// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc. * All Rights Reserved. */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_format.h" #include "xfs_log_format.h" #include "xfs_trans_resv.h" #include "xfs_bit.h" #include "xfs_shared.h" #include "xfs_mount.h" #include "xfs_defer.h" #include "xfs_trans.h" #include "xfs_trans_priv.h" #include "xfs_extfree_item.h" #include "xfs_log.h" #include "xfs_btree.h" #include "xfs_rmap.h" #include "xfs_alloc.h" #include "xfs_bmap.h" #include "xfs_trace.h" #include "xfs_error.h" #include "xfs_log_priv.h" #include "xfs_log_recover.h" kmem_zone_t *xfs_efi_zone; kmem_zone_t *xfs_efd_zone; static const struct xfs_item_ops xfs_efi_item_ops; static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip) { return container_of(lip, struct xfs_efi_log_item, efi_item); } STATIC void xfs_efi_item_free( struct xfs_efi_log_item *efip) { kmem_free(efip->efi_item.li_lv_shadow); if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS) kmem_free(efip); else kmem_cache_free(xfs_efi_zone, efip); } /* * Freeing the efi requires that we remove it from the AIL if it has already * been placed there. However, the EFI may not yet have been placed in the AIL * when called by xfs_efi_release() from EFD processing due to the ordering of * committed vs unpin operations in bulk insert operations. Hence the reference * count to ensure only the last caller frees the EFI. */ STATIC void xfs_efi_release( struct xfs_efi_log_item *efip) { ASSERT(atomic_read(&efip->efi_refcount) > 0); if (atomic_dec_and_test(&efip->efi_refcount)) { xfs_trans_ail_delete(&efip->efi_item, SHUTDOWN_LOG_IO_ERROR); xfs_efi_item_free(efip); } } /* * This returns the number of iovecs needed to log the given efi item. * We only need 1 iovec for an efi item. It just logs the efi_log_format * structure. */ static inline int xfs_efi_item_sizeof( struct xfs_efi_log_item *efip) { return sizeof(struct xfs_efi_log_format) + (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t); } STATIC void xfs_efi_item_size( struct xfs_log_item *lip, int *nvecs, int *nbytes) { *nvecs += 1; *nbytes += xfs_efi_item_sizeof(EFI_ITEM(lip)); } /* * This is called to fill in the vector of log iovecs for the * given efi log item. We use only 1 iovec, and we point that * at the efi_log_format structure embedded in the efi item. * It is at this point that we assert that all of the extent * slots in the efi item have been filled. */ STATIC void xfs_efi_item_format( struct xfs_log_item *lip, struct xfs_log_vec *lv) { struct xfs_efi_log_item *efip = EFI_ITEM(lip); struct xfs_log_iovec *vecp = NULL; ASSERT(atomic_read(&efip->efi_next_extent) == efip->efi_format.efi_nextents); efip->efi_format.efi_type = XFS_LI_EFI; efip->efi_format.efi_size = 1; xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT, &efip->efi_format, xfs_efi_item_sizeof(efip)); } /* * The unpin operation is the last place an EFI is manipulated in the log. It is * either inserted in the AIL or aborted in the event of a log I/O error. In * either case, the EFI transaction has been successfully committed to make it * this far. Therefore, we expect whoever committed the EFI to either construct * and commit the EFD or drop the EFD's reference in the event of error. Simply * drop the log's EFI reference now that the log is done with it. */ STATIC void xfs_efi_item_unpin( struct xfs_log_item *lip, int remove) { struct xfs_efi_log_item *efip = EFI_ITEM(lip); xfs_efi_release(efip); } /* * The EFI has been either committed or aborted if the transaction has been * cancelled. If the transaction was cancelled, an EFD isn't going to be * constructed and thus we free the EFI here directly. */ STATIC void xfs_efi_item_release( struct xfs_log_item *lip) { xfs_efi_release(EFI_ITEM(lip)); } /* * Allocate and initialize an efi item with the given number of extents. */ STATIC struct xfs_efi_log_item * xfs_efi_init( struct xfs_mount *mp, uint nextents) { struct xfs_efi_log_item *efip; uint size; ASSERT(nextents > 0); if (nextents > XFS_EFI_MAX_FAST_EXTENTS) { size = (uint)(sizeof(struct xfs_efi_log_item) + ((nextents - 1) * sizeof(xfs_extent_t))); efip = kmem_zalloc(size, 0); } else { efip = kmem_cache_zalloc(xfs_efi_zone, GFP_KERNEL | __GFP_NOFAIL); } xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops); efip->efi_format.efi_nextents = nextents; efip->efi_format.efi_id = (uintptr_t)(void *)efip; atomic_set(&efip->efi_next_extent, 0); atomic_set(&efip->efi_refcount, 2); return efip; } /* * Copy an EFI format buffer from the given buf, and into the destination * EFI format structure. * The given buffer can be in 32 bit or 64 bit form (which has different padding), * one of which will be the native format for this kernel. * It will handle the conversion of formats if necessary. */ STATIC int xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt) { xfs_efi_log_format_t *src_efi_fmt = buf->i_addr; uint i; uint len = sizeof(xfs_efi_log_format_t) + (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t); uint len32 = sizeof(xfs_efi_log_format_32_t) + (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t); uint len64 = sizeof(xfs_efi_log_format_64_t) + (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t); if (buf->i_len == len) { memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len); return 0; } else if (buf->i_len == len32) { xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr; dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type; dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size; dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents; dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id; for (i = 0; i < dst_efi_fmt->efi_nextents; i++) { dst_efi_fmt->efi_extents[i].ext_start = src_efi_fmt_32->efi_extents[i].ext_start; dst_efi_fmt->efi_extents[i].ext_len = src_efi_fmt_32->efi_extents[i].ext_len; } return 0; } else if (buf->i_len == len64) { xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr; dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type; dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size; dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents; dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id; for (i = 0; i < dst_efi_fmt->efi_nextents; i++) { dst_efi_fmt->efi_extents[i].ext_start = src_efi_fmt_64->efi_extents[i].ext_start; dst_efi_fmt->efi_extents[i].ext_len = src_efi_fmt_64->efi_extents[i].ext_len; } return 0; } XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL); return -EFSCORRUPTED; } static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip) { return container_of(lip, struct xfs_efd_log_item, efd_item); } STATIC void xfs_efd_item_free(struct xfs_efd_log_item *efdp) { kmem_free(efdp->efd_item.li_lv_shadow); if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS) kmem_free(efdp); else kmem_cache_free(xfs_efd_zone, efdp); } /* * This returns the number of iovecs needed to log the given efd item. * We only need 1 iovec for an efd item. It just logs the efd_log_format * structure. */ static inline int xfs_efd_item_sizeof( struct xfs_efd_log_item *efdp) { return sizeof(xfs_efd_log_format_t) + (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t); } STATIC void xfs_efd_item_size( struct xfs_log_item *lip, int *nvecs, int *nbytes) { *nvecs += 1; *nbytes += xfs_efd_item_sizeof(EFD_ITEM(lip)); } /* * This is called to fill in the vector of log iovecs for the * given efd log item. We use only 1 iovec, and we point that * at the efd_log_format structure embedded in the efd item. * It is at this point that we assert that all of the extent * slots in the efd item have been filled. */ STATIC void xfs_efd_item_format( struct xfs_log_item *lip, struct xfs_log_vec *lv) { struct xfs_efd_log_item *efdp = EFD_ITEM(lip); struct xfs_log_iovec *vecp = NULL; ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents); efdp->efd_format.efd_type = XFS_LI_EFD; efdp->efd_format.efd_size = 1; xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT, &efdp->efd_format, xfs_efd_item_sizeof(efdp)); } /* * The EFD is either committed or aborted if the transaction is cancelled. If * the transaction is cancelled, drop our reference to the EFI and free the EFD. */ STATIC void xfs_efd_item_release( struct xfs_log_item *lip) { struct xfs_efd_log_item *efdp = EFD_ITEM(lip); xfs_efi_release(efdp->efd_efip); xfs_efd_item_free(efdp); } static const struct xfs_item_ops xfs_efd_item_ops = { .flags = XFS_ITEM_RELEASE_WHEN_COMMITTED, .iop_size = xfs_efd_item_size, .iop_format = xfs_efd_item_format, .iop_release = xfs_efd_item_release, }; /* * Allocate an "extent free done" log item that will hold nextents worth of * extents. The caller must use all nextents extents, because we are not * flexible about this at all. */ static struct xfs_efd_log_item * xfs_trans_get_efd( struct xfs_trans *tp, struct xfs_efi_log_item *efip, unsigned int nextents) { struct xfs_efd_log_item *efdp; ASSERT(nextents > 0); if (nextents > XFS_EFD_MAX_FAST_EXTENTS) { efdp = kmem_zalloc(sizeof(struct xfs_efd_log_item) + (nextents - 1) * sizeof(struct xfs_extent), 0); } else { efdp = kmem_cache_zalloc(xfs_efd_zone, GFP_KERNEL | __GFP_NOFAIL); } xfs_log_item_init(tp->t_mountp, &efdp->efd_item, XFS_LI_EFD, &xfs_efd_item_ops); efdp->efd_efip = efip; efdp->efd_format.efd_nextents = nextents; efdp->efd_format.efd_efi_id = efip->efi_format.efi_id; xfs_trans_add_item(tp, &efdp->efd_item); return efdp; } /* * Free an extent and log it to the EFD. Note that the transaction is marked * dirty regardless of whether the extent free succeeds or fails to support the * EFI/EFD lifecycle rules. */ static int xfs_trans_free_extent( struct xfs_trans *tp, struct xfs_efd_log_item *efdp, xfs_fsblock_t start_block, xfs_extlen_t ext_len, const struct xfs_owner_info *oinfo, bool skip_discard) { struct xfs_mount *mp = tp->t_mountp; struct xfs_extent *extp; uint next_extent; xfs_agnumber_t agno = XFS_FSB_TO_AGNO(mp, start_block); xfs_agblock_t agbno = XFS_FSB_TO_AGBNO(mp, start_block); int error; trace_xfs_bmap_free_deferred(tp->t_mountp, agno, 0, agbno, ext_len); error = __xfs_free_extent(tp, start_block, ext_len, oinfo, XFS_AG_RESV_NONE, skip_discard); /* * Mark the transaction dirty, even on error. This ensures the * transaction is aborted, which: * * 1.) releases the EFI and frees the EFD * 2.) shuts down the filesystem */ tp->t_flags |= XFS_TRANS_DIRTY; set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags); next_extent = efdp->efd_next_extent; ASSERT(next_extent < efdp->efd_format.efd_nextents); extp = &(efdp->efd_format.efd_extents[next_extent]); extp->ext_start = start_block; extp->ext_len = ext_len; efdp->efd_next_extent++; return error; } /* Sort bmap items by AG. */ static int xfs_extent_free_diff_items( void *priv, struct list_head *a, struct list_head *b) { struct xfs_mount *mp = priv; struct xfs_extent_free_item *ra; struct xfs_extent_free_item *rb; ra = container_of(a, struct xfs_extent_free_item, xefi_list); rb = container_of(b, struct xfs_extent_free_item, xefi_list); return XFS_FSB_TO_AGNO(mp, ra->xefi_startblock) - XFS_FSB_TO_AGNO(mp, rb->xefi_startblock); } /* Log a free extent to the intent item. */ STATIC void xfs_extent_free_log_item( struct xfs_trans *tp, struct xfs_efi_log_item *efip, struct xfs_extent_free_item *free) { uint next_extent; struct xfs_extent *extp; tp->t_flags |= XFS_TRANS_DIRTY; set_bit(XFS_LI_DIRTY, &efip->efi_item.li_flags); /* * atomic_inc_return gives us the value after the increment; * we want to use it as an array index so we need to subtract 1 from * it. */ next_extent = atomic_inc_return(&efip->efi_next_extent) - 1; ASSERT(next_extent < efip->efi_format.efi_nextents); extp = &efip->efi_format.efi_extents[next_extent]; extp->ext_start = free->xefi_startblock; extp->ext_len = free->xefi_blockcount; } static struct xfs_log_item * xfs_extent_free_create_intent( struct xfs_trans *tp, struct list_head *items, unsigned int count, bool sort) { struct xfs_mount *mp = tp->t_mountp; struct xfs_efi_log_item *efip = xfs_efi_init(mp, count); struct xfs_extent_free_item *free; ASSERT(count > 0); xfs_trans_add_item(tp, &efip->efi_item); if (sort) list_sort(mp, items, xfs_extent_free_diff_items); list_for_each_entry(free, items, xefi_list) xfs_extent_free_log_item(tp, efip, free); return &efip->efi_item; } /* Get an EFD so we can process all the free extents. */ static struct xfs_log_item * xfs_extent_free_create_done( struct xfs_trans *tp, struct xfs_log_item *intent, unsigned int count) { return &xfs_trans_get_efd(tp, EFI_ITEM(intent), count)->efd_item; } /* Process a free extent. */ STATIC int xfs_extent_free_finish_item( struct xfs_trans *tp, struct xfs_log_item *done, struct list_head *item, struct xfs_btree_cur **state) { struct xfs_extent_free_item *free; int error; free = container_of(item, struct xfs_extent_free_item, xefi_list); error = xfs_trans_free_extent(tp, EFD_ITEM(done), free->xefi_startblock, free->xefi_blockcount, &free->xefi_oinfo, free->xefi_skip_discard); kmem_free(free); return error; } /* Abort all pending EFIs. */ STATIC void xfs_extent_free_abort_intent( struct xfs_log_item *intent) { xfs_efi_release(EFI_ITEM(intent)); } /* Cancel a free extent. */ STATIC void xfs_extent_free_cancel_item( struct list_head *item) { struct xfs_extent_free_item *free; free = container_of(item, struct xfs_extent_free_item, xefi_list); kmem_free(free); } const struct xfs_defer_op_type xfs_extent_free_defer_type = { .max_items = XFS_EFI_MAX_FAST_EXTENTS, .create_intent = xfs_extent_free_create_intent, .abort_intent = xfs_extent_free_abort_intent, .create_done = xfs_extent_free_create_done, .finish_item = xfs_extent_free_finish_item, .cancel_item = xfs_extent_free_cancel_item, }; /* * AGFL blocks are accounted differently in the reserve pools and are not * inserted into the busy extent list. */ STATIC int xfs_agfl_free_finish_item( struct xfs_trans *tp, struct xfs_log_item *done, struct list_head *item, struct xfs_btree_cur **state) { struct xfs_mount *mp = tp->t_mountp; struct xfs_efd_log_item *efdp = EFD_ITEM(done); struct xfs_extent_free_item *free; struct xfs_extent *extp; struct xfs_buf *agbp; int error; xfs_agnumber_t agno; xfs_agblock_t agbno; uint next_extent; free = container_of(item, struct xfs_extent_free_item, xefi_list); ASSERT(free->xefi_blockcount == 1); agno = XFS_FSB_TO_AGNO(mp, free->xefi_startblock); agbno = XFS_FSB_TO_AGBNO(mp, free->xefi_startblock); trace_xfs_agfl_free_deferred(mp, agno, 0, agbno, free->xefi_blockcount); error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp); if (!error) error = xfs_free_agfl_block(tp, agno, agbno, agbp, &free->xefi_oinfo); /* * Mark the transaction dirty, even on error. This ensures the * transaction is aborted, which: * * 1.) releases the EFI and frees the EFD * 2.) shuts down the filesystem */ tp->t_flags |= XFS_TRANS_DIRTY; set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags); next_extent = efdp->efd_next_extent; ASSERT(next_extent < efdp->efd_format.efd_nextents); extp = &(efdp->efd_format.efd_extents[next_extent]); extp->ext_start = free->xefi_startblock; extp->ext_len = free->xefi_blockcount; efdp->efd_next_extent++; kmem_free(free); return error; } /* sub-type with special handling for AGFL deferred frees */ const struct xfs_defer_op_type xfs_agfl_free_defer_type = { .max_items = XFS_EFI_MAX_FAST_EXTENTS, .create_intent = xfs_extent_free_create_intent, .abort_intent = xfs_extent_free_abort_intent, .create_done = xfs_extent_free_create_done, .finish_item = xfs_agfl_free_finish_item, .cancel_item = xfs_extent_free_cancel_item, }; /* * Process an extent free intent item that was recovered from * the log. We need to free the extents that it describes. */ STATIC int xfs_efi_item_recover( struct xfs_log_item *lip, struct list_head *capture_list) { struct xfs_efi_log_item *efip = EFI_ITEM(lip); struct xfs_mount *mp = lip->li_mountp; struct xfs_efd_log_item *efdp; struct xfs_trans *tp; struct xfs_extent *extp; xfs_fsblock_t startblock_fsb; int i; int error = 0; /* * First check the validity of the extents described by the * EFI. If any are bad, then assume that all are bad and * just toss the EFI. */ for (i = 0; i < efip->efi_format.efi_nextents; i++) { extp = &efip->efi_format.efi_extents[i]; startblock_fsb = XFS_BB_TO_FSB(mp, XFS_FSB_TO_DADDR(mp, extp->ext_start)); if (startblock_fsb == 0 || extp->ext_len == 0 || startblock_fsb >= mp->m_sb.sb_dblocks || extp->ext_len >= mp->m_sb.sb_agblocks) return -EFSCORRUPTED; } error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); if (error) return error; efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents); for (i = 0; i < efip->efi_format.efi_nextents; i++) { extp = &efip->efi_format.efi_extents[i]; error = xfs_trans_free_extent(tp, efdp, extp->ext_start, extp->ext_len, &XFS_RMAP_OINFO_ANY_OWNER, false); if (error) goto abort_error; } return xfs_defer_ops_capture_and_commit(tp, NULL, capture_list); abort_error: xfs_trans_cancel(tp); return error; } STATIC bool xfs_efi_item_match( struct xfs_log_item *lip, uint64_t intent_id) { return EFI_ITEM(lip)->efi_format.efi_id == intent_id; } static const struct xfs_item_ops xfs_efi_item_ops = { .iop_size = xfs_efi_item_size, .iop_format = xfs_efi_item_format, .iop_unpin = xfs_efi_item_unpin, .iop_release = xfs_efi_item_release, .iop_recover = xfs_efi_item_recover, .iop_match = xfs_efi_item_match, }; /* * This routine is called to create an in-core extent free intent * item from the efi format structure which was logged on disk. * It allocates an in-core efi, copies the extents from the format * structure into it, and adds the efi to the AIL with the given * LSN. */ STATIC int xlog_recover_efi_commit_pass2( struct xlog *log, struct list_head *buffer_list, struct xlog_recover_item *item, xfs_lsn_t lsn) { struct xfs_mount *mp = log->l_mp; struct xfs_efi_log_item *efip; struct xfs_efi_log_format *efi_formatp; int error; efi_formatp = item->ri_buf[0].i_addr; efip = xfs_efi_init(mp, efi_formatp->efi_nextents); error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format); if (error) { xfs_efi_item_free(efip); return error; } atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents); /* * Insert the intent into the AIL directly and drop one reference so * that finishing or canceling the work will drop the other. */ xfs_trans_ail_insert(log->l_ailp, &efip->efi_item, lsn); xfs_efi_release(efip); return 0; } const struct xlog_recover_item_ops xlog_efi_item_ops = { .item_type = XFS_LI_EFI, .commit_pass2 = xlog_recover_efi_commit_pass2, }; /* * This routine is called when an EFD format structure is found in a committed * transaction in the log. Its purpose is to cancel the corresponding EFI if it * was still in the log. To do this it searches the AIL for the EFI with an id * equal to that in the EFD format structure. If we find it we drop the EFD * reference, which removes the EFI from the AIL and frees it. */ STATIC int xlog_recover_efd_commit_pass2( struct xlog *log, struct list_head *buffer_list, struct xlog_recover_item *item, xfs_lsn_t lsn) { struct xfs_efd_log_format *efd_formatp; efd_formatp = item->ri_buf[0].i_addr; ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) + ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) || (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) + ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t))))); xlog_recover_release_intent(log, XFS_LI_EFI, efd_formatp->efd_efi_id); return 0; } const struct xlog_recover_item_ops xlog_efd_item_ops = { .item_type = XFS_LI_EFD, .commit_pass2 = xlog_recover_efd_commit_pass2, };