_header *xh = bucket_xh(bucket); size_t blocksize = inode->i_sb->s_blocksize; struct ocfs2_xattr_value_buf vb = { .vb_access = ocfs2_journal_access, }; xe = &xh->xh_entries[xe_off]; BUG_ON(!xe || ocfs2_xattr_is_local(xe)); offset = le16_to_cpu(xe->xe_name_offset) + OCFS2_XATTR_SIZE(xe->xe_name_len); value_blk = offset / blocksize; /* We don't allow ocfs2_xattr_value to be stored in different block. */ BUG_ON(value_blk != (offset + OCFS2_XATTR_ROOT_SIZE - 1) / blocksize); vb.vb_bh = bucket->bu_bhs[value_blk]; BUG_ON(!vb.vb_bh); vb.vb_xv = (struct ocfs2_xattr_value_root *) (vb.vb_bh->b_data + offset % blocksize); /* * From here on out we have to dirty the bucket. The generic * value calls only modify one of the bucket's bhs, but we need * to send the bucket at once. So if they error, they *could* have * modified something. We have to assume they did, and dirty * the whole bucket. This leaves us in a consistent state. */ trace_ocfs2_xattr_bucket_value_truncate( (unsigned long long)bucket_blkno(bucket), xe_off, len); ret = ocfs2_xattr_value_truncate(inode, &vb, len, ctxt); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_xattr_bucket_journal_access(ctxt->handle, bucket, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out; } xe->xe_value_size = cpu_to_le64(len); ocfs2_xattr_bucket_journal_dirty(ctxt->handle, bucket); out: return ret; } static int ocfs2_rm_xattr_cluster(struct inode *inode, struct buffer_head *root_bh, u64 blkno, u32 cpos, u32 len, void *para) { int ret; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct inode *tl_inode = osb->osb_tl_inode; handle_t *handle; struct ocfs2_xattr_block *xb = (struct ocfs2_xattr_block *)root_bh->b_data; struct ocfs2_alloc_context *meta_ac = NULL; struct ocfs2_cached_dealloc_ctxt dealloc; struct ocfs2_extent_tree et; ret = ocfs2_iterate_xattr_buckets(inode, blkno, len, ocfs2_delete_xattr_in_bucket, para); if (ret) { mlog_errno(ret); return ret; } ocfs2_init_xattr_tree_extent_tree(&et, INODE_CACHE(inode), root_bh); ocfs2_init_dealloc_ctxt(&dealloc); trace_ocfs2_rm_xattr_cluster( (unsigned long long)OCFS2_I(inode)->ip_blkno, (unsigned long long)blkno, cpos, len); ocfs2_remove_xattr_clusters_from_cache(INODE_CACHE(inode), blkno, len); ret = ocfs2_lock_allocators(inode, &et, 0, 1, NULL, &meta_ac); if (ret) { mlog_errno(ret); return ret; } mutex_lock(&tl_inode->i_mutex); if (ocfs2_truncate_log_needs_flush(osb)) { ret = __ocfs2_flush_truncate_log(osb); if (ret < 0) { mlog_errno(ret); goto out; } } handle = ocfs2_start_trans(osb, ocfs2_remove_extent_credits(osb->sb)); if (IS_ERR(handle)) { ret = -ENOMEM; mlog_errno(ret); goto out; } ret = ocfs2_journal_access_xb(handle, INODE_CACHE(inode), root_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out_commit; } ret = ocfs2_remove_extent(handle, &et, cpos, len, meta_ac, &dealloc); if (ret) { mlog_errno(ret); goto out_commit; } le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, -len); ocfs2_journal_dirty(handle, root_bh); ret = ocfs2_truncate_log_append(osb, handle, blkno, len); if (ret) mlog_errno(ret); out_commit: ocfs2_commit_trans(osb, handle); out: ocfs2_schedule_truncate_log_flush(osb, 1); mutex_unlock(&tl_inode->i_mutex); if (meta_ac) ocfs2_free_alloc_context(meta_ac); ocfs2_run_deallocs(osb, &dealloc); return ret; } /* * check whether the xattr bucket is filled up with the same hash value. * If we want to insert the xattr with the same hash, return -ENOSPC. * If we want to insert a xattr with different hash value, go ahead * and ocfs2_divide_xattr_bucket will handle this. */ static int ocfs2_check_xattr_bucket_collision(struct inode *inode, struct ocfs2_xattr_bucket *bucket, const char *name) { struct ocfs2_xattr_header *xh = bucket_xh(bucket); u32 name_hash = ocfs2_xattr_name_hash(inode, name, strlen(name)); if (name_hash != le32_to_cpu(xh->xh_entries[0].xe_name_hash)) return 0; if (xh->xh_entries[le16_to_cpu(xh->xh_count) - 1].xe_name_hash == xh->xh_entries[0].xe_name_hash) { mlog(ML_ERROR, "Too much hash collision in xattr bucket %llu, " "hash = %u\n", (unsigned long long)bucket_blkno(bucket), le32_to_cpu(xh->xh_entries[0].xe_name_hash)); return -ENOSPC; } return 0; } /* * Try to set the entry in the current bucket. If we fail, the caller * will handle getting us another bucket. */ static int ocfs2_xattr_set_entry_bucket(struct inode *inode, struct ocfs2_xattr_info *xi, struct ocfs2_xattr_search *xs, struct ocfs2_xattr_set_ctxt *ctxt) { int ret; struct ocfs2_xa_loc loc; trace_ocfs2_xattr_set_entry_bucket(xi->xi_name); ocfs2_init_xattr_bucket_xa_loc(&loc, xs->bucket, xs->not_found ? NULL : xs->here); ret = ocfs2_xa_set(&loc, xi, ctxt); if (!ret) { xs->here = loc.xl_entry; goto out; } if (ret != -ENOSPC) { mlog_errno(ret); goto out; } /* Ok, we need space. Let's try defragmenting the bucket. */ ret = ocfs2_defrag_xattr_bucket(inode, ctxt->handle, xs->bucket); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_xa_set(&loc, xi, ctxt); if (!ret) { xs->here = loc.xl_entry; goto out; } if (ret != -ENOSPC) mlog_errno(ret); out: return ret; } static int ocfs2_xattr_set_entry_index_block(struct inode *inode, struct ocfs2_xattr_info *xi, struct ocfs2_xattr_search *xs, struct ocfs2_xattr_set_ctxt *ctxt) { int ret; trace_ocfs2_xattr_set_entry_index_block(xi->xi_name); ret = ocfs2_xattr_set_entry_bucket(inode, xi, xs, ctxt); if (!ret) goto out; if (ret != -ENOSPC) { mlog_errno(ret); goto out; } /* Ack, need more space. Let's try to get another bucket! */ /* * We do not allow for overlapping ranges between buckets. And * the maximum number of collisions we will allow for then is * one bucket's worth, so check it here whether we need to * add a new bucket for the insert. */ ret = ocfs2_check_xattr_bucket_collision(inode, xs->bucket, xi->xi_name); if (ret) { mlog_errno(ret); goto out; } ret = ocfs2_add_new_xattr_bucket(inode, xs->xattr_bh, xs->bucket, ctxt); if (ret) { mlog_errno(ret); goto out; } /* * ocfs2_add_new_xattr_bucket() will have updated * xs->bucket if it moved, but it will not have updated * any of the other search fields. Thus, we drop it and * re-search. Everything should be cached, so it'll be * quick. */ ocfs2_xattr_bucket_relse(xs->bucket); ret = ocfs2_xattr_index_block_find(inode, xs->xattr_bh, xi->xi_name_index, xi->xi_name, xs); if (ret && ret != -ENODATA) goto out; xs->not_found = ret; /* Ok, we have a new bucket, let's try again */ ret = ocfs2_xattr_set_entry_bucket(inode, xi, xs, ctxt); if (ret && (ret != -ENOSPC)) mlog_errno(ret); out: return ret; } static int ocfs2_delete_xattr_in_bucket(struct inode *inode, struct ocfs2_xattr_bucket *bucket, void *para) { int ret = 0, ref_credits; struct ocfs2_xattr_header *xh = bucket_xh(bucket); u16 i; struct ocfs2_xattr_entry *xe; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct ocfs2_xattr_set_ctxt ctxt = {NULL, NULL,}; int credits = ocfs2_remove_extent_credits(osb->sb) + ocfs2_blocks_per_xattr_bucket(inode->i_sb); struct ocfs2_xattr_value_root *xv; struct ocfs2_rm_xattr_bucket_para *args = (struct ocfs2_rm_xattr_bucket_para *)para; ocfs2_init_dealloc_ctxt(&ctxt.dealloc); for (i = 0; i < le16_to_cpu(xh->xh_count); i++) { xe = &xh->xh_entries[i]; if (ocfs2_xattr_is_local(xe)) continue; ret = ocfs2_get_xattr_tree_value_root(inode->i_sb, bucket, i, &xv, NULL); ret = ocfs2_lock_xattr_remove_allocators(inode, xv, args->ref_ci, args->ref_root_bh, &ctxt.meta_ac, &ref_credits); ctxt.handle = ocfs2_start_trans(osb, credits + ref_credits); if (IS_ERR(ctxt.handle)) { ret = PTR_ERR(ctxt.handle); mlog_errno(ret); break; } ret = ocfs2_xattr_bucket_value_truncate(inode, bucket, i, 0, &ctxt); ocfs2_commit_trans(osb, ctxt.handle); if (ctxt.meta_ac) { ocfs2_free_alloc_context(ctxt.meta_ac); ctxt.meta_ac = NULL; } if (ret) { mlog_errno(ret); break; } } if (ctxt.meta_ac) ocfs2_free_alloc_context(ctxt.meta_ac); ocfs2_schedule_truncate_log_flush(osb, 1); ocfs2_run_deallocs(osb, &ctxt.dealloc); return ret; } /* * Whenever we modify a xattr value root in the bucket(e.g, CoW * or change the extent record flag), we need to recalculate * the metaecc for the whole bucket. So it is done here. * * Note: * We have to give the extra credits for the caller. */ static int ocfs2_xattr_bucket_post_refcount(struct inode *inode, handle_t *handle, void *para) { int ret; struct ocfs2_xattr_bucket *bucket = (struct ocfs2_xattr_bucket *)para; ret = ocfs2_xattr_bucket_journal_access(handle, bucket, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); return ret; } ocfs2_xattr_bucket_journal_dirty(handle, bucket); return 0; } /* * Special action we need if the xattr value is refcounted. * * 1. If the xattr is refcounted, lock the tree. * 2. CoW the xattr if we are setting the new value and the value * will be stored outside. * 3. In other case, decrease_refcount will work for us, so just * lock the refcount tree, calculate the meta and credits is OK. * * We have to do CoW before ocfs2_init_xattr_set_ctxt since * currently CoW is a completed transaction, while this function * will also lock the allocators and let us deadlock. So we will * CoW the whole xattr value. */ static int ocfs2_prepare_refcount_xattr(struct inode *inode, struct ocfs2_dinode *di, struct ocfs2_xattr_info *xi, struct ocfs2_xattr_search *xis, struct ocfs2_xattr_search *xbs, struct ocfs2_refcount_tree **ref_tree, int *meta_add, int *credits) { int ret = 0; struct ocfs2_xattr_block *xb; struct ocfs2_xattr_entry *xe; char *base; u32 p_cluster, num_clusters; unsigned int ext_flags; int name_offset, name_len; struct ocfs2_xattr_value_buf vb; struct ocfs2_xattr_bucket *bucket = NULL; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct ocfs2_post_refcount refcount; struct ocfs2_post_refcount *p = NULL; struct buffer_head *ref_root_bh = NULL; if (!xis->not_found) { xe = xis->here; name_offset = le16_to_cpu(xe->xe_name_offset); name_len = OCFS2_XATTR_SIZE(xe->xe_name_len); base = xis->base; vb.vb_bh = xis->inode_bh; vb.vb_access = ocfs2_journal_access_di; } else { int i, block_off = 0; xb = (struct ocfs2_xattr_block *)xbs->xattr_bh->b_data; xe = xbs->here; name_offset = le16_to_cpu(xe->xe_name_offset); name_len = OCFS2_XATTR_SIZE(xe->xe_name_len); i = xbs->here - xbs->header->xh_entries; if (le16_to_cpu(xb->xb_flags) & OCFS2_XATTR_INDEXED) { ret = ocfs2_xattr_bucket_get_name_value(inode->i_sb, bucket_xh(xbs->bucket), i, &block_off, &name_offset); if (ret) { mlog_errno(ret); goto out; } base = bucket_block(xbs->bucket, block_off); vb.vb_bh = xbs->bucket->bu_bhs[block_off]; vb.vb_access = ocfs2_journal_access; if (ocfs2_meta_ecc(osb)) { /*create parameters for ocfs2_post_refcount. */ bucket = xbs->bucket; refcount.credits = bucket->bu_blocks; refcount.para = bucket; refcount.func = ocfs2_xattr_bucket_post_refcount; p = &refcount; } } else { base = xbs->base; vb.vb_bh = xbs->xattr_bh; vb.vb_access = ocfs2_journal_access_xb; } } if (ocfs2_xattr_is_local(xe)) goto out; vb.vb_xv = (struct ocfs2_xattr_value_root *) (base + name_offset + name_len); ret = ocfs2_xattr_get_clusters(inode, 0, &p_cluster, &num_clusters, &vb.vb_xv->xr_list, &ext_flags); if (ret) { mlog_errno(ret); goto out; } /* * We just need to check the 1st extent record, since we always * CoW the whole xattr. So there shouldn't be a xattr with * some REFCOUNT extent recs after the 1st one. */ if (!(ext_flags & OCFS2_EXT_REFCOUNTED)) goto out; ret = ocfs2_lock_refcount_tree(osb, le64_to_cpu(di->i_refcount_loc), 1, ref_tree, &ref_root_bh); if (ret) { mlog_errno(ret); goto out; } /* * If we are deleting the xattr or the new size will be stored inside, * cool, leave it there, the xattr truncate process will remove them * for us(it still needs the refcount tree lock and the meta, credits). * And the worse case is that every cluster truncate will split the * refcount tree, and make the original extent become 3. So we will need * 2 * cluster more extent recs at most. */ if (!xi->xi_value || xi->xi_value_len <= OCFS2_XATTR_INLINE_SIZE) { ret = ocfs2_refcounted_xattr_delete_need(inode, &(*ref_tree)->rf_ci, ref_root_bh, vb.vb_xv, meta_add, credits); if (ret) mlog_errno(ret); goto out; } ret = ocfs2_refcount_cow_xattr(inode, di, &vb, *ref_tree, ref_root_bh, 0, le32_to_cpu(vb.vb_xv->xr_clusters), p); if (ret) mlog_errno(ret); out: brelse(ref_root_bh); return ret; } /* * Add the REFCOUNTED flags for all the extent rec in ocfs2_xattr_value_root. * The physical clusters will be added to refcount tree. */ static int ocfs2_xattr_value_attach_refcount(struct inode *inode, struct ocfs2_xattr_value_root *xv, struct ocfs2_extent_tree *value_et, struct ocfs2_caching_info *ref_ci, struct buffer_head *ref_root_bh, struct ocfs2_cached_dealloc_ctxt *dealloc, struct ocfs2_post_refcount *refcount) { int ret = 0; u32 clusters = le32_to_cpu(xv->xr_clusters); u32 cpos, p_cluster, num_clusters; struct ocfs2_extent_list *el = &xv->xr_list; unsigned int ext_flags; cpos = 0; while (cpos < clusters) { ret = ocfs2_xattr_get_clusters(inode, cpos, &p_cluster, &num_clusters, el, &ext_flags); cpos += num_clusters; if ((ext_flags & OCFS2_EXT_REFCOUNTED)) continue; BUG_ON(!p_cluster); ret = ocfs2_add_refcount_flag(inode, value_et, ref_ci, ref_root_bh, cpos - num_clusters, p_cluster, num_clusters, dealloc, refcount); if (ret) { mlog_errno(ret); break; } } return ret; } /* * Given a normal ocfs2_xattr_header, refcount all the entries which * have value stored outside. * Used for xattrs stored in inode and ocfs2_xattr_block. */ static int ocfs2_xattr_attach_refcount_normal(struct inode *inode, struct ocfs2_xattr_value_buf *vb, struct ocfs2_xattr_header *header, struct ocfs2_caching_info *ref_ci, struct buffer_head *ref_root_bh, struct ocfs2_cached_dealloc_ctxt *dealloc) { struct ocfs2_xattr_entry *xe; struct ocfs2_xattr_value_root *xv; struct ocfs2_extent_tree et; int i, ret = 0; for (i = 0; i < le16_to_cpu(header->xh_count); i++) { xe = &header->xh_entries[i]; if (ocfs2_xattr_is_local(xe)) continue; xv = (struct ocfs2_xattr_value_root *)((void *)header + le16_to_cpu(xe->xe_name_offset) + OCFS2_XATTR_SIZE(xe->xe_name_len)); vb->vb_xv = xv; ocfs2_init_xattr_value_extent_tree(&et, INODE_CACHE(inode), vb); ret = ocfs2_xattr_value_attach_refcount(inode, xv, &et, ref_ci, ref_root_bh, dealloc, NULL); if (ret) { mlog_errno(ret); break; } } return ret; } static int ocfs2_xattr_inline_attach_refcount(struct inode *inode, struct buffer_head *fe_bh, struct ocfs2_caching_info *ref_ci, struct buffer_head *ref_root_bh, struct ocfs2_cached_dealloc_ctxt *dealloc) { struct ocfs2_dinode *di = (struct ocfs2_dinode *)fe_bh->b_data; struct ocfs2_xattr_header *header = (struct ocfs2_xattr_header *) (fe_bh->b_data + inode->i_sb->s_blocksize - le16_to_cpu(di->i_xattr_inline_size)); struct ocfs2_xattr_value_buf vb = { .vb_bh = fe_bh, .vb_access = ocfs2_journal_access_di, }; return ocfs2_xattr_attach_refcount_normal(inode, &vb, header, ref_ci, ref_root_bh, dealloc); } struct ocfs2_xattr_tree_value_refcount_para { struct ocfs2_caching_info *ref_ci; struct buffer_head *ref_root_bh; struct ocfs2_cached_dealloc_ctxt *dealloc; }; static int ocfs2_get_xattr_tree_value_root(struct super_block *sb, struct ocfs2_xattr_bucket *bucket, int offset, struct ocfs2_xattr_value_root **xv, struct buffer_head **bh) { int ret, block_off, name_offset; struct ocfs2_xattr_header *xh = bucket_xh(bucket); struct ocfs2_xattr_entry *xe = &xh->xh_entries[offset]; void *base; ret = ocfs2_xattr_bucket_get_name_value(sb, bucket_xh(bucket), offset, &block_off, &name_offset); if (ret) { mlog_errno(ret); goto out; } base = bucket_block(bucket, block_off); *xv = (struct ocfs2_xattr_value_root *)(base + name_offset + OCFS2_XATTR_SIZE(xe->xe_name_len)); if (bh) *bh = bucket->bu_bhs[block_off]; out: return ret; } /* * For a given xattr bucket, refcount all the entries which * have value stored outside. */ static int ocfs2_xattr_bucket_value_refcount(struct inode *inode, struct ocfs2_xattr_bucket *bucket, void *para) { int i, ret = 0; struct ocfs2_extent_tree et; struct ocfs2_xattr_tree_value_refcount_para *ref = (struct ocfs2_xattr_tree_value_refcount_para *)para; struct ocfs2_xattr_header *xh = (struct ocfs2_xattr_header *)bucket->bu_bhs[0]->b_data; struct ocfs2_xattr_entry *xe; struct ocfs2_xattr_value_buf vb = { .vb_access = ocfs2_journal_access, }; struct ocfs2_post_refcount refcount = { .credits = bucket->bu_blocks, .para = bucket, .func = ocfs2_xattr_bucket_post_refcount, }; struct ocfs2_post_refcount *p = NULL; /* We only need post_refcount if we support metaecc. */ if (ocfs2_meta_ecc(OCFS2_SB(inode->i_sb))) p = &refcount; trace_ocfs2_xattr_bucket_value_refcount( (unsigned long long)bucket_blkno(bucket), le16_to_cpu(xh->xh_count)); for (i = 0; i < le16_to_cpu(xh->xh_count); i++) { xe = &xh->xh_entries[i]; if (ocfs2_xattr_is_local(xe)) continue; ret = ocfs2_get_xattr_tree_value_root(inode->i_sb, bucket, i, &vb.vb_xv, &vb.vb_bh); if (ret) { mlog_errno(ret); break; } ocfs2_init_xattr_value_extent_tree(&et, INODE_CACHE(inode), &vb); ret = ocfs2_xattr_value_attach_refcount(inode, vb.vb_xv, &et, ref->ref_ci, ref->ref_root_bh, ref->dealloc, p); if (ret) { mlog_errno(ret); break; } } return ret; } static int ocfs2_refcount_xattr_tree_rec(struct inode *inode, struct buffer_head *root_bh, u64 blkno, u32 cpos, u32 len, void *para) { return ocfs2_iterate_xattr_buckets(inode, blkno, len, ocfs2_xattr_bucket_value_refcount, para); } static int ocfs2_xattr_block_attach_refcount(struct inode *inode, struct buffer_head *blk_bh, struct ocfs2_caching_info *ref_ci, struct buffer_head *ref_root_bh, struct ocfs2_cached_dealloc_ctxt *dealloc) { int ret = 0; struct ocfs2_xattr_block *xb = (struct ocfs2_xattr_block *)blk_bh->b_data; if (!(le16_to_cpu(xb->xb_flags) & OCFS2_XATTR_INDEXED)) { struct ocfs2_xattr_header *header = &xb->xb_attrs.xb_header; struct ocfs2_xattr_value_buf vb = { .vb_bh = blk_bh, .vb_access = ocfs2_journal_access_xb, }; ret = ocfs2_xattr_attach_refcount_normal(inode, &vb, header, ref_ci, ref_root_bh, dealloc); } else { struct ocfs2_xattr_tree_value_refcount_para para = { .ref_ci = ref_ci, .ref_root_bh = ref_root_bh, .dealloc = dealloc, }; ret = ocfs2_iterate_xattr_index_block(inode, blk_bh, ocfs2_refcount_xattr_tree_rec, ¶); } return ret; } int ocfs2_xattr_attach_refcount_tree(struct inode *inode, struct buffer_head *fe_bh, struct ocfs2_caching_info *ref_ci, struct buffer_head *ref_root_bh, struct ocfs2_cached_dealloc_ctxt *dealloc) { int ret = 0; struct ocfs2_inode_info *oi = OCFS2_I(inode); struct ocfs2_dinode *di = (struct ocfs2_dinode *)fe_bh->b_data; struct buffer_head *blk_bh = NULL; if (oi->ip_dyn_features & OCFS2_INLINE_XATTR_FL) { ret = ocfs2_xattr_inline_attach_refcount(inode, fe_bh, ref_ci, ref_root_bh, dealloc); if (ret) { mlog_errno(ret); goto out; } } if (!di->i_xattr_loc) goto out; ret = ocfs2_read_xattr_block(inode, le64_to_cpu(di->i_xattr_loc), &blk_bh); if (ret < 0) { mlog_errno(ret); goto out; } ret = ocfs2_xattr_block_attach_refcount(inode, blk_bh, ref_ci, ref_root_bh, dealloc); if (ret) mlog_errno(ret); brelse(blk_bh); out: return ret; } typedef int (should_xattr_reflinked)(struct ocfs2_xattr_entry *xe); /* * Store the information we need in xattr reflink. * old_bh and new_bh are inode bh for the old and new inode. */ struct ocfs2_xattr_reflink { struct inode *old_inode; struct inode *new_inode; struct buffer_head *old_bh; struct buffer_head *new_bh; struct ocfs2_caching_info *ref_ci; struct buffer_head *ref_root_bh; struct ocfs2_cached_dealloc_ctxt *dealloc; should_xattr_reflinked *xattr_reflinked; }; /* * Given a xattr header and xe offset, * return the proper xv and the corresponding bh. * xattr in inode, block and xattr tree have different implementaions. */ typedef int (get_xattr_value_root)(struct super_block *sb, struct buffer_head *bh, struct ocfs2_xattr_header *xh, int offset, struct ocfs2_xattr_value_root **xv, struct buffer_head **ret_bh, void *para); /* * Calculate all the xattr value root metadata stored in this xattr header and * credits we need if we create them from the scratch. * We use get_xattr_value_root so that all types of xattr container can use it. */ static int ocfs2_value_metas_in_xattr_header(struct super_block *sb, struct buffer_head *bh, struct ocfs2_xattr_header *xh, int *metas, int *credits, int *num_recs, get_xattr_value_root *func, void *para) { int i, ret = 0; struct ocfs2_xattr_value_root *xv; struct ocfs2_xattr_entry *xe; for (i = 0; i < le16_to_cpu(xh->xh_count); i++) { xe = &xh->xh_entries[i]; if (ocfs2_xattr_is_local(xe)) continue; ret = func(sb, bh, xh, i, &xv, NULL, para); if (ret) { mlog_errno(ret); break; } *metas += le16_to_cpu(xv->xr_list.l_tree_depth) * le16_to_cpu(xv->xr_list.l_next_free_rec); *credits += ocfs2_calc_extend_credits(sb, &def_xv.xv.xr_list, le32_to_cpu(xv->xr_clusters)); /* * If the value is a tree with depth > 1, We don't go deep * to the extent block, so just calculate a maximum record num. */ if (!xv->xr_list.l_tree_depth) *num_recs += le16_to_cpu(xv->xr_list.l_next_free_rec); else *num_recs += ocfs2_clusters_for_bytes(sb, XATTR_SIZE_MAX); } return ret; } /* Used by xattr inode and block to return the right xv and buffer_head. */ static int ocfs2_get_xattr_value_root(struct super_block *sb, struct buffer_head *bh, struct ocfs2_xattr_header *xh, int offset, struct ocfs2_xattr_value_root **xv, struct buffer_head **ret_bh, void *para) { struct ocfs2_xattr_entry *xe = &xh->xh_entries[offset]; *xv = (struct ocfs2_xattr_value_root *)((void *)xh + le16_to_cpu(xe->xe_name_offset) + OCFS2_XATTR_SIZE(xe->xe_name_len)); if (ret_bh) *ret_bh = bh; return 0; } /* * Lock the meta_ac and caculate how much credits we need for reflink xattrs. * It is only used for inline xattr and xattr block. */ static int ocfs2_reflink_lock_xattr_allocators(struct ocfs2_super *osb, struct ocfs2_xattr_header *xh, struct buffer_head *ref_root_bh, int *credits, struct ocfs2_alloc_context **meta_ac) { int ret, meta_add = 0, num_recs = 0; struct ocfs2_refcount_block *rb = (struct ocfs2_refcount_block *)ref_root_bh->b_data; *credits = 0; ret = ocfs2_value_metas_in_xattr_header(osb->sb, NULL, xh, &meta_add, credits, &num_recs, ocfs2_get_xattr_value_root, NULL); if (ret) { mlog_errno(ret); goto out; } /* * We need to add/modify num_recs in refcount tree, so just calculate * an approximate number we need for refcount tree change. * Sometimes we need to split the tree, and after split, half recs * will be moved to the new block, and a new block can only provide * half number of recs. So we multiple new blocks by 2. */ num_recs = num_recs / ocfs2_refcount_recs_per_rb(osb->sb) * 2; meta_add += num_recs; *credits += num_recs + num_recs * OCFS2_EXPAND_REFCOUNT_TREE_CREDITS; if (le32_to_cpu(rb->rf_flags) & OCFS2_REFCOUNT_TREE_FL) *credits += le16_to_cpu(rb->rf_list.l_tree_depth) * le16_to_cpu(rb->rf_list.l_next_free_rec) + 1; else *credits += 1; ret = ocfs2_reserve_new_metadata_blocks(osb, meta_add, meta_ac); if (ret) mlog_errno(ret); out: return ret; } /* * Given a xattr header, reflink all the xattrs in this container. * It can be used for inode, block and bucket. * * NOTE: * Before we call this function, the caller has memcpy the xattr in * old_xh to the new_xh. * * If args.xattr_reflinked is set, call it to decide whether the xe should * be reflinked or not. If not, remove it from the new xattr header. */ static int ocfs2_reflink_xattr_header(handle_t *handle, struct ocfs2_xattr_reflink *args, struct buffer_head *old_bh, struct ocfs2_xattr_header *xh, struct buffer_head *new_bh, struct ocfs2_xattr_header *new_xh, struct ocfs2_xattr_value_buf *vb, struct ocfs2_alloc_context *meta_ac, get_xattr_value_root *func, void *para) { int ret = 0, i, j; struct super_block *sb = args->old_inode->i_sb; struct buffer_head *value_bh; struct ocfs2_xattr_entry *xe, *last; struct ocfs2_xattr_value_root *xv, *new_xv; struct ocfs2_extent_tree data_et; u32 clusters, cpos, p_cluster, num_clusters; unsigned int ext_flags = 0; trace_ocfs2_reflink_xattr_header((unsigned long long)old_bh->b_blocknr, le16_to_cpu(xh->xh_count)); last = &new_xh->xh_entries[le16_to_cpu(new_xh->xh_count)]; for (i = 0, j = 0; i < le16_to_cpu(xh->xh_count); i++, j++) { xe = &xh->xh_entries[i]; if (args->xattr_reflinked && !args->xattr_reflinked(xe)) { xe = &new_xh->xh_entries[j]; le16_add_cpu(&new_xh->xh_count, -1); if (new_xh->xh_count) { memmove(xe, xe + 1, (void *)last - (void *)xe); memset(last, 0, sizeof(struct ocfs2_xattr_entry)); } /* * We don't want j to increase in the next round since * it is already moved ahead. */ j--; continue; } if (ocfs2_xattr_is_local(xe)) continue; ret = func(sb, old_bh, xh, i, &xv, NULL, para); if (ret) { mlog_errno(ret); break; } ret = func(sb, new_bh, new_xh, j, &new_xv, &value_bh, para); if (ret) { mlog_errno(ret); break; } /* * For the xattr which has l_tree_depth = 0, all the extent * recs have already be copied to the new xh with the * propriate OCFS2_EXT_REFCOUNTED flag we just need to * increase the refount count int the refcount tree. * * For the xattr which has l_tree_depth > 0, we need * to initialize it to the empty default value root, * and then insert the extents one by one. */ if (xv->xr_list.l_tree_depth) { memcpy(new_xv, &def_xv, sizeof(def_xv)); vb->vb_xv = new_xv; vb->vb_bh = value_bh; ocfs2_init_xattr_value_extent_tree(&data_et, INODE_CACHE(args->new_inode), vb); } clusters = le32_to_cpu(xv->xr_clusters); cpos = 0; while (cpos < clusters) { ret = ocfs2_xattr_get_clusters(args->old_inode, cpos, &p_cluster, &num_clusters, &xv->xr_list, &ext_flags); if (ret) { mlog_errno(ret); goto out; } BUG_ON(!p_cluster); if (xv->xr_list.l_tree_depth) { ret = ocfs2_insert_extent(handle, &data_et, cpos, ocfs2_clusters_to_blocks( args->old_inode->i_sb, p_cluster), num_clusters, ext_flags, meta_ac); if (ret) { mlog_errno(ret); goto out; } } ret = ocfs2_increase_refcount(handle, args->ref_ci, args->ref_root_bh, p_cluster, num_clusters, meta_ac, args->dealloc); if (ret) { mlog_errno(ret); goto out; } cpos += num_clusters; } } out: return ret; } static int ocfs2_reflink_xattr_inline(struct ocfs2_xattr_reflink *args) { int ret = 0, credits = 0; handle_t *handle; struct ocfs2_super *osb = OCFS2_SB(args->old_inode->i_sb); struct ocfs2_dinode *di = (struct ocfs2_dinode *)args->old_bh->b_data; int inline_size = le16_to_cpu(di->i_xattr_inline_size); int header_off = osb->sb->s_blocksize - inline_size; struct ocfs2_xattr_header *xh = (struct ocfs2_xattr_header *) (args->old_bh->b_data + header_off); struct ocfs2_xattr_header *new_xh = (struct ocfs2_xattr_header *) (args->new_bh->b_data + header_off); struct ocfs2_alloc_context *meta_ac = NULL; struct ocfs2_inode_info *new_oi; struct ocfs2_dinode *new_di; struct ocfs2_xattr_value_buf vb = { .vb_bh = args->new_bh, .vb_access = ocfs2_journal_access_di, }; ret = ocfs2_reflink_lock_xattr_allocators(osb, xh, args->ref_root_bh, &credits, &meta_ac); if (ret) { mlog_errno(ret); goto out; } handle = ocfs2_start_trans(osb, credits); if (IS_ERR(handle)) { ret = PTR_ERR(handle); mlog_errno(ret); goto out; } ret = ocfs2_journal_access_di(handle, INODE_CACHE(args->new_inode), args->new_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out_commit; } memcpy(args->new_bh->b_data + header_off, args->old_bh->b_data + header_off, inline_size); new_di = (struct ocfs2_dinode *)args->new_bh->b_data; new_di->i_xattr_inline_size = cpu_to_le16(inline_size); ret = ocfs2_reflink_xattr_header(handle, args, args->old_bh, xh, args->new_bh, new_xh, &vb, meta_ac, ocfs2_get_xattr_value_root, NULL); if (ret) { mlog_errno(ret); goto out_commit; } new_oi = OCFS2_I(args->new_inode); spin_lock(&new_oi->ip_lock); new_oi->ip_dyn_features |= OCFS2_HAS_XATTR_FL | OCFS2_INLINE_XATTR_FL; new_di->i_dyn_features = cpu_to_le16(new_oi->ip_dyn_features); spin_unlock(&new_oi->ip_lock); ocfs2_journal_dirty(handle, args->new_bh); out_commit: ocfs2_commit_trans(osb, handle); out: if (meta_ac) ocfs2_free_alloc_context(meta_ac); return ret; } static int ocfs2_create_empty_xattr_block(struct inode *inode, struct buffer_head *fe_bh, struct buffer_head **ret_bh, int indexed) { int ret; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct ocfs2_xattr_set_ctxt ctxt; memset(&ctxt, 0, sizeof(ctxt)); ret = ocfs2_reserve_new_metadata_blocks(osb, 1, &ctxt.meta_ac); if (ret < 0) { mlog_errno(ret); return ret; } ctxt.handle = ocfs2_start_trans(osb, OCFS2_XATTR_BLOCK_CREATE_CREDITS); if (IS_ERR(ctxt.handle)) { ret = PTR_ERR(ctxt.handle); mlog_errno(ret); goto out; } trace_ocfs2_create_empty_xattr_block( (unsigned long long)fe_bh->b_blocknr, indexed); ret = ocfs2_create_xattr_block(inode, fe_bh, &ctxt, indexed, ret_bh); if (ret) mlog_errno(ret); ocfs2_commit_trans(osb, ctxt.handle); out: ocfs2_free_alloc_context(ctxt.meta_ac); return ret; } static int ocfs2_reflink_xattr_block(struct ocfs2_xattr_reflink *args, struct buffer_head *blk_bh, struct buffer_head *new_blk_bh) { int ret = 0, credits = 0; handle_t *handle; struct ocfs2_inode_info *new_oi = OCFS2_I(args->new_inode); struct ocfs2_dinode *new_di; struct ocfs2_super *osb = OCFS2_SB(args->new_inode->i_sb); int header_off = offsetof(struct ocfs2_xattr_block, xb_attrs.xb_header); struct ocfs2_xattr_block *xb = (struct ocfs2_xattr_block *)blk_bh->b_data; struct ocfs2_xattr_header *xh = &xb->xb_attrs.xb_header; struct ocfs2_xattr_block *new_xb = (struct ocfs2_xattr_block *)new_blk_bh->b_data; struct ocfs2_xattr_header *new_xh = &new_xb->xb_attrs.xb_header; struct ocfs2_alloc_context *meta_ac; struct ocfs2_xattr_value_buf vb = { .vb_bh = new_blk_bh, .vb_access = ocfs2_journal_access_xb, }; ret = ocfs2_reflink_lock_xattr_allocators(osb, xh, args->ref_root_bh, &credits, &meta_ac); if (ret) { mlog_errno(ret); return ret; } /* One more credits in case we need to add xattr flags in new inode. */ handle = ocfs2_start_trans(osb, credits + 1); if (IS_ERR(handle)) { ret = PTR_ERR(handle); mlog_errno(ret); goto out; } if (!(new_oi->ip_dyn_features & OCFS2_HAS_XATTR_FL)) { ret = ocfs2_journal_access_di(handle, INODE_CACHE(args->new_inode), args->new_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out_commit; } } ret = ocfs2_journal_access_xb(handle, INODE_CACHE(args->new_inode), new_blk_bh, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); goto out_commit; } memcpy(new_blk_bh->b_data + header_off, blk_bh->b_data + header_off, osb->sb->s_blocksize - header_off); ret = ocfs2_reflink_xattr_header(handle, args, blk_bh, xh, new_blk_bh, new_xh, &vb, meta_ac, ocfs2_get_xattr_value_root, NULL); if (ret) { mlog_errno(ret); goto out_commit; } ocfs2_journal_dirty(handle, new_blk_bh); if (!(new_oi->ip_dyn_features & OCFS2_HAS_XATTR_FL)) { new_di = (struct ocfs2_dinode *)args->new_bh->b_data; spin_lock(&new_oi->ip_lock); new_oi->ip_dyn_features |= OCFS2_HAS_XATTR_FL; new_di->i_dyn_features = cpu_to_le16(new_oi->ip_dyn_features); spin_unlock(&new_oi->ip_lock); ocfs2_journal_dirty(handle, args->new_bh); } out_commit: ocfs2_commit_trans(osb, handle); out: ocfs2_free_alloc_context(meta_ac); return ret; } struct ocfs2_reflink_xattr_tree_args { struct ocfs2_xattr_reflink *reflink; struct buffer_head *old_blk_bh; struct buffer_head *new_blk_bh; struct ocfs2_xattr_bucket *old_bucket; struct ocfs2_xattr_bucket *new_bucket; }; /* * NOTE: * We have to handle the case that both old bucket and new bucket * will call this function to get the right ret_bh. * So The caller must give us the right bh. */ static int ocfs2_get_reflink_xattr_value_root(struct super_block *sb, struct buffer_head *bh, struct ocfs2_xattr_header *xh, int offset, struct ocfs2_xattr_value_root **xv, struct buffer_head **ret_bh, void *para) { struct ocfs2_reflink_xattr_tree_args *args = (struct ocfs2_reflink_xattr_tree_args *)para; struct ocfs2_xattr_bucket *bucket; if (bh == args->old_bucket->bu_bhs[0]) bucket = args->old_bucket; else bucket = args->new_bucket; return ocfs2_get_xattr_tree_value_root(sb, bucket, offset, xv, ret_bh); } struct ocfs2_value_tree_metas { int num_metas; int credits; int num_recs; }; static int ocfs2_value_tree_metas_in_bucket(struct super_block *sb, struct buffer_head *bh, struct ocfs2_xattr_header *xh, int offset, struct ocfs2_xattr_value_root **xv, struct buffer_head **ret_bh, void *para) { struct ocfs2_xattr_bucket *bucket = (struct ocfs2_xattr_bucket *)para; return ocfs2_get_xattr_tree_value_root(sb, bucket, offset, xv, ret_bh); } static int ocfs2_calc_value_tree_metas(struct inode *inode, struct ocfs2_xattr_bucket *bucket, void *para) { struct ocfs2_value_tree_metas *metas = (struct ocfs2_value_tree_metas *)para; struct ocfs2_xattr_header *xh = (struct ocfs2_xattr_header *)bucket->bu_bhs[0]->b_data; /* Add the credits for this bucket first. */ metas->credits += bucket->bu_blocks; return ocfs2_value_metas_in_xattr_header(inode->i_sb, bucket->bu_bhs[0], xh, &metas->num_metas, &metas->credits, &metas->num_recs, ocfs2_value_tree_metas_in_bucket, bucket); } /* * Given a xattr extent rec starting from blkno and having len clusters, * iterate all the buckets calculate how much metadata we need for reflinking * all the ocfs2_xattr_value_root and lock the allocators accordingly. */ static int ocfs2_lock_reflink_xattr_rec_allocators( struct ocfs2_reflink_xattr_tree_args *args, struct ocfs2_extent_tree *xt_et, u64 blkno, u32 len, int *credits, struct ocfs2_alloc_context **meta_ac, struct ocfs2_alloc_context **data_ac) { int ret, num_free_extents; struct ocfs2_value_tree_metas metas; struct ocfs2_super *osb = OCFS2_SB(args->reflink->old_inode->i_sb); struct ocfs2_refcount_block *rb; memset(&metas, 0, sizeof(metas)); ret = ocfs2_iterate_xattr_buckets(args->reflink->old_inode, blkno, len, ocfs2_calc_value_tree_metas, &metas); if (ret) { mlog_errno(ret); goto out; } *credits = metas.credits; /* * Calculate we need for refcount tree change. * * We need to add/modify num_recs in refcount tree, so just calculate * an approximate number we need for refcount tree change. * Sometimes we need to split the tree, and after split, half recs * will be moved to the new block, and a new block can only provide * half number of recs. So we multiple new blocks by 2. * In the end, we have to add credits for modifying the already * existed refcount block. */ rb = (struct ocfs2_refcount_block *)args->reflink->ref_root_bh->b_data; metas.num_recs = (metas.num_recs + ocfs2_refcount_recs_per_rb(osb->sb) - 1) / ocfs2_refcount_recs_per_rb(osb->sb) * 2; metas.num_metas += metas.num_recs; *credits += metas.num_recs + metas.num_recs * OCFS2_EXPAND_REFCOUNT_TREE_CREDITS; if (le32_to_cpu(rb->rf_flags) & OCFS2_REFCOUNT_TREE_FL) *credits += le16_to_cpu(rb->rf_list.l_tree_depth) * le16_to_cpu(rb->rf_list.l_next_free_rec) + 1; else *credits += 1; /* count in the xattr tree change. */ num_free_extents = ocfs2_num_free_extents(osb, xt_et); if (num_free_extents < 0) { ret = num_free_extents; mlog_errno(ret); goto out; } if (num_free_extents < len) metas.num_metas += ocfs2_extend_meta_needed(xt_et->et_root_el); *credits += ocfs2_calc_extend_credits(osb->sb, xt_et->et_root_el, len); if (metas.num_metas) { ret = ocfs2_reserve_new_metadata_blocks(osb, metas.num_metas, meta_ac); if (ret) { mlog_errno(ret); goto out; } } if (len) { ret = ocfs2_reserve_clusters(osb, len, data_ac); if (ret) mlog_errno(ret); } out: if (ret) { if (*meta_ac) { ocfs2_free_alloc_context(*meta_ac); meta_ac = NULL; } } return ret; } static int ocfs2_reflink_xattr_bucket(handle_t *handle, u64 blkno, u64 new_blkno, u32 clusters, u32 *cpos, int num_buckets, struct ocfs2_alloc_context *meta_ac, struct ocfs2_alloc_context *data_ac, struct ocfs2_reflink_xattr_tree_args *args) { int i, j, ret = 0; struct super_block *sb = args->reflink->old_inode->i_sb; int bpb = args->old_bucket->bu_blocks; struct ocfs2_xattr_value_buf vb = { .vb_access = ocfs2_journal_access, }; for (i = 0; i < num_buckets; i++, blkno += bpb, new_blkno += bpb) { ret = ocfs2_read_xattr_bucket(args->old_bucket, blkno); if (ret) { mlog_errno(ret); break; } ret = ocfs2_init_xattr_bucket(args->new_bucket, new_blkno); if (ret) { mlog_errno(ret); break; } ret = ocfs2_xattr_bucket_journal_access(handle, args->new_bucket, OCFS2_JOURNAL_ACCESS_CREATE); if (ret) { mlog_errno(ret); break; } for (j = 0; j < bpb; j++) memcpy(bucket_block(args->new_bucket, j), bucket_block(args->old_bucket, j), sb->s_blocksize); /* * Record the start cpos so that we can use it to initialize * our xattr tree we also set the xh_num_bucket for the new * bucket. */ if (i == 0) { *cpos = le32_to_cpu(bucket_xh(args->new_bucket)-> xh_entries[0].xe_name_hash); bucket_xh(args->new_bucket)->xh_num_buckets = cpu_to_le16(num_buckets); } ocfs2_xattr_bucket_journal_dirty(handle, args->new_bucket); ret = ocfs2_reflink_xattr_header(handle, args->reflink, args->old_bucket->bu_bhs[0], bucket_xh(args->old_bucket), args->new_bucket->bu_bhs[0], bucket_xh(args->new_bucket), &vb, meta_ac, ocfs2_get_reflink_xattr_value_root, args); if (ret) { mlog_errno(ret); break; } /* * Re-access and dirty the bucket to calculate metaecc. * Because we may extend the transaction in reflink_xattr_header * which will let the already accessed block gone. */ ret = ocfs2_xattr_bucket_journal_access(handle, args->new_bucket, OCFS2_JOURNAL_ACCESS_WRITE); if (ret) { mlog_errno(ret); break; } ocfs2_xattr_bucket_journal_dirty(handle, args->new_bucket); ocfs2_xattr_bucket_relse(args->old_bucket); ocfs2_xattr_bucket_relse(args->new_bucket); } ocfs2_xattr_bucket_relse(args->old_bucket); ocfs2_xattr_bucket_relse(args->new_bucket); return ret; } static int ocfs2_reflink_xattr_buckets(handle_t *handle, struct inode *inode, struct ocfs2_reflink_xattr_tree_args *args, struct ocfs2_extent_tree *et, struct ocfs2_alloc_context *meta_ac, struct ocfs2_alloc_context *data_ac, u64 blkno, u32 cpos, u32 len) { int ret, first_inserted = 0; u32 p_cluster, num_clusters, reflink_cpos = 0; u64 new_blkno; unsigned int num_buckets, reflink_buckets; unsigned int bpc = ocfs2_xattr_buckets_per_cluster(OCFS2_SB(inode->i_sb)); ret = ocfs2_read_xattr_bucket(args->old_bucket, blkno); if (ret) { mlog_errno(ret); goto out; } num_buckets = le16_to_cpu(bucket_xh(args->old_bucket)->xh_num_buckets); ocfs2_xattr_bucket_relse(args->old_bucket); while (len && num_buckets) { ret = ocfs2_claim_clusters(handle, data_ac, 1, &p_cluster, &num_clusters); if (ret) { mlog_errno(ret); goto out; } new_blkno = ocfs2_clusters_to_blocks(inode->i_sb, p_cluster); reflink_buckets = min(num_buckets, bpc * num_clusters); ret = ocfs2_reflink_xattr_bucket(handle, blkno, new_blkno, num_clusters, &reflink_cpos, reflink_buckets, meta_ac, data_ac, args); if (ret) { mlog_errno(ret); goto out; } /* * For the 1st allocated cluster, we make it use the same cpos * so that the xattr tree looks the same as the original one * in the most case. */ if (!first_inserted) { reflink_cpos = cpos; first_inserted = 1; } ret = ocfs2_insert_extent(handle, et, reflink_cpos, new_blkno, num_clusters, 0, meta_ac); if (ret) mlog_errno(ret); trace_ocfs2_reflink_xattr_buckets((unsigned long long)new_blkno, num_clusters, reflink_cpos); len -= num_clusters; blkno += ocfs2_clusters_to_blocks(inode->i_sb, num_clusters); num_buckets -= reflink_buckets; } out: return ret; } /* * Create the same xattr extent record in the new inode's xattr tree. */ static int ocfs2_reflink_xattr_rec(struct inode *inode, struct buffer_head *root_bh, u64 blkno, u32 cpos, u32 len, void *para) { int ret, credits = 0; handle_t *handle; struct ocfs2_reflink_xattr_tree_args *args = (struct ocfs2_reflink_xattr_tree_args *)para; struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); struct ocfs2_alloc_context *meta_ac = NULL; struct ocfs2_alloc_context *data_ac = NULL; struct ocfs2_extent_tree et; trace_ocfs2_reflink_xattr_rec((unsigned long long)blkno, len); ocfs2_init_xattr_tree_extent_tree(&et, INODE_CACHE(args->reflink->new_inode), args->new_blk_bh); ret = ocfs2_lock_reflink_xattr_rec_allocators(args, &et, blkno, len, &credits, &meta_ac, &data_ac); if (ret) { mlog_errno(ret); goto out; } handle = ocfs2_start_trans(osb, credits); if (IS_ERR(handle)) { ret = PTR_ERR(handle); mlog_errno(ret); goto out; } ret = ocfs2_reflink_xattr_buckets(handle, inode, args, &et, meta_ac, data_ac, blkno, cpos, len); if (ret) mlog_errno(ret); ocfs2_commit_trans(osb, handle); out: if (meta_ac) ocfs2_free_alloc_context(meta_ac); if (data_ac) ocfs2_free_alloc_context(data_ac); return ret; } /* * Create reflinked xattr buckets. * We will add bucket one by one, and refcount all the xattrs in the bucket * if they are stored outside. */ static int ocfs2_reflink_xattr_tree(struct ocfs2_xattr_reflink *args, struct buffer_head *blk_bh, struct buffer_head *new_blk_bh) { int ret; struct ocfs2_reflink_xattr_tree_args para; memset(¶, 0, sizeof(para)); para.reflink = args; para.old_blk_bh = blk_bh; para.new_blk_bh = new_blk_bh; para.old_bucket = ocfs2_xattr_bucket_new(args->old_inode); if (!para.old_bucket) { mlog_errno(-ENOMEM); return -ENOMEM; } para.new_bucket = ocfs2_xattr_bucket_new(args->new_inode); if (!para.new_bucket) { ret = -ENOMEM; mlog_errno(ret); goto out; } ret = ocfs2_iterate_xattr_index_block(args->old_inode, blk_bh, ocfs2_reflink_xattr_rec, ¶); if (ret) mlog_errno(ret); out: ocfs2_xattr_bucket_free(para.old_bucket); ocfs2_xattr_bucket_free(para.new_bucket); return ret; } static int ocfs2_reflink_xattr_in_block(struct ocfs2_xattr_reflink *args, struct buffer_head *blk_bh) { int ret, indexed = 0; struct buffer_head *new_blk_bh = NULL; struct ocfs2_xattr_block *xb = (struct ocfs2_xattr_block *)blk_bh->b_data; if (le16_to_cpu(xb->xb_flags) & OCFS2_XATTR_INDEXED) indexed = 1; ret = ocfs2_create_empty_xattr_block(args->new_inode, args->new_bh, &new_blk_bh, indexed); if (ret) { mlog_errno(ret); goto out; } if (!indexed) ret = ocfs2_reflink_xattr_block(args, blk_bh, new_blk_bh); else ret = ocfs2_reflink_xattr_tree(args, blk_bh, new_blk_bh); if (ret) mlog_errno(ret); out: brelse(new_blk_bh); return ret; } static int ocfs2_reflink_xattr_no_security(struct ocfs2_xattr_entry *xe) { int type = ocfs2_xattr_get_type(xe); return type != OCFS2_XATTR_INDEX_SECURITY && type != OCFS2_XATTR_INDEX_POSIX_ACL_ACCESS && type != OCFS2_XATTR_INDEX_POSIX_ACL_DEFAULT; } int ocfs2_reflink_xattrs(struct inode *old_inode, struct buffer_head *old_bh, struct inode *new_inode, struct buffer_head *new_bh, bool preserve_security) { int ret; struct ocfs2_xattr_reflink args; struct ocfs2_inode_info *oi = OCFS2_I(old_inode); struct ocfs2_dinode *di = (struct ocfs2_dinode *)old_bh->b_data; struct buffer_head *blk_bh = NULL; struct ocfs2_cached_dealloc_ctxt dealloc; struct ocfs2_refcount_tree *ref_tree; struct buffer_head *ref_root_bh = NULL; ret = ocfs2_lock_refcount_tree(OCFS2_SB(old_inode->i_sb), le64_to_cpu(di->i_refcount_loc), 1, &ref_tree, &ref_root_bh); if (ret) { mlog_errno(ret); goto out; } ocfs2_init_dealloc_ctxt(&dealloc); args.old_inode = old_inode; args.new_inode = new_inode; args.old_bh = old_bh; args.new_bh = new_bh; args.ref_ci = &ref_tree->rf_ci; args.ref_root_bh = ref_root_bh; args.dealloc = &dealloc; if (preserve_security) args.xattr_reflinked = NULL; else args.xattr_reflinked = ocfs2_reflink_xattr_no_security; if (oi->ip_dyn_features & OCFS2_INLINE_XATTR_FL) { ret = ocfs2_reflink_xattr_inline(&args); if (ret) { mlog_errno(ret); goto out_unlock; } } if (!di->i_xattr_loc) goto out_unlock; ret = ocfs2_read_xattr_block(old_inode, le64_to_cpu(di->i_xattr_loc), &blk_bh); if (ret < 0) { mlog_errno(ret); goto out_unlock; } ret = ocfs2_reflink_xattr_in_block(&args, blk_bh); if (ret) mlog_errno(ret); brelse(blk_bh); out_unlock: ocfs2_unlock_refcount_tree(OCFS2_SB(old_inode->i_sb), ref_tree, 1); brelse(ref_root_bh); if (ocfs2_dealloc_has_cluster(&dealloc)) { ocfs2_schedule_truncate_log_flush(OCFS2_SB(old_inode->i_sb), 1); ocfs2_run_deallocs(OCFS2_SB(old_inode->i_sb), &dealloc); } out: return ret; } /* * Initialize security and acl for a already created inode. * Used for reflink a non-preserve-security file. * * It uses common api like ocfs2_xattr_set, so the caller * must not hold any lock expect i_mutex. */ int ocfs2_init_security_and_acl(struct inode *dir, struct inode *inode, const struct qstr *qstr) { int ret = 0; struct buffer_head *dir_bh = NULL; ret = ocfs2_init_security_get(inode, dir, qstr, NULL); if (!ret) { mlog_errno(ret); goto leave; } ret = ocfs2_inode_lock(dir, &dir_bh, 0); if (ret) { mlog_errno(ret); goto leave; } ret = ocfs2_init_acl(NULL, inode, dir, NULL, dir_bh, NULL, NULL); if (ret) mlog_errno(ret); ocfs2_inode_unlock(dir, 0); brelse(dir_bh); leave: return ret; } /* * 'security' attributes support */ static size_t ocfs2_xattr_security_list(struct dentry *dentry, char *list, size_t list_size, const char *name, size_t name_len, int type) { const size_t prefix_len = XATTR_SECURITY_PREFIX_LEN; const size_t total_len = prefix_len + name_len + 1; if (list && total_len <= list_size) { memcpy(list, XATTR_SECURITY_PREFIX, prefix_len); memcpy(list + prefix_len, name, name_len); list[prefix_len + name_len] = '\0'; } return total_len; } static int ocfs2_xattr_security_get(struct dentry *dentry, const char *name, void *buffer, size_t size, int type) { if (strcmp(name, "") == 0) return -EINVAL; return ocfs2_xattr_get(dentry->d_inode, OCFS2_XATTR_INDEX_SECURITY, name, buffer, size); } static int ocfs2_xattr_security_set(struct dentry *dentry, const char *name, const void *value, size_t size, int flags, int type) { if (strcmp(name, "") == 0) return -EINVAL; return ocfs2_xattr_set(dentry->d_inode, OCFS2_XATTR_INDEX_SECURITY, name, value, size, flags); } int ocfs2_initxattrs(struct inode *inode, const struct xattr *xattr_array, void *fs_info) { const struct xattr *xattr; int err = 0; for (xattr = xattr_array; xattr->name != NULL; xattr++) { err = ocfs2_xattr_set(inode, OCFS2_XATTR_INDEX_SECURITY, xattr->name, xattr->value, xattr->value_len, XATTR_CREATE); if (err) break; } return err; } int ocfs2_init_security_get(struct inode *inode, struct inode *dir, const struct qstr *qstr, struct ocfs2_security_xattr_info *si) { /* check whether ocfs2 support feature xattr */ if (!ocfs2_supports_xattr(OCFS2_SB(dir->i_sb))) return -EOPNOTSUPP; if (si) return security_old_inode_init_security(inode, dir, qstr, &si->name, &si->value, &si->value_len); return security_inode_init_security(inode, dir, qstr, &ocfs2_initxattrs, NULL); } int ocfs2_init_security_set(handle_t *handle, struct inode *inode, struct buffer_head *di_bh, struct ocfs2_security_xattr_info *si, struct ocfs2_alloc_context *xattr_ac, struct ocfs2_alloc_context *data_ac) { return ocfs2_xattr_set_handle(handle, inode, di_bh, OCFS2_XATTR_INDEX_SECURITY, si->name, si->value, si->value_len, 0, xattr_ac, data_ac); } const struct xattr_handler ocfs2_xattr_security_handler = { .prefix = XATTR_SECURITY_PREFIX, .list = ocfs2_xattr_security_list, .get = ocfs2_xattr_security_get, .set = ocfs2_xattr_security_set, }; /* * 'trusted' attributes support */ static size_t ocfs2_xattr_trusted_list(struct dentry *dentry, char *list, size_t list_size, const char *name, size_t name_len, int type) { const size_t prefix_len = XATTR_TRUSTED_PREFIX_LEN; const size_t total_len = prefix_len + name_len + 1; if (list && total_len <= list_size) { memcpy(list, XATTR_TRUSTED_PREFIX, prefix_len); memcpy(list + prefix_len, name, name_len); list[prefix_len + name_len] = '\0'; } return total_len; } static int ocfs2_xattr_trusted_get(struct dentry *dentry, const char *name, void *buffer, size_t size, int type) { if (strcmp(name, "") == 0) return -EINVAL; return ocfs2_xattr_get(dentry->d_inode, OCFS2_XATTR_INDEX_TRUSTED, name, buffer, size); } static int ocfs2_xattr_trusted_set(struct dentry *dentry, const char *name, const void *value, size_t size, int flags, int type) { if (strcmp(name, "") == 0) return -EINVAL; return ocfs2_xattr_set(dentry->d_inode, OCFS2_XATTR_INDEX_TRUSTED, name, value, size, flags); } const struct xattr_handler ocfs2_xattr_trusted_handler = { .prefix = XATTR_TRUSTED_PREFIX, .list = ocfs2_xattr_trusted_list, .get = ocfs2_xattr_trusted_get, .set = ocfs2_xattr_trusted_set, }; /* * 'user' attributes support */ static size_t ocfs2_xattr_user_list(struct dentry *dentry, char *list, size_t list_size, const char *name, size_t name_len, int type) { const size_t prefix_len = XATTR_USER_PREFIX_LEN; const size_t total_len = prefix_len + name_len + 1; struct ocfs2_super *osb = OCFS2_SB(dentry->d_sb); if (osb->s_mount_opt & OCFS2_MOUNT_NOUSERXATTR) return 0; if (list && total_len <= list_size) { memcpy(list, XATTR_USER_PREFIX, prefix_len); memcpy(list + prefix_len, name, name_len); list[prefix_len + name_len] = '\0'; } return total_len; } static int ocfs2_xattr_user_get(struct dentry *dentry, const char *name, void *buffer, size_t size, int type) { struct ocfs2_super *osb = OCFS2_SB(dentry->d_sb); if (strcmp(name, "") == 0) return -EINVAL; if (osb->s_mount_opt & OCFS2_MOUNT_NOUSERXATTR) return -EOPNOTSUPP; return ocfs2_xattr_get(dentry->d_inode, OCFS2_XATTR_INDEX_USER, name, buffer, size); } static int ocfs2_xattr_user_set(struct dentry *dentry, const char *name, const void *value, size_t size, int flags, int type) { struct ocfs2_super *osb = OCFS2_SB(dentry->d_sb); if (strcmp(name, "") == 0) return -EINVAL; if (osb->s_mount_opt & OCFS2_MOUNT_NOUSERXATTR) return -EOPNOTSUPP; return ocfs2_xattr_set(dentry->d_inode, OCFS2_XATTR_INDEX_USER, name, value, size, flags); } const struct xattr_handler ocfs2_xattr_user_handler = { .prefix = XATTR_USER_PREFIX, .list = ocfs2_xattr_user_list, .get = ocfs2_xattr_user_get, .set = ocfs2_xattr_user_set, };