/* * include/asm-xtensa/bitops.h * * Atomic operations that C can't guarantee us.Useful for resource counting etc. * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2001 - 2005 Tensilica Inc. */ #ifndef _XTENSA_BITOPS_H #define _XTENSA_BITOPS_H #ifdef __KERNEL__ #include <asm/processor.h> #include <asm/byteorder.h> #include <asm/system.h> #ifdef CONFIG_SMP # error SMP not supported on this architecture #endif static __inline__ void set_bit(int nr, volatile void * addr) { unsigned long mask = 1 << (nr & 0x1f); unsigned long *a = ((unsigned long *)addr) + (nr >> 5); unsigned long flags; local_irq_save(flags); *a |= mask; local_irq_restore(flags); } static __inline__ void __set_bit(int nr, volatile unsigned long * addr) { unsigned long mask = 1 << (nr & 0x1f); unsigned long *a = ((unsigned long *)addr) + (nr >> 5); *a |= mask; } static __inline__ void clear_bit(int nr, volatile void * addr) { unsigned long mask = 1 << (nr & 0x1f); unsigned long *a = ((unsigned long *)addr) + (nr >> 5); unsigned long flags; local_irq_save(flags); *a &= ~mask; local_irq_restore(flags); } static __inline__ void __clear_bit(int nr, volatile unsigned long *addr) { unsigned long mask = 1 << (nr & 0x1f); unsigned long *a = ((unsigned long *)addr) + (nr >> 5); *a &= ~mask; } /* * clear_bit() doesn't provide any barrier for the compiler. */ #define smp_mb__before_clear_bit() barrier() #define smp_mb__after_clear_bit() barrier() static __inline__ void change_bit(int nr, volatile void * addr) { unsigned long mask = 1 << (nr & 0x1f); unsigned long *a = ((unsigned long *)addr) + (nr >> 5); unsigned long flags; local_irq_save(flags); *a ^= mask; local_irq_restore(flags); } static __inline__ void __change_bit(int nr, volatile void * addr) { unsigned long mask = 1 << (nr & 0x1f); unsigned long *a = ((unsigned long *)addr) + (nr >> 5); *a ^= mask; } static __inline__ int test_and_set_bit(int nr, volatile void * addr) { unsigned long retval; unsigned long mask = 1 << (nr & 0x1f); unsigned long *a = ((unsigned long *)addr) + (nr >> 5); unsigned long flags; local_irq_save(flags); retval = (mask & *a) != 0; *a |= mask; local_irq_restore(flags); return retval; } static __inline__ int __test_and_set_bit(int nr, volatile void * addr) { unsigned long retval; unsigned long mask = 1 << (nr & 0x1f); unsigned long *a = ((unsigned long *)addr) + (nr >> 5); retval = (mask & *a) != 0; *a |= mask; return retval; } static __inline__ int test_and_clear_bit(int nr, volatile void * addr) { unsigned long retval; unsigned long mask = 1 << (nr & 0x1f); unsigned long *a = ((unsigned long *)addr) + (nr >> 5); unsigned long flags; local_irq_save(flags); retval = (mask & *a) != 0; *a &= ~mask; local_irq_restore(flags); return retval; } static __inline__ int __test_and_clear_bit(int nr, volatile void * addr) { unsigned long mask = 1 << (nr & 0x1f); unsigned long *a = ((unsigned long *)addr) + (nr >> 5); unsigned long old = *a; *a = old & ~mask; return (old & mask) != 0; } static __inline__ int test_and_change_bit(int nr, volatile void * addr) { unsigned long retval; unsigned long mask = 1 << (nr & 0x1f); unsigned long *a = ((unsigned long *)addr) + (nr >> 5); unsigned long flags; local_irq_save(flags); retval = (mask & *a) != 0; *a ^= mask; local_irq_restore(flags); return retval; } /* * non-atomic version; can be reordered */ static __inline__ int __test_and_change_bit(int nr, volatile void *addr) { unsigned long mask = 1 << (nr & 0x1f); unsigned long *a = ((unsigned long *)addr) + (nr >> 5); unsigned long old = *a; *a = old ^ mask; return (old & mask) != 0; } static __inline__ int test_bit(int nr, const volatile void *addr) { return 1UL & (((const volatile unsigned int *)addr)[nr>>5] >> (nr&31)); } #if XCHAL_HAVE_NSA static __inline__ int __cntlz (unsigned long x) { int lz; asm ("nsau %0, %1" : "=r" (lz) : "r" (x)); return 31 - lz; } #else static __inline__ int __cntlz (unsigned long x) { unsigned long sum, x1, x2, x4, x8, x16; x1 = x & 0xAAAAAAAA; x2 = x & 0xCCCCCCCC; x4 = x & 0xF0F0F0F0; x8 = x & 0xFF00FF00; x16 = x & 0xFFFF0000; sum = x2 ? 2 : 0; sum += (x16 != 0) * 16; sum += (x8 != 0) * 8; sum += (x4 != 0) * 4; sum += (x1 != 0); return sum; } #endif /* * ffz: Find first zero in word. Undefined if no zero exists. * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1). */ static __inline__ int ffz(unsigned long x) { if ((x = ~x) == 0) return 32; return __cntlz(x & -x); } /* * __ffs: Find first bit set in word. Return 0 for bit 0 */ static __inline__ int __ffs(unsigned long x) { return __cntlz(x & -x); } /* * ffs: Find first bit set in word. This is defined the same way as * the libc and compiler builtin ffs routines, therefore * differs in spirit from the above ffz (man ffs). */ static __inline__ int ffs(unsigned long x) { return __cntlz(x & -x) + 1; } /* * fls: Find last (most-significant) bit set in word. * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32. */ static __inline__ int fls (unsigned int x) { return __cntlz(x); } static __inline__ int find_next_bit(const unsigned long *addr, int size, int offset) { const unsigned long *p = addr + (offset >> 5); unsigned long result = offset & ~31UL; unsigned long tmp; if (offset >= size) return size; size -= result; offset &= 31UL; if (offset) { tmp = *p++; tmp &= ~0UL << offset; if (size < 32) goto found_first; if (tmp) goto found_middle; size -= 32; result += 32; } while (size >= 32) { if ((tmp = *p++) != 0) goto found_middle; result += 32; size -= 32; } if (!size) return result; tmp = *p; found_first: tmp &= ~0UL >> (32 - size); if (tmp == 0UL) /* Are any bits set? */ return result + size; /* Nope. */ found_middle: return result + __ffs(tmp); } /** * find_first_bit - find the first set bit in a memory region * @addr: The address to start the search at * @size: The maximum size to search * * Returns the bit-number of the first set bit, not the number of the byte * containing a bit. */ #define find_first_bit(addr, size) \ find_next_bit((addr), (size), 0) static __inline__ int find_next_zero_bit(const unsigned long *addr, int size, int offset) { const unsigned long *p = addr + (offset >> 5); unsigned long result = offset & ~31UL; unsigned long tmp; if (offset >= size) return size; size -= result; offset &= 31UL; if (offset) { tmp = *p++; tmp |= ~0UL >> (32-offset); if (size < 32) goto found_first; if (~tmp) goto found_middle; size -= 32; result += 32; } while (size & ~31UL) { if (~(tmp = *p++)) goto found_middle; result += 32; size -= 32; } if (!size) return result; tmp = *p; found_first: tmp |= ~0UL << size; found_middle: return result + ffz(tmp); } #define find_first_zero_bit(addr, size) \ find_next_zero_bit((addr), (size), 0) #ifdef __XTENSA_EL__ # define ext2_set_bit(nr,addr) __test_and_set_bit((nr), (addr)) # define ext2_set_bit_atomic(lock,nr,addr) test_and_set_bit((nr),(addr)) # define ext2_clear_bit(nr,addr) __test_and_clear_bit((nr), (addr)) # define ext2_clear_bit_atomic(lock,nr,addr) test_and_clear_bit((nr),(addr)) # define ext2_test_bit(nr,addr) test_bit((nr), (addr)) # define ext2_find_first_zero_bit(addr, size) find_first_zero_bit((addr),(size)) # define ext2_find_next_zero_bit(addr, size, offset) \ find_next_zero_bit((addr), (size), (offset)) #elif defined(__XTENSA_EB__) # define ext2_set_bit(nr,addr) __test_and_set_bit((nr) ^ 0x18, (addr)) # define ext2_set_bit_atomic(lock,nr,addr) test_and_set_bit((nr) ^ 0x18, (addr)) # define ext2_clear_bit(nr,addr) __test_and_clear_bit((nr) ^ 18, (addr)) # define ext2_clear_bit_atomic(lock,nr,addr) test_and_clear_bit((nr)^0x18,(addr)) # define ext2_test_bit(nr,addr) test_bit((nr) ^ 0x18, (addr)) # define ext2_find_first_zero_bit(addr, size) \ ext2_find_next_zero_bit((addr), (size), 0) static __inline__ unsigned long ext2_find_next_zero_bit(void *addr, unsigned long size, unsigned long offset) { unsigned long *p = ((unsigned long *) addr) + (offset >> 5); unsigned long result = offset & ~31UL; unsigned long tmp; if (offset >= size) return size; size -= result; offset &= 31UL; if(offset) { /* We hold the little endian value in tmp, but then the * shift is illegal. So we could keep a big endian value * in tmp, like this: * * tmp = __swab32(*(p++)); * tmp |= ~0UL >> (32-offset); * * but this would decrease preformance, so we change the * shift: */ tmp = *(p++); tmp |= __swab32(~0UL >> (32-offset)); if(size < 32) goto found_first; if(~tmp) goto found_middle; size -= 32; result += 32; } while(size & ~31UL) { if(~(tmp = *(p++))) goto found_middle; result += 32; size -= 32; } if(!size) return result; tmp = *p; found_first: /* tmp is little endian, so we would have to swab the shift, * see above. But then we have to swab tmp below for ffz, so * we might as well do this here. */ return result + ffz(__swab32(tmp) | (~0UL << size)); found_middle: return result + ffz(__swab32(tmp)); } #else # error processor byte order undefined! #endif #define hweight32(x) generic_hweight32(x) #define hweight16(x) generic_hweight16(x) #define hweight8(x) generic_hweight8(x) /* * Find the first bit set in a 140-bit bitmap. * The first 100 bits are unlikely to be set. */ static inline int sched_find_first_bit(const unsigned long *b) { if (unlikely(b[0])) return __ffs(b[0]); if (unlikely(b[1])) return __ffs(b[1]) + 32; if (unlikely(b[2])) return __ffs(b[2]) + 64; if (b[3]) return __ffs(b[3]) + 96; return __ffs(b[4]) + 128; } /* Bitmap functions for the minix filesystem. */ #define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr) #define minix_set_bit(nr,addr) set_bit(nr,addr) #define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr) #define minix_test_bit(nr,addr) test_bit(nr,addr) #define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size) #endif /* __KERNEL__ */ #endif /* _XTENSA_BITOPS_H */