/* * Copyright (C) 2017 Oracle. All Rights Reserved. * * Author: Darrick J. Wong * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it would be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_shared.h" #include "xfs_format.h" #include "xfs_trans_resv.h" #include "xfs_mount.h" #include "xfs_defer.h" #include "xfs_btree.h" #include "xfs_bit.h" #include "xfs_log_format.h" #include "xfs_trans.h" #include "xfs_sb.h" #include "xfs_inode.h" #include "xfs_icache.h" #include "xfs_itable.h" #include "xfs_alloc.h" #include "xfs_alloc_btree.h" #include "xfs_bmap.h" #include "xfs_bmap_btree.h" #include "xfs_ialloc.h" #include "xfs_ialloc_btree.h" #include "xfs_refcount.h" #include "xfs_refcount_btree.h" #include "xfs_rmap.h" #include "xfs_rmap_btree.h" #include "xfs_log.h" #include "xfs_trans_priv.h" #include "xfs_attr.h" #include "xfs_reflink.h" #include "scrub/xfs_scrub.h" #include "scrub/scrub.h" #include "scrub/common.h" #include "scrub/trace.h" #include "scrub/btree.h" /* Common code for the metadata scrubbers. */ /* * Handling operational errors. * * The *_process_error() family of functions are used to process error return * codes from functions called as part of a scrub operation. * * If there's no error, we return true to tell the caller that it's ok * to move on to the next check in its list. * * For non-verifier errors (e.g. ENOMEM) we return false to tell the * caller that something bad happened, and we preserve *error so that * the caller can return the *error up the stack to userspace. * * Verifier errors (EFSBADCRC/EFSCORRUPTED) are recorded by setting * OFLAG_CORRUPT in sm_flags and the *error is cleared. In other words, * we track verifier errors (and failed scrub checks) via OFLAG_CORRUPT, * not via return codes. We return false to tell the caller that * something bad happened. Since the error has been cleared, the caller * will (presumably) return that zero and scrubbing will move on to * whatever's next. * * ftrace can be used to record the precise metadata location and the * approximate code location of the failed operation. */ /* Check for operational errors. */ static bool __xfs_scrub_process_error( struct xfs_scrub_context *sc, xfs_agnumber_t agno, xfs_agblock_t bno, int *error, __u32 errflag, void *ret_ip) { switch (*error) { case 0: return true; case -EDEADLOCK: /* Used to restart an op with deadlock avoidance. */ trace_xfs_scrub_deadlock_retry(sc->ip, sc->sm, *error); break; case -EFSBADCRC: case -EFSCORRUPTED: /* Note the badness but don't abort. */ sc->sm->sm_flags |= errflag; *error = 0; /* fall through */ default: trace_xfs_scrub_op_error(sc, agno, bno, *error, ret_ip); break; } return false; } bool xfs_scrub_process_error( struct xfs_scrub_context *sc, xfs_agnumber_t agno, xfs_agblock_t bno, int *error) { return __xfs_scrub_process_error(sc, agno, bno, error, XFS_SCRUB_OFLAG_CORRUPT, __return_address); } bool xfs_scrub_xref_process_error( struct xfs_scrub_context *sc, xfs_agnumber_t agno, xfs_agblock_t bno, int *error) { return __xfs_scrub_process_error(sc, agno, bno, error, XFS_SCRUB_OFLAG_XFAIL, __return_address); } /* Check for operational errors for a file offset. */ static bool __xfs_scrub_fblock_process_error( struct xfs_scrub_context *sc, int whichfork, xfs_fileoff_t offset, int *error, __u32 errflag, void *ret_ip) { switch (*error) { case 0: return true; case -EDEADLOCK: /* Used to restart an op with deadlock avoidance. */ trace_xfs_scrub_deadlock_retry(sc->ip, sc->sm, *error); break; case -EFSBADCRC: case -EFSCORRUPTED: /* Note the badness but don't abort. */ sc->sm->sm_flags |= errflag; *error = 0; /* fall through */ default: trace_xfs_scrub_file_op_error(sc, whichfork, offset, *error, ret_ip); break; } return false; } bool xfs_scrub_fblock_process_error( struct xfs_scrub_context *sc, int whichfork, xfs_fileoff_t offset, int *error) { return __xfs_scrub_fblock_process_error(sc, whichfork, offset, error, XFS_SCRUB_OFLAG_CORRUPT, __return_address); } bool xfs_scrub_fblock_xref_process_error( struct xfs_scrub_context *sc, int whichfork, xfs_fileoff_t offset, int *error) { return __xfs_scrub_fblock_process_error(sc, whichfork, offset, error, XFS_SCRUB_OFLAG_XFAIL, __return_address); } /* * Handling scrub corruption/optimization/warning checks. * * The *_set_{corrupt,preen,warning}() family of functions are used to * record the presence of metadata that is incorrect (corrupt), could be * optimized somehow (preen), or should be flagged for administrative * review but is not incorrect (warn). * * ftrace can be used to record the precise metadata location and * approximate code location of the failed check. */ /* Record a block which could be optimized. */ void xfs_scrub_block_set_preen( struct xfs_scrub_context *sc, struct xfs_buf *bp) { sc->sm->sm_flags |= XFS_SCRUB_OFLAG_PREEN; trace_xfs_scrub_block_preen(sc, bp->b_bn, __return_address); } /* * Record an inode which could be optimized. The trace data will * include the block given by bp if bp is given; otherwise it will use * the block location of the inode record itself. */ void xfs_scrub_ino_set_preen( struct xfs_scrub_context *sc, xfs_ino_t ino) { sc->sm->sm_flags |= XFS_SCRUB_OFLAG_PREEN; trace_xfs_scrub_ino_preen(sc, ino, __return_address); } /* Record a corrupt block. */ void xfs_scrub_block_set_corrupt( struct xfs_scrub_context *sc, struct xfs_buf *bp) { sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT; trace_xfs_scrub_block_error(sc, bp->b_bn, __return_address); } /* Record a corruption while cross-referencing. */ void xfs_scrub_block_xref_set_corrupt( struct xfs_scrub_context *sc, struct xfs_buf *bp) { sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT; trace_xfs_scrub_block_error(sc, bp->b_bn, __return_address); } /* * Record a corrupt inode. The trace data will include the block given * by bp if bp is given; otherwise it will use the block location of the * inode record itself. */ void xfs_scrub_ino_set_corrupt( struct xfs_scrub_context *sc, xfs_ino_t ino) { sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT; trace_xfs_scrub_ino_error(sc, ino, __return_address); } /* Record a corruption while cross-referencing with an inode. */ void xfs_scrub_ino_xref_set_corrupt( struct xfs_scrub_context *sc, xfs_ino_t ino) { sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT; trace_xfs_scrub_ino_error(sc, ino, __return_address); } /* Record corruption in a block indexed by a file fork. */ void xfs_scrub_fblock_set_corrupt( struct xfs_scrub_context *sc, int whichfork, xfs_fileoff_t offset) { sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT; trace_xfs_scrub_fblock_error(sc, whichfork, offset, __return_address); } /* Record a corruption while cross-referencing a fork block. */ void xfs_scrub_fblock_xref_set_corrupt( struct xfs_scrub_context *sc, int whichfork, xfs_fileoff_t offset) { sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT; trace_xfs_scrub_fblock_error(sc, whichfork, offset, __return_address); } /* * Warn about inodes that need administrative review but is not * incorrect. */ void xfs_scrub_ino_set_warning( struct xfs_scrub_context *sc, xfs_ino_t ino) { sc->sm->sm_flags |= XFS_SCRUB_OFLAG_WARNING; trace_xfs_scrub_ino_warning(sc, ino, __return_address); } /* Warn about a block indexed by a file fork that needs review. */ void xfs_scrub_fblock_set_warning( struct xfs_scrub_context *sc, int whichfork, xfs_fileoff_t offset) { sc->sm->sm_flags |= XFS_SCRUB_OFLAG_WARNING; trace_xfs_scrub_fblock_warning(sc, whichfork, offset, __return_address); } /* Signal an incomplete scrub. */ void xfs_scrub_set_incomplete( struct xfs_scrub_context *sc) { sc->sm->sm_flags |= XFS_SCRUB_OFLAG_INCOMPLETE; trace_xfs_scrub_incomplete(sc, __return_address); } /* * rmap scrubbing -- compute the number of blocks with a given owner, * at least according to the reverse mapping data. */ struct xfs_scrub_rmap_ownedby_info { struct xfs_owner_info *oinfo; xfs_filblks_t *blocks; }; STATIC int xfs_scrub_count_rmap_ownedby_irec( struct xfs_btree_cur *cur, struct xfs_rmap_irec *rec, void *priv) { struct xfs_scrub_rmap_ownedby_info *sroi = priv; bool irec_attr; bool oinfo_attr; irec_attr = rec->rm_flags & XFS_RMAP_ATTR_FORK; oinfo_attr = sroi->oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK; if (rec->rm_owner != sroi->oinfo->oi_owner) return 0; if (XFS_RMAP_NON_INODE_OWNER(rec->rm_owner) || irec_attr == oinfo_attr) (*sroi->blocks) += rec->rm_blockcount; return 0; } /* * Calculate the number of blocks the rmap thinks are owned by something. * The caller should pass us an rmapbt cursor. */ int xfs_scrub_count_rmap_ownedby_ag( struct xfs_scrub_context *sc, struct xfs_btree_cur *cur, struct xfs_owner_info *oinfo, xfs_filblks_t *blocks) { struct xfs_scrub_rmap_ownedby_info sroi; sroi.oinfo = oinfo; *blocks = 0; sroi.blocks = blocks; return xfs_rmap_query_all(cur, xfs_scrub_count_rmap_ownedby_irec, &sroi); } /* * AG scrubbing * * These helpers facilitate locking an allocation group's header * buffers, setting up cursors for all btrees that are present, and * cleaning everything up once we're through. */ /* Decide if we want to return an AG header read failure. */ static inline bool want_ag_read_header_failure( struct xfs_scrub_context *sc, unsigned int type) { /* Return all AG header read failures when scanning btrees. */ if (sc->sm->sm_type != XFS_SCRUB_TYPE_AGF && sc->sm->sm_type != XFS_SCRUB_TYPE_AGFL && sc->sm->sm_type != XFS_SCRUB_TYPE_AGI) return true; /* * If we're scanning a given type of AG header, we only want to * see read failures from that specific header. We'd like the * other headers to cross-check them, but this isn't required. */ if (sc->sm->sm_type == type) return true; return false; } /* * Grab all the headers for an AG. * * The headers should be released by xfs_scrub_ag_free, but as a fail * safe we attach all the buffers we grab to the scrub transaction so * they'll all be freed when we cancel it. */ int xfs_scrub_ag_read_headers( struct xfs_scrub_context *sc, xfs_agnumber_t agno, struct xfs_buf **agi, struct xfs_buf **agf, struct xfs_buf **agfl) { struct xfs_mount *mp = sc->mp; int error; error = xfs_ialloc_read_agi(mp, sc->tp, agno, agi); if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGI)) goto out; error = xfs_alloc_read_agf(mp, sc->tp, agno, 0, agf); if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGF)) goto out; error = xfs_alloc_read_agfl(mp, sc->tp, agno, agfl); if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGFL)) goto out; error = 0; out: return error; } /* Release all the AG btree cursors. */ void xfs_scrub_ag_btcur_free( struct xfs_scrub_ag *sa) { if (sa->refc_cur) xfs_btree_del_cursor(sa->refc_cur, XFS_BTREE_ERROR); if (sa->rmap_cur) xfs_btree_del_cursor(sa->rmap_cur, XFS_BTREE_ERROR); if (sa->fino_cur) xfs_btree_del_cursor(sa->fino_cur, XFS_BTREE_ERROR); if (sa->ino_cur) xfs_btree_del_cursor(sa->ino_cur, XFS_BTREE_ERROR); if (sa->cnt_cur) xfs_btree_del_cursor(sa->cnt_cur, XFS_BTREE_ERROR); if (sa->bno_cur) xfs_btree_del_cursor(sa->bno_cur, XFS_BTREE_ERROR); sa->refc_cur = NULL; sa->rmap_cur = NULL; sa->fino_cur = NULL; sa->ino_cur = NULL; sa->bno_cur = NULL; sa->cnt_cur = NULL; } /* Initialize all the btree cursors for an AG. */ int xfs_scrub_ag_btcur_init( struct xfs_scrub_context *sc, struct xfs_scrub_ag *sa) { struct xfs_mount *mp = sc->mp; xfs_agnumber_t agno = sa->agno; if (sa->agf_bp) { /* Set up a bnobt cursor for cross-referencing. */ sa->bno_cur = xfs_allocbt_init_cursor(mp, sc->tp, sa->agf_bp, agno, XFS_BTNUM_BNO); if (!sa->bno_cur) goto err; /* Set up a cntbt cursor for cross-referencing. */ sa->cnt_cur = xfs_allocbt_init_cursor(mp, sc->tp, sa->agf_bp, agno, XFS_BTNUM_CNT); if (!sa->cnt_cur) goto err; } /* Set up a inobt cursor for cross-referencing. */ if (sa->agi_bp) { sa->ino_cur = xfs_inobt_init_cursor(mp, sc->tp, sa->agi_bp, agno, XFS_BTNUM_INO); if (!sa->ino_cur) goto err; } /* Set up a finobt cursor for cross-referencing. */ if (sa->agi_bp && xfs_sb_version_hasfinobt(&mp->m_sb)) { sa->fino_cur = xfs_inobt_init_cursor(mp, sc->tp, sa->agi_bp, agno, XFS_BTNUM_FINO); if (!sa->fino_cur) goto err; } /* Set up a rmapbt cursor for cross-referencing. */ if (sa->agf_bp && xfs_sb_version_hasrmapbt(&mp->m_sb)) { sa->rmap_cur = xfs_rmapbt_init_cursor(mp, sc->tp, sa->agf_bp, agno); if (!sa->rmap_cur) goto err; } /* Set up a refcountbt cursor for cross-referencing. */ if (sa->agf_bp && xfs_sb_version_hasreflink(&mp->m_sb)) { sa->refc_cur = xfs_refcountbt_init_cursor(mp, sc->tp, sa->agf_bp, agno, NULL); if (!sa->refc_cur) goto err; } return 0; err: return -ENOMEM; } /* Release the AG header context and btree cursors. */ void xfs_scrub_ag_free( struct xfs_scrub_context *sc, struct xfs_scrub_ag *sa) { xfs_scrub_ag_btcur_free(sa); if (sa->agfl_bp) { xfs_trans_brelse(sc->tp, sa->agfl_bp); sa->agfl_bp = NULL; } if (sa->agf_bp) { xfs_trans_brelse(sc->tp, sa->agf_bp); sa->agf_bp = NULL; } if (sa->agi_bp) { xfs_trans_brelse(sc->tp, sa->agi_bp); sa->agi_bp = NULL; } sa->agno = NULLAGNUMBER; } /* * For scrub, grab the AGI and the AGF headers, in that order. Locking * order requires us to get the AGI before the AGF. We use the * transaction to avoid deadlocking on crosslinked metadata buffers; * either the caller passes one in (bmap scrub) or we have to create a * transaction ourselves. */ int xfs_scrub_ag_init( struct xfs_scrub_context *sc, xfs_agnumber_t agno, struct xfs_scrub_ag *sa) { int error; sa->agno = agno; error = xfs_scrub_ag_read_headers(sc, agno, &sa->agi_bp, &sa->agf_bp, &sa->agfl_bp); if (error) return error; return xfs_scrub_ag_btcur_init(sc, sa); } /* Per-scrubber setup functions */ /* * Grab an empty transaction so that we can re-grab locked buffers if * one of our btrees turns out to be cyclic. */ int xfs_scrub_trans_alloc( struct xfs_scrub_context *sc) { return xfs_trans_alloc_empty(sc->mp, &sc->tp); } /* Set us up with a transaction and an empty context. */ int xfs_scrub_setup_fs( struct xfs_scrub_context *sc, struct xfs_inode *ip) { return xfs_scrub_trans_alloc(sc); } /* Set us up with AG headers and btree cursors. */ int xfs_scrub_setup_ag_btree( struct xfs_scrub_context *sc, struct xfs_inode *ip, bool force_log) { struct xfs_mount *mp = sc->mp; int error; /* * If the caller asks us to checkpont the log, do so. This * expensive operation should be performed infrequently and only * as a last resort. Any caller that sets force_log should * document why they need to do so. */ if (force_log) { error = xfs_scrub_checkpoint_log(mp); if (error) return error; } error = xfs_scrub_setup_fs(sc, ip); if (error) return error; return xfs_scrub_ag_init(sc, sc->sm->sm_agno, &sc->sa); } /* Push everything out of the log onto disk. */ int xfs_scrub_checkpoint_log( struct xfs_mount *mp) { int error; error = xfs_log_force(mp, XFS_LOG_SYNC); if (error) return error; xfs_ail_push_all_sync(mp->m_ail); return 0; } /* * Given an inode and the scrub control structure, grab either the * inode referenced in the control structure or the inode passed in. * The inode is not locked. */ int xfs_scrub_get_inode( struct xfs_scrub_context *sc, struct xfs_inode *ip_in) { struct xfs_imap imap; struct xfs_mount *mp = sc->mp; struct xfs_inode *ip = NULL; int error; /* We want to scan the inode we already had opened. */ if (sc->sm->sm_ino == 0 || sc->sm->sm_ino == ip_in->i_ino) { sc->ip = ip_in; return 0; } /* Look up the inode, see if the generation number matches. */ if (xfs_internal_inum(mp, sc->sm->sm_ino)) return -ENOENT; error = xfs_iget(mp, NULL, sc->sm->sm_ino, XFS_IGET_UNTRUSTED | XFS_IGET_DONTCACHE, 0, &ip); switch (error) { case -ENOENT: /* Inode doesn't exist, just bail out. */ return error; case 0: /* Got an inode, continue. */ break; case -EINVAL: /* * -EINVAL with IGET_UNTRUSTED could mean one of several * things: userspace gave us an inode number that doesn't * correspond to fs space, or doesn't have an inobt entry; * or it could simply mean that the inode buffer failed the * read verifiers. * * Try just the inode mapping lookup -- if it succeeds, then * the inode buffer verifier failed and something needs fixing. * Otherwise, we really couldn't find it so tell userspace * that it no longer exists. */ error = xfs_imap(sc->mp, sc->tp, sc->sm->sm_ino, &imap, XFS_IGET_UNTRUSTED | XFS_IGET_DONTCACHE); if (error) return -ENOENT; error = -EFSCORRUPTED; /* fall through */ default: trace_xfs_scrub_op_error(sc, XFS_INO_TO_AGNO(mp, sc->sm->sm_ino), XFS_INO_TO_AGBNO(mp, sc->sm->sm_ino), error, __return_address); return error; } if (VFS_I(ip)->i_generation != sc->sm->sm_gen) { iput(VFS_I(ip)); return -ENOENT; } sc->ip = ip; return 0; } /* Set us up to scrub a file's contents. */ int xfs_scrub_setup_inode_contents( struct xfs_scrub_context *sc, struct xfs_inode *ip, unsigned int resblks) { int error; error = xfs_scrub_get_inode(sc, ip); if (error) return error; /* Got the inode, lock it and we're ready to go. */ sc->ilock_flags = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL; xfs_ilock(sc->ip, sc->ilock_flags); error = xfs_scrub_trans_alloc(sc); if (error) goto out; sc->ilock_flags |= XFS_ILOCK_EXCL; xfs_ilock(sc->ip, XFS_ILOCK_EXCL); out: /* scrub teardown will unlock and release the inode for us */ return error; } /* * Predicate that decides if we need to evaluate the cross-reference check. * If there was an error accessing the cross-reference btree, just delete * the cursor and skip the check. */ bool xfs_scrub_should_check_xref( struct xfs_scrub_context *sc, int *error, struct xfs_btree_cur **curpp) { /* No point in xref if we already know we're corrupt. */ if (xfs_scrub_skip_xref(sc->sm)) return false; if (*error == 0) return true; if (curpp) { /* If we've already given up on xref, just bail out. */ if (!*curpp) return false; /* xref error, delete cursor and bail out. */ xfs_btree_del_cursor(*curpp, XFS_BTREE_ERROR); *curpp = NULL; } sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XFAIL; trace_xfs_scrub_xref_error(sc, *error, __return_address); /* * Errors encountered during cross-referencing with another * data structure should not cause this scrubber to abort. */ *error = 0; return false; } /* Run the structure verifiers on in-memory buffers to detect bad memory. */ void xfs_scrub_buffer_recheck( struct xfs_scrub_context *sc, struct xfs_buf *bp) { xfs_failaddr_t fa; if (bp->b_ops == NULL) { xfs_scrub_block_set_corrupt(sc, bp); return; } if (bp->b_ops->verify_struct == NULL) { xfs_scrub_set_incomplete(sc); return; } fa = bp->b_ops->verify_struct(bp); if (!fa) return; sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT; trace_xfs_scrub_block_error(sc, bp->b_bn, fa); } /* * Scrub the attr/data forks of a metadata inode. The metadata inode must be * pointed to by sc->ip and the ILOCK must be held. */ int xfs_scrub_metadata_inode_forks( struct xfs_scrub_context *sc) { __u32 smtype; bool shared; int error; if (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT) return 0; /* Metadata inodes don't live on the rt device. */ if (sc->ip->i_d.di_flags & XFS_DIFLAG_REALTIME) { xfs_scrub_ino_set_corrupt(sc, sc->ip->i_ino); return 0; } /* They should never participate in reflink. */ if (xfs_is_reflink_inode(sc->ip)) { xfs_scrub_ino_set_corrupt(sc, sc->ip->i_ino); return 0; } /* They also should never have extended attributes. */ if (xfs_inode_hasattr(sc->ip)) { xfs_scrub_ino_set_corrupt(sc, sc->ip->i_ino); return 0; } /* Invoke the data fork scrubber. */ smtype = sc->sm->sm_type; sc->sm->sm_type = XFS_SCRUB_TYPE_BMBTD; error = xfs_scrub_bmap_data(sc); sc->sm->sm_type = smtype; if (error || (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT)) return error; /* Look for incorrect shared blocks. */ if (xfs_sb_version_hasreflink(&sc->mp->m_sb)) { error = xfs_reflink_inode_has_shared_extents(sc->tp, sc->ip, &shared); if (!xfs_scrub_fblock_process_error(sc, XFS_DATA_FORK, 0, &error)) return error; if (shared) xfs_scrub_ino_set_corrupt(sc, sc->ip->i_ino); } return error; }