/* * linux/ipc/sem.c * Copyright (C) 1992 Krishna Balasubramanian * Copyright (C) 1995 Eric Schenk, Bruno Haible * * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com> * * SMP-threaded, sysctl's added * (c) 1999 Manfred Spraul <manfred@colorfullife.com> * Enforced range limit on SEM_UNDO * (c) 2001 Red Hat Inc * Lockless wakeup * (c) 2003 Manfred Spraul <manfred@colorfullife.com> * Further wakeup optimizations, documentation * (c) 2010 Manfred Spraul <manfred@colorfullife.com> * * support for audit of ipc object properties and permission changes * Dustin Kirkland <dustin.kirkland@us.ibm.com> * * namespaces support * OpenVZ, SWsoft Inc. * Pavel Emelianov <xemul@openvz.org> * * Implementation notes: (May 2010) * This file implements System V semaphores. * * User space visible behavior: * - FIFO ordering for semop() operations (just FIFO, not starvation * protection) * - multiple semaphore operations that alter the same semaphore in * one semop() are handled. * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and * SETALL calls. * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO. * - undo adjustments at process exit are limited to 0..SEMVMX. * - namespace are supported. * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing * to /proc/sys/kernel/sem. * - statistics about the usage are reported in /proc/sysvipc/sem. * * Internals: * - scalability: * - all global variables are read-mostly. * - semop() calls and semctl(RMID) are synchronized by RCU. * - most operations do write operations (actually: spin_lock calls) to * the per-semaphore array structure. * Thus: Perfect SMP scaling between independent semaphore arrays. * If multiple semaphores in one array are used, then cache line * trashing on the semaphore array spinlock will limit the scaling. * - semncnt and semzcnt are calculated on demand in count_semcnt() * - the task that performs a successful semop() scans the list of all * sleeping tasks and completes any pending operations that can be fulfilled. * Semaphores are actively given to waiting tasks (necessary for FIFO). * (see update_queue()) * - To improve the scalability, the actual wake-up calls are performed after * dropping all locks. (see wake_up_sem_queue_prepare(), * wake_up_sem_queue_do()) * - All work is done by the waker, the woken up task does not have to do * anything - not even acquiring a lock or dropping a refcount. * - A woken up task may not even touch the semaphore array anymore, it may * have been destroyed already by a semctl(RMID). * - The synchronizations between wake-ups due to a timeout/signal and a * wake-up due to a completed semaphore operation is achieved by using an * intermediate state (IN_WAKEUP). * - UNDO values are stored in an array (one per process and per * semaphore array, lazily allocated). For backwards compatibility, multiple * modes for the UNDO variables are supported (per process, per thread) * (see copy_semundo, CLONE_SYSVSEM) * - There are two lists of the pending operations: a per-array list * and per-semaphore list (stored in the array). This allows to achieve FIFO * ordering without always scanning all pending operations. * The worst-case behavior is nevertheless O(N^2) for N wakeups. */ #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/init.h> #include <linux/proc_fs.h> #include <linux/time.h> #include <linux/security.h> #include <linux/syscalls.h> #include <linux/audit.h> #include <linux/capability.h> #include <linux/seq_file.h> #include <linux/rwsem.h> #include <linux/nsproxy.h> #include <linux/ipc_namespace.h> #include <linux/uaccess.h> #include "util.h" /* One semaphore structure for each semaphore in the system. */ struct sem { int semval; /* current value */ int sempid; /* pid of last operation */ spinlock_t lock; /* spinlock for fine-grained semtimedop */ struct list_head pending_alter; /* pending single-sop operations */ /* that alter the semaphore */ struct list_head pending_const; /* pending single-sop operations */ /* that do not alter the semaphore*/ time_t sem_otime; /* candidate for sem_otime */ } ____cacheline_aligned_in_smp; /* One queue for each sleeping process in the system. */ struct sem_queue { struct list_head list; /* queue of pending operations */ struct task_struct *sleeper; /* this process */ struct sem_undo *undo; /* undo structure */ int pid; /* process id of requesting process */ int status; /* completion status of operation */ struct sembuf *sops; /* array of pending operations */ struct sembuf *blocking; /* the operation that blocked */ int nsops; /* number of operations */ int alter; /* does *sops alter the array? */ }; /* Each task has a list of undo requests. They are executed automatically * when the process exits. */ struct sem_undo { struct list_head list_proc; /* per-process list: * * all undos from one process * rcu protected */ struct rcu_head rcu; /* rcu struct for sem_undo */ struct sem_undo_list *ulp; /* back ptr to sem_undo_list */ struct list_head list_id; /* per semaphore array list: * all undos for one array */ int semid; /* semaphore set identifier */ short *semadj; /* array of adjustments */ /* one per semaphore */ }; /* sem_undo_list controls shared access to the list of sem_undo structures * that may be shared among all a CLONE_SYSVSEM task group. */ struct sem_undo_list { atomic_t refcnt; spinlock_t lock; struct list_head list_proc; }; #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS]) #define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid) static int newary(struct ipc_namespace *, struct ipc_params *); static void freeary(struct ipc_namespace *, struct kern_ipc_perm *); #ifdef CONFIG_PROC_FS static int sysvipc_sem_proc_show(struct seq_file *s, void *it); #endif #define SEMMSL_FAST 256 /* 512 bytes on stack */ #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */ /* * Locking: * sem_undo.id_next, * sem_array.complex_count, * sem_array.pending{_alter,_cont}, * sem_array.sem_undo: global sem_lock() for read/write * sem_undo.proc_next: only "current" is allowed to read/write that field. * * sem_array.sem_base[i].pending_{const,alter}: * global or semaphore sem_lock() for read/write */ #define sc_semmsl sem_ctls[0] #define sc_semmns sem_ctls[1] #define sc_semopm sem_ctls[2] #define sc_semmni sem_ctls[3] void sem_init_ns(struct ipc_namespace *ns) { ns->sc_semmsl = SEMMSL; ns->sc_semmns = SEMMNS; ns->sc_semopm = SEMOPM; ns->sc_semmni = SEMMNI; ns->used_sems = 0; ipc_init_ids(&ns->ids[IPC_SEM_IDS]); } #ifdef CONFIG_IPC_NS void sem_exit_ns(struct ipc_namespace *ns) { free_ipcs(ns, &sem_ids(ns), freeary); idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr); } #endif void __init sem_init(void) { sem_init_ns(&init_ipc_ns); ipc_init_proc_interface("sysvipc/sem", " key semid perms nsems uid gid cuid cgid otime ctime\n", IPC_SEM_IDS, sysvipc_sem_proc_show); } /** * unmerge_queues - unmerge queues, if possible. * @sma: semaphore array * * The function unmerges the wait queues if complex_count is 0. * It must be called prior to dropping the global semaphore array lock. */ static void unmerge_queues(struct sem_array *sma) { struct sem_queue *q, *tq; /* complex operations still around? */ if (sma->complex_count) return; /* * We will switch back to simple mode. * Move all pending operation back into the per-semaphore * queues. */ list_for_each_entry_safe(q, tq, &sma->pending_alter, list) { struct sem *curr; curr = &sma->sem_base[q->sops[0].sem_num]; list_add_tail(&q->list, &curr->pending_alter); } INIT_LIST_HEAD(&sma->pending_alter); } /** * merge_queues - merge single semop queues into global queue * @sma: semaphore array * * This function merges all per-semaphore queues into the global queue. * It is necessary to achieve FIFO ordering for the pending single-sop * operations when a multi-semop operation must sleep. * Only the alter operations must be moved, the const operations can stay. */ static void merge_queues(struct sem_array *sma) { int i; for (i = 0; i < sma->sem_nsems; i++) { struct sem *sem = sma->sem_base + i; list_splice_init(&sem->pending_alter, &sma->pending_alter); } } static void sem_rcu_free(struct rcu_head *head) { struct ipc_rcu *p = container_of(head, struct ipc_rcu, rcu); struct sem_array *sma = ipc_rcu_to_struct(p); security_sem_free(sma); ipc_rcu_free(head); } /* * Wait until all currently ongoing simple ops have completed. * Caller must own sem_perm.lock. * New simple ops cannot start, because simple ops first check * that sem_perm.lock is free. * that a) sem_perm.lock is free and b) complex_count is 0. */ static void sem_wait_array(struct sem_array *sma) { int i; struct sem *sem; if (sma->complex_count) { /* The thread that increased sma->complex_count waited on * all sem->lock locks. Thus we don't need to wait again. */ return; } for (i = 0; i < sma->sem_nsems; i++) { sem = sma->sem_base + i; spin_unlock_wait(&sem->lock); } } /* * If the request contains only one semaphore operation, and there are * no complex transactions pending, lock only the semaphore involved. * Otherwise, lock the entire semaphore array, since we either have * multiple semaphores in our own semops, or we need to look at * semaphores from other pending complex operations. */ static inline int sem_lock(struct sem_array *sma, struct sembuf *sops, int nsops) { struct sem *sem; if (nsops != 1) { /* Complex operation - acquire a full lock */ ipc_lock_object(&sma->sem_perm); /* And wait until all simple ops that are processed * right now have dropped their locks. */ sem_wait_array(sma); return -1; } /* * Only one semaphore affected - try to optimize locking. * The rules are: * - optimized locking is possible if no complex operation * is either enqueued or processed right now. * - The test for enqueued complex ops is simple: * sma->complex_count != 0 * - Testing for complex ops that are processed right now is * a bit more difficult. Complex ops acquire the full lock * and first wait that the running simple ops have completed. * (see above) * Thus: If we own a simple lock and the global lock is free * and complex_count is now 0, then it will stay 0 and * thus just locking sem->lock is sufficient. */ sem = sma->sem_base + sops->sem_num; if (sma->complex_count == 0) { /* * It appears that no complex operation is around. * Acquire the per-semaphore lock. */ spin_lock(&sem->lock); /* Then check that the global lock is free */ if (!spin_is_locked(&sma->sem_perm.lock)) { /* * The ipc object lock check must be visible on all * cores before rechecking the complex count. Otherwise * we can race with another thread that does: * complex_count++; * spin_unlock(sem_perm.lock); */ smp_rmb(); /* * Now repeat the test of complex_count: * It can't change anymore until we drop sem->lock. * Thus: if is now 0, then it will stay 0. */ if (sma->complex_count == 0) { /* fast path successful! */ return sops->sem_num; } } spin_unlock(&sem->lock); } /* slow path: acquire the full lock */ ipc_lock_object(&sma->sem_perm); if (sma->complex_count == 0) { /* False alarm: * There is no complex operation, thus we can switch * back to the fast path. */ spin_lock(&sem->lock); ipc_unlock_object(&sma->sem_perm); return sops->sem_num; } else { /* Not a false alarm, thus complete the sequence for a * full lock. */ sem_wait_array(sma); return -1; } } static inline void sem_unlock(struct sem_array *sma, int locknum) { if (locknum == -1) { unmerge_queues(sma); ipc_unlock_object(&sma->sem_perm); } else { struct sem *sem = sma->sem_base + locknum; spin_unlock(&sem->lock); } } /* * sem_lock_(check_) routines are called in the paths where the rwsem * is not held. * * The caller holds the RCU read lock. */ static inline struct sem_array *sem_obtain_lock(struct ipc_namespace *ns, int id, struct sembuf *sops, int nsops, int *locknum) { struct kern_ipc_perm *ipcp; struct sem_array *sma; ipcp = ipc_obtain_object_idr(&sem_ids(ns), id); if (IS_ERR(ipcp)) return ERR_CAST(ipcp); sma = container_of(ipcp, struct sem_array, sem_perm); *locknum = sem_lock(sma, sops, nsops); /* ipc_rmid() may have already freed the ID while sem_lock * was spinning: verify that the structure is still valid */ if (ipc_valid_object(ipcp)) return container_of(ipcp, struct sem_array, sem_perm); sem_unlock(sma, *locknum); return ERR_PTR(-EINVAL); } static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id) { struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id); if (IS_ERR(ipcp)) return ERR_CAST(ipcp); return container_of(ipcp, struct sem_array, sem_perm); } static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns, int id) { struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id); if (IS_ERR(ipcp)) return ERR_CAST(ipcp); return container_of(ipcp, struct sem_array, sem_perm); } static inline void sem_lock_and_putref(struct sem_array *sma) { sem_lock(sma, NULL, -1); ipc_rcu_putref(sma, ipc_rcu_free); } static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s) { ipc_rmid(&sem_ids(ns), &s->sem_perm); } /* * Lockless wakeup algorithm: * Without the check/retry algorithm a lockless wakeup is possible: * - queue.status is initialized to -EINTR before blocking. * - wakeup is performed by * * unlinking the queue entry from the pending list * * setting queue.status to IN_WAKEUP * This is the notification for the blocked thread that a * result value is imminent. * * call wake_up_process * * set queue.status to the final value. * - the previously blocked thread checks queue.status: * * if it's IN_WAKEUP, then it must wait until the value changes * * if it's not -EINTR, then the operation was completed by * update_queue. semtimedop can return queue.status without * performing any operation on the sem array. * * otherwise it must acquire the spinlock and check what's up. * * The two-stage algorithm is necessary to protect against the following * races: * - if queue.status is set after wake_up_process, then the woken up idle * thread could race forward and try (and fail) to acquire sma->lock * before update_queue had a chance to set queue.status * - if queue.status is written before wake_up_process and if the * blocked process is woken up by a signal between writing * queue.status and the wake_up_process, then the woken up * process could return from semtimedop and die by calling * sys_exit before wake_up_process is called. Then wake_up_process * will oops, because the task structure is already invalid. * (yes, this happened on s390 with sysv msg). * */ #define IN_WAKEUP 1 /** * newary - Create a new semaphore set * @ns: namespace * @params: ptr to the structure that contains key, semflg and nsems * * Called with sem_ids.rwsem held (as a writer) */ static int newary(struct ipc_namespace *ns, struct ipc_params *params) { int id; int retval; struct sem_array *sma; int size; key_t key = params->key; int nsems = params->u.nsems; int semflg = params->flg; int i; if (!nsems) return -EINVAL; if (ns->used_sems + nsems > ns->sc_semmns) return -ENOSPC; size = sizeof(*sma) + nsems * sizeof(struct sem); sma = ipc_rcu_alloc(size); if (!sma) return -ENOMEM; memset(sma, 0, size); sma->sem_perm.mode = (semflg & S_IRWXUGO); sma->sem_perm.key = key; sma->sem_perm.security = NULL; retval = security_sem_alloc(sma); if (retval) { ipc_rcu_putref(sma, ipc_rcu_free); return retval; } sma->sem_base = (struct sem *) &sma[1]; for (i = 0; i < nsems; i++) { INIT_LIST_HEAD(&sma->sem_base[i].pending_alter); INIT_LIST_HEAD(&sma->sem_base[i].pending_const); spin_lock_init(&sma->sem_base[i].lock); } sma->complex_count = 0; INIT_LIST_HEAD(&sma->pending_alter); INIT_LIST_HEAD(&sma->pending_const); INIT_LIST_HEAD(&sma->list_id); sma->sem_nsems = nsems; sma->sem_ctime = get_seconds(); id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni); if (id < 0) { ipc_rcu_putref(sma, sem_rcu_free); return id; } ns->used_sems += nsems; sem_unlock(sma, -1); rcu_read_unlock(); return sma->sem_perm.id; } /* * Called with sem_ids.rwsem and ipcp locked. */ static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg) { struct sem_array *sma; sma = container_of(ipcp, struct sem_array, sem_perm); return security_sem_associate(sma, semflg); } /* * Called with sem_ids.rwsem and ipcp locked. */ static inline int sem_more_checks(struct kern_ipc_perm *ipcp, struct ipc_params *params) { struct sem_array *sma; sma = container_of(ipcp, struct sem_array, sem_perm); if (params->u.nsems > sma->sem_nsems) return -EINVAL; return 0; } SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg) { struct ipc_namespace *ns; static const struct ipc_ops sem_ops = { .getnew = newary, .associate = sem_security, .more_checks = sem_more_checks, }; struct ipc_params sem_params; ns = current->nsproxy->ipc_ns; if (nsems < 0 || nsems > ns->sc_semmsl) return -EINVAL; sem_params.key = key; sem_params.flg = semflg; sem_params.u.nsems = nsems; return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params); } /** * perform_atomic_semop - Perform (if possible) a semaphore operation * @sma: semaphore array * @q: struct sem_queue that describes the operation * * Returns 0 if the operation was possible. * Returns 1 if the operation is impossible, the caller must sleep. * Negative values are error codes. */ static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q) { int result, sem_op, nsops, pid; struct sembuf *sop; struct sem *curr; struct sembuf *sops; struct sem_undo *un; sops = q->sops; nsops = q->nsops; un = q->undo; for (sop = sops; sop < sops + nsops; sop++) { curr = sma->sem_base + sop->sem_num; sem_op = sop->sem_op; result = curr->semval; if (!sem_op && result) goto would_block; result += sem_op; if (result < 0) goto would_block; if (result > SEMVMX) goto out_of_range; if (sop->sem_flg & SEM_UNDO) { int undo = un->semadj[sop->sem_num] - sem_op; /* Exceeding the undo range is an error. */ if (undo < (-SEMAEM - 1) || undo > SEMAEM) goto out_of_range; un->semadj[sop->sem_num] = undo; } curr->semval = result; } sop--; pid = q->pid; while (sop >= sops) { sma->sem_base[sop->sem_num].sempid = pid; sop--; } return 0; out_of_range: result = -ERANGE; goto undo; would_block: q->blocking = sop; if (sop->sem_flg & IPC_NOWAIT) result = -EAGAIN; else result = 1; undo: sop--; while (sop >= sops) { sem_op = sop->sem_op; sma->sem_base[sop->sem_num].semval -= sem_op; if (sop->sem_flg & SEM_UNDO) un->semadj[sop->sem_num] += sem_op; sop--; } return result; } /** wake_up_sem_queue_prepare(q, error): Prepare wake-up * @q: queue entry that must be signaled * @error: Error value for the signal * * Prepare the wake-up of the queue entry q. */ static void wake_up_sem_queue_prepare(struct list_head *pt, struct sem_queue *q, int error) { if (list_empty(pt)) { /* * Hold preempt off so that we don't get preempted and have the * wakee busy-wait until we're scheduled back on. */ preempt_disable(); } q->status = IN_WAKEUP; q->pid = error; list_add_tail(&q->list, pt); } /** * wake_up_sem_queue_do - do the actual wake-up * @pt: list of tasks to be woken up * * Do the actual wake-up. * The function is called without any locks held, thus the semaphore array * could be destroyed already and the tasks can disappear as soon as the * status is set to the actual return code. */ static void wake_up_sem_queue_do(struct list_head *pt) { struct sem_queue *q, *t; int did_something; did_something = !list_empty(pt); list_for_each_entry_safe(q, t, pt, list) { wake_up_process(q->sleeper); /* q can disappear immediately after writing q->status. */ smp_wmb(); q->status = q->pid; } if (did_something) preempt_enable(); } static void unlink_queue(struct sem_array *sma, struct sem_queue *q) { list_del(&q->list); if (q->nsops > 1) sma->complex_count--; } /** check_restart(sma, q) * @sma: semaphore array * @q: the operation that just completed * * update_queue is O(N^2) when it restarts scanning the whole queue of * waiting operations. Therefore this function checks if the restart is * really necessary. It is called after a previously waiting operation * modified the array. * Note that wait-for-zero operations are handled without restart. */ static int check_restart(struct sem_array *sma, struct sem_queue *q) { /* pending complex alter operations are too difficult to analyse */ if (!list_empty(&sma->pending_alter)) return 1; /* we were a sleeping complex operation. Too difficult */ if (q->nsops > 1) return 1; /* It is impossible that someone waits for the new value: * - complex operations always restart. * - wait-for-zero are handled seperately. * - q is a previously sleeping simple operation that * altered the array. It must be a decrement, because * simple increments never sleep. * - If there are older (higher priority) decrements * in the queue, then they have observed the original * semval value and couldn't proceed. The operation * decremented to value - thus they won't proceed either. */ return 0; } /** * wake_const_ops - wake up non-alter tasks * @sma: semaphore array. * @semnum: semaphore that was modified. * @pt: list head for the tasks that must be woken up. * * wake_const_ops must be called after a semaphore in a semaphore array * was set to 0. If complex const operations are pending, wake_const_ops must * be called with semnum = -1, as well as with the number of each modified * semaphore. * The tasks that must be woken up are added to @pt. The return code * is stored in q->pid. * The function returns 1 if at least one operation was completed successfully. */ static int wake_const_ops(struct sem_array *sma, int semnum, struct list_head *pt) { struct sem_queue *q; struct list_head *walk; struct list_head *pending_list; int semop_completed = 0; if (semnum == -1) pending_list = &sma->pending_const; else pending_list = &sma->sem_base[semnum].pending_const; walk = pending_list->next; while (walk != pending_list) { int error; q = container_of(walk, struct sem_queue, list); walk = walk->next; error = perform_atomic_semop(sma, q); if (error <= 0) { /* operation completed, remove from queue & wakeup */ unlink_queue(sma, q); wake_up_sem_queue_prepare(pt, q, error); if (error == 0) semop_completed = 1; } } return semop_completed; } /** * do_smart_wakeup_zero - wakeup all wait for zero tasks * @sma: semaphore array * @sops: operations that were performed * @nsops: number of operations * @pt: list head of the tasks that must be woken up. * * Checks all required queue for wait-for-zero operations, based * on the actual changes that were performed on the semaphore array. * The function returns 1 if at least one operation was completed successfully. */ static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops, int nsops, struct list_head *pt) { int i; int semop_completed = 0; int got_zero = 0; /* first: the per-semaphore queues, if known */ if (sops) { for (i = 0; i < nsops; i++) { int num = sops[i].sem_num; if (sma->sem_base[num].semval == 0) { got_zero = 1; semop_completed |= wake_const_ops(sma, num, pt); } } } else { /* * No sops means modified semaphores not known. * Assume all were changed. */ for (i = 0; i < sma->sem_nsems; i++) { if (sma->sem_base[i].semval == 0) { got_zero = 1; semop_completed |= wake_const_ops(sma, i, pt); } } } /* * If one of the modified semaphores got 0, * then check the global queue, too. */ if (got_zero) semop_completed |= wake_const_ops(sma, -1, pt); return semop_completed; } /** * update_queue - look for tasks that can be completed. * @sma: semaphore array. * @semnum: semaphore that was modified. * @pt: list head for the tasks that must be woken up. * * update_queue must be called after a semaphore in a semaphore array * was modified. If multiple semaphores were modified, update_queue must * be called with semnum = -1, as well as with the number of each modified * semaphore. * The tasks that must be woken up are added to @pt. The return code * is stored in q->pid. * The function internally checks if const operations can now succeed. * * The function return 1 if at least one semop was completed successfully. */ static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt) { struct sem_queue *q; struct list_head *walk; struct list_head *pending_list; int semop_completed = 0; if (semnum == -1) pending_list = &sma->pending_alter; else pending_list = &sma->sem_base[semnum].pending_alter; again: walk = pending_list->next; while (walk != pending_list) { int error, restart; q = container_of(walk, struct sem_queue, list); walk = walk->next; /* If we are scanning the single sop, per-semaphore list of * one semaphore and that semaphore is 0, then it is not * necessary to scan further: simple increments * that affect only one entry succeed immediately and cannot * be in the per semaphore pending queue, and decrements * cannot be successful if the value is already 0. */ if (semnum != -1 && sma->sem_base[semnum].semval == 0) break; error = perform_atomic_semop(sma, q); /* Does q->sleeper still need to sleep? */ if (error > 0) continue; unlink_queue(sma, q); if (error) { restart = 0; } else { semop_completed = 1; do_smart_wakeup_zero(sma, q->sops, q->nsops, pt); restart = check_restart(sma, q); } wake_up_sem_queue_prepare(pt, q, error); if (restart) goto again; } return semop_completed; } /** * set_semotime - set sem_otime * @sma: semaphore array * @sops: operations that modified the array, may be NULL * * sem_otime is replicated to avoid cache line trashing. * This function sets one instance to the current time. */ static void set_semotime(struct sem_array *sma, struct sembuf *sops) { if (sops == NULL) { sma->sem_base[0].sem_otime = get_seconds(); } else { sma->sem_base[sops[0].sem_num].sem_otime = get_seconds(); } } /** * do_smart_update - optimized update_queue * @sma: semaphore array * @sops: operations that were performed * @nsops: number of operations * @otime: force setting otime * @pt: list head of the tasks that must be woken up. * * do_smart_update() does the required calls to update_queue and wakeup_zero, * based on the actual changes that were performed on the semaphore array. * Note that the function does not do the actual wake-up: the caller is * responsible for calling wake_up_sem_queue_do(@pt). * It is safe to perform this call after dropping all locks. */ static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops, int otime, struct list_head *pt) { int i; otime |= do_smart_wakeup_zero(sma, sops, nsops, pt); if (!list_empty(&sma->pending_alter)) { /* semaphore array uses the global queue - just process it. */ otime |= update_queue(sma, -1, pt); } else { if (!sops) { /* * No sops, thus the modified semaphores are not * known. Check all. */ for (i = 0; i < sma->sem_nsems; i++) otime |= update_queue(sma, i, pt); } else { /* * Check the semaphores that were increased: * - No complex ops, thus all sleeping ops are * decrease. * - if we decreased the value, then any sleeping * semaphore ops wont be able to run: If the * previous value was too small, then the new * value will be too small, too. */ for (i = 0; i < nsops; i++) { if (sops[i].sem_op > 0) { otime |= update_queue(sma, sops[i].sem_num, pt); } } } } if (otime) set_semotime(sma, sops); } /* * check_qop: Test if a queued operation sleeps on the semaphore semnum */ static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q, bool count_zero) { struct sembuf *sop = q->blocking; /* * Linux always (since 0.99.10) reported a task as sleeping on all * semaphores. This violates SUS, therefore it was changed to the * standard compliant behavior. * Give the administrators a chance to notice that an application * might misbehave because it relies on the Linux behavior. */ pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n" "The task %s (%d) triggered the difference, watch for misbehavior.\n", current->comm, task_pid_nr(current)); if (sop->sem_num != semnum) return 0; if (count_zero && sop->sem_op == 0) return 1; if (!count_zero && sop->sem_op < 0) return 1; return 0; } /* The following counts are associated to each semaphore: * semncnt number of tasks waiting on semval being nonzero * semzcnt number of tasks waiting on semval being zero * * Per definition, a task waits only on the semaphore of the first semop * that cannot proceed, even if additional operation would block, too. */ static int count_semcnt(struct sem_array *sma, ushort semnum, bool count_zero) { struct list_head *l; struct sem_queue *q; int semcnt; semcnt = 0; /* First: check the simple operations. They are easy to evaluate */ if (count_zero) l = &sma->sem_base[semnum].pending_const; else l = &sma->sem_base[semnum].pending_alter; list_for_each_entry(q, l, list) { /* all task on a per-semaphore list sleep on exactly * that semaphore */ semcnt++; } /* Then: check the complex operations. */ list_for_each_entry(q, &sma->pending_alter, list) { semcnt += check_qop(sma, semnum, q, count_zero); } if (count_zero) { list_for_each_entry(q, &sma->pending_const, list) { semcnt += check_qop(sma, semnum, q, count_zero); } } return semcnt; } /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem * remains locked on exit. */ static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp) { struct sem_undo *un, *tu; struct sem_queue *q, *tq; struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm); struct list_head tasks; int i; /* Free the existing undo structures for this semaphore set. */ ipc_assert_locked_object(&sma->sem_perm); list_for_each_entry_safe(un, tu, &sma->list_id, list_id) { list_del(&un->list_id); spin_lock(&un->ulp->lock); un->semid = -1; list_del_rcu(&un->list_proc); spin_unlock(&un->ulp->lock); kfree_rcu(un, rcu); } /* Wake up all pending processes and let them fail with EIDRM. */ INIT_LIST_HEAD(&tasks); list_for_each_entry_safe(q, tq, &sma->pending_const, list) { unlink_queue(sma, q); wake_up_sem_queue_prepare(&tasks, q, -EIDRM); } list_for_each_entry_safe(q, tq, &sma->pending_alter, list) { unlink_queue(sma, q); wake_up_sem_queue_prepare(&tasks, q, -EIDRM); } for (i = 0; i < sma->sem_nsems; i++) { struct sem *sem = sma->sem_base + i; list_for_each_entry_safe(q, tq, &sem->pending_const, list) { unlink_queue(sma, q); wake_up_sem_queue_prepare(&tasks, q, -EIDRM); } list_for_each_entry_safe(q, tq, &sem->pending_alter, list) { unlink_queue(sma, q); wake_up_sem_queue_prepare(&tasks, q, -EIDRM); } } /* Remove the semaphore set from the IDR */ sem_rmid(ns, sma); sem_unlock(sma, -1); rcu_read_unlock(); wake_up_sem_queue_do(&tasks); ns->used_sems -= sma->sem_nsems; ipc_rcu_putref(sma, sem_rcu_free); } static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version) { switch (version) { case IPC_64: return copy_to_user(buf, in, sizeof(*in)); case IPC_OLD: { struct semid_ds out; memset(&out, 0, sizeof(out)); ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm); out.sem_otime = in->sem_otime; out.sem_ctime = in->sem_ctime; out.sem_nsems = in->sem_nsems; return copy_to_user(buf, &out, sizeof(out)); } default: return -EINVAL; } } static time_t get_semotime(struct sem_array *sma) { int i; time_t res; res = sma->sem_base[0].sem_otime; for (i = 1; i < sma->sem_nsems; i++) { time_t to = sma->sem_base[i].sem_otime; if (to > res) res = to; } return res; } static int semctl_nolock(struct ipc_namespace *ns, int semid, int cmd, int version, void __user *p) { int err; struct sem_array *sma; switch (cmd) { case IPC_INFO: case SEM_INFO: { struct seminfo seminfo; int max_id; err = security_sem_semctl(NULL, cmd); if (err) return err; memset(&seminfo, 0, sizeof(seminfo)); seminfo.semmni = ns->sc_semmni; seminfo.semmns = ns->sc_semmns; seminfo.semmsl = ns->sc_semmsl; seminfo.semopm = ns->sc_semopm; seminfo.semvmx = SEMVMX; seminfo.semmnu = SEMMNU; seminfo.semmap = SEMMAP; seminfo.semume = SEMUME; down_read(&sem_ids(ns).rwsem); if (cmd == SEM_INFO) { seminfo.semusz = sem_ids(ns).in_use; seminfo.semaem = ns->used_sems; } else { seminfo.semusz = SEMUSZ; seminfo.semaem = SEMAEM; } max_id = ipc_get_maxid(&sem_ids(ns)); up_read(&sem_ids(ns).rwsem); if (copy_to_user(p, &seminfo, sizeof(struct seminfo))) return -EFAULT; return (max_id < 0) ? 0 : max_id; } case IPC_STAT: case SEM_STAT: { struct semid64_ds tbuf; int id = 0; memset(&tbuf, 0, sizeof(tbuf)); rcu_read_lock(); if (cmd == SEM_STAT) { sma = sem_obtain_object(ns, semid); if (IS_ERR(sma)) { err = PTR_ERR(sma); goto out_unlock; } id = sma->sem_perm.id; } else { sma = sem_obtain_object_check(ns, semid); if (IS_ERR(sma)) { err = PTR_ERR(sma); goto out_unlock; } } err = -EACCES; if (ipcperms(ns, &sma->sem_perm, S_IRUGO)) goto out_unlock; err = security_sem_semctl(sma, cmd); if (err) goto out_unlock; kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm); tbuf.sem_otime = get_semotime(sma); tbuf.sem_ctime = sma->sem_ctime; tbuf.sem_nsems = sma->sem_nsems; rcu_read_unlock(); if (copy_semid_to_user(p, &tbuf, version)) return -EFAULT; return id; } default: return -EINVAL; } out_unlock: rcu_read_unlock(); return err; } static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum, unsigned long arg) { struct sem_undo *un; struct sem_array *sma; struct sem *curr; int err; struct list_head tasks; int val; #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN) /* big-endian 64bit */ val = arg >> 32; #else /* 32bit or little-endian 64bit */ val = arg; #endif if (val > SEMVMX || val < 0) return -ERANGE; INIT_LIST_HEAD(&tasks); rcu_read_lock(); sma = sem_obtain_object_check(ns, semid); if (IS_ERR(sma)) { rcu_read_unlock(); return PTR_ERR(sma); } if (semnum < 0 || semnum >= sma->sem_nsems) { rcu_read_unlock(); return -EINVAL; } if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) { rcu_read_unlock(); return -EACCES; } err = security_sem_semctl(sma, SETVAL); if (err) { rcu_read_unlock(); return -EACCES; } sem_lock(sma, NULL, -1); if (!ipc_valid_object(&sma->sem_perm)) { sem_unlock(sma, -1); rcu_read_unlock(); return -EIDRM; } curr = &sma->sem_base[semnum]; ipc_assert_locked_object(&sma->sem_perm); list_for_each_entry(un, &sma->list_id, list_id) un->semadj[semnum] = 0; curr->semval = val; curr->sempid = task_tgid_vnr(current); sma->sem_ctime = get_seconds(); /* maybe some queued-up processes were waiting for this */ do_smart_update(sma, NULL, 0, 0, &tasks); sem_unlock(sma, -1); rcu_read_unlock(); wake_up_sem_queue_do(&tasks); return 0; } static int semctl_main(struct ipc_namespace *ns, int semid, int semnum, int cmd, void __user *p) { struct sem_array *sma; struct sem *curr; int err, nsems; ushort fast_sem_io[SEMMSL_FAST]; ushort *sem_io = fast_sem_io; struct list_head tasks; INIT_LIST_HEAD(&tasks); rcu_read_lock(); sma = sem_obtain_object_check(ns, semid); if (IS_ERR(sma)) { rcu_read_unlock(); return PTR_ERR(sma); } nsems = sma->sem_nsems; err = -EACCES; if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO)) goto out_rcu_wakeup; err = security_sem_semctl(sma, cmd); if (err) goto out_rcu_wakeup; err = -EACCES; switch (cmd) { case GETALL: { ushort __user *array = p; int i; sem_lock(sma, NULL, -1); if (!ipc_valid_object(&sma->sem_perm)) { err = -EIDRM; goto out_unlock; } if (nsems > SEMMSL_FAST) { if (!ipc_rcu_getref(sma)) { err = -EIDRM; goto out_unlock; } sem_unlock(sma, -1); rcu_read_unlock(); sem_io = ipc_alloc(sizeof(ushort)*nsems); if (sem_io == NULL) { ipc_rcu_putref(sma, ipc_rcu_free); return -ENOMEM; } rcu_read_lock(); sem_lock_and_putref(sma); if (!ipc_valid_object(&sma->sem_perm)) { err = -EIDRM; goto out_unlock; } } for (i = 0; i < sma->sem_nsems; i++) sem_io[i] = sma->sem_base[i].semval; sem_unlock(sma, -1); rcu_read_unlock(); err = 0; if (copy_to_user(array, sem_io, nsems*sizeof(ushort))) err = -EFAULT; goto out_free; } case SETALL: { int i; struct sem_undo *un; if (!ipc_rcu_getref(sma)) { err = -EIDRM; goto out_rcu_wakeup; } rcu_read_unlock(); if (nsems > SEMMSL_FAST) { sem_io = ipc_alloc(sizeof(ushort)*nsems); if (sem_io == NULL) { ipc_rcu_putref(sma, ipc_rcu_free); return -ENOMEM; } } if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) { ipc_rcu_putref(sma, ipc_rcu_free); err = -EFAULT; goto out_free; } for (i = 0; i < nsems; i++) { if (sem_io[i] > SEMVMX) { ipc_rcu_putref(sma, ipc_rcu_free); err = -ERANGE; goto out_free; } } rcu_read_lock(); sem_lock_and_putref(sma); if (!ipc_valid_object(&sma->sem_perm)) { err = -EIDRM; goto out_unlock; } for (i = 0; i < nsems; i++) sma->sem_base[i].semval = sem_io[i]; ipc_assert_locked_object(&sma->sem_perm); list_for_each_entry(un, &sma->list_id, list_id) { for (i = 0; i < nsems; i++) un->semadj[i] = 0; } sma->sem_ctime = get_seconds(); /* maybe some queued-up processes were waiting for this */ do_smart_update(sma, NULL, 0, 0, &tasks); err = 0; goto out_unlock; } /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */ } err = -EINVAL; if (semnum < 0 || semnum >= nsems) goto out_rcu_wakeup; sem_lock(sma, NULL, -1); if (!ipc_valid_object(&sma->sem_perm)) { err = -EIDRM; goto out_unlock; } curr = &sma->sem_base[semnum]; switch (cmd) { case GETVAL: err = curr->semval; goto out_unlock; case GETPID: err = curr->sempid; goto out_unlock; case GETNCNT: err = count_semcnt(sma, semnum, 0); goto out_unlock; case GETZCNT: err = count_semcnt(sma, semnum, 1); goto out_unlock; } out_unlock: sem_unlock(sma, -1); out_rcu_wakeup: rcu_read_unlock(); wake_up_sem_queue_do(&tasks); out_free: if (sem_io != fast_sem_io) ipc_free(sem_io, sizeof(ushort)*nsems); return err; } static inline unsigned long copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version) { switch (version) { case IPC_64: if (copy_from_user(out, buf, sizeof(*out))) return -EFAULT; return 0; case IPC_OLD: { struct semid_ds tbuf_old; if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old))) return -EFAULT; out->sem_perm.uid = tbuf_old.sem_perm.uid; out->sem_perm.gid = tbuf_old.sem_perm.gid; out->sem_perm.mode = tbuf_old.sem_perm.mode; return 0; } default: return -EINVAL; } } /* * This function handles some semctl commands which require the rwsem * to be held in write mode. * NOTE: no locks must be held, the rwsem is taken inside this function. */ static int semctl_down(struct ipc_namespace *ns, int semid, int cmd, int version, void __user *p) { struct sem_array *sma; int err; struct semid64_ds semid64; struct kern_ipc_perm *ipcp; if (cmd == IPC_SET) { if (copy_semid_from_user(&semid64, p, version)) return -EFAULT; } down_write(&sem_ids(ns).rwsem); rcu_read_lock(); ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd, &semid64.sem_perm, 0); if (IS_ERR(ipcp)) { err = PTR_ERR(ipcp); goto out_unlock1; } sma = container_of(ipcp, struct sem_array, sem_perm); err = security_sem_semctl(sma, cmd); if (err) goto out_unlock1; switch (cmd) { case IPC_RMID: sem_lock(sma, NULL, -1); /* freeary unlocks the ipc object and rcu */ freeary(ns, ipcp); goto out_up; case IPC_SET: sem_lock(sma, NULL, -1); err = ipc_update_perm(&semid64.sem_perm, ipcp); if (err) goto out_unlock0; sma->sem_ctime = get_seconds(); break; default: err = -EINVAL; goto out_unlock1; } out_unlock0: sem_unlock(sma, -1); out_unlock1: rcu_read_unlock(); out_up: up_write(&sem_ids(ns).rwsem); return err; } SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg) { int version; struct ipc_namespace *ns; void __user *p = (void __user *)arg; if (semid < 0) return -EINVAL; version = ipc_parse_version(&cmd); ns = current->nsproxy->ipc_ns; switch (cmd) { case IPC_INFO: case SEM_INFO: case IPC_STAT: case SEM_STAT: return semctl_nolock(ns, semid, cmd, version, p); case GETALL: case GETVAL: case GETPID: case GETNCNT: case GETZCNT: case SETALL: return semctl_main(ns, semid, semnum, cmd, p); case SETVAL: return semctl_setval(ns, semid, semnum, arg); case IPC_RMID: case IPC_SET: return semctl_down(ns, semid, cmd, version, p); default: return -EINVAL; } } /* If the task doesn't already have a undo_list, then allocate one * here. We guarantee there is only one thread using this undo list, * and current is THE ONE * * If this allocation and assignment succeeds, but later * portions of this code fail, there is no need to free the sem_undo_list. * Just let it stay associated with the task, and it'll be freed later * at exit time. * * This can block, so callers must hold no locks. */ static inline int get_undo_list(struct sem_undo_list **undo_listp) { struct sem_undo_list *undo_list; undo_list = current->sysvsem.undo_list; if (!undo_list) { undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL); if (undo_list == NULL) return -ENOMEM; spin_lock_init(&undo_list->lock); atomic_set(&undo_list->refcnt, 1); INIT_LIST_HEAD(&undo_list->list_proc); current->sysvsem.undo_list = undo_list; } *undo_listp = undo_list; return 0; } static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid) { struct sem_undo *un; list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) { if (un->semid == semid) return un; } return NULL; } static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid) { struct sem_undo *un; assert_spin_locked(&ulp->lock); un = __lookup_undo(ulp, semid); if (un) { list_del_rcu(&un->list_proc); list_add_rcu(&un->list_proc, &ulp->list_proc); } return un; } /** * find_alloc_undo - lookup (and if not present create) undo array * @ns: namespace * @semid: semaphore array id * * The function looks up (and if not present creates) the undo structure. * The size of the undo structure depends on the size of the semaphore * array, thus the alloc path is not that straightforward. * Lifetime-rules: sem_undo is rcu-protected, on success, the function * performs a rcu_read_lock(). */ static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid) { struct sem_array *sma; struct sem_undo_list *ulp; struct sem_undo *un, *new; int nsems, error; error = get_undo_list(&ulp); if (error) return ERR_PTR(error); rcu_read_lock(); spin_lock(&ulp->lock); un = lookup_undo(ulp, semid); spin_unlock(&ulp->lock); if (likely(un != NULL)) goto out; /* no undo structure around - allocate one. */ /* step 1: figure out the size of the semaphore array */ sma = sem_obtain_object_check(ns, semid); if (IS_ERR(sma)) { rcu_read_unlock(); return ERR_CAST(sma); } nsems = sma->sem_nsems; if (!ipc_rcu_getref(sma)) { rcu_read_unlock(); un = ERR_PTR(-EIDRM); goto out; } rcu_read_unlock(); /* step 2: allocate new undo structure */ new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL); if (!new) { ipc_rcu_putref(sma, ipc_rcu_free); return ERR_PTR(-ENOMEM); } /* step 3: Acquire the lock on semaphore array */ rcu_read_lock(); sem_lock_and_putref(sma); if (!ipc_valid_object(&sma->sem_perm)) { sem_unlock(sma, -1); rcu_read_unlock(); kfree(new); un = ERR_PTR(-EIDRM); goto out; } spin_lock(&ulp->lock); /* * step 4: check for races: did someone else allocate the undo struct? */ un = lookup_undo(ulp, semid); if (un) { kfree(new); goto success; } /* step 5: initialize & link new undo structure */ new->semadj = (short *) &new[1]; new->ulp = ulp; new->semid = semid; assert_spin_locked(&ulp->lock); list_add_rcu(&new->list_proc, &ulp->list_proc); ipc_assert_locked_object(&sma->sem_perm); list_add(&new->list_id, &sma->list_id); un = new; success: spin_unlock(&ulp->lock); sem_unlock(sma, -1); out: return un; } /** * get_queue_result - retrieve the result code from sem_queue * @q: Pointer to queue structure * * Retrieve the return code from the pending queue. If IN_WAKEUP is found in * q->status, then we must loop until the value is replaced with the final * value: This may happen if a task is woken up by an unrelated event (e.g. * signal) and in parallel the task is woken up by another task because it got * the requested semaphores. * * The function can be called with or without holding the semaphore spinlock. */ static int get_queue_result(struct sem_queue *q) { int error; error = q->status; while (unlikely(error == IN_WAKEUP)) { cpu_relax(); error = q->status; } return error; } SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops, unsigned, nsops, const struct timespec __user *, timeout) { int error = -EINVAL; struct sem_array *sma; struct sembuf fast_sops[SEMOPM_FAST]; struct sembuf *sops = fast_sops, *sop; struct sem_undo *un; int undos = 0, alter = 0, max, locknum; struct sem_queue queue; unsigned long jiffies_left = 0; struct ipc_namespace *ns; struct list_head tasks; ns = current->nsproxy->ipc_ns; if (nsops < 1 || semid < 0) return -EINVAL; if (nsops > ns->sc_semopm) return -E2BIG; if (nsops > SEMOPM_FAST) { sops = kmalloc(sizeof(*sops)*nsops, GFP_KERNEL); if (sops == NULL) return -ENOMEM; } if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) { error = -EFAULT; goto out_free; } if (timeout) { struct timespec _timeout; if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) { error = -EFAULT; goto out_free; } if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 || _timeout.tv_nsec >= 1000000000L) { error = -EINVAL; goto out_free; } jiffies_left = timespec_to_jiffies(&_timeout); } max = 0; for (sop = sops; sop < sops + nsops; sop++) { if (sop->sem_num >= max) max = sop->sem_num; if (sop->sem_flg & SEM_UNDO) undos = 1; if (sop->sem_op != 0) alter = 1; } INIT_LIST_HEAD(&tasks); if (undos) { /* On success, find_alloc_undo takes the rcu_read_lock */ un = find_alloc_undo(ns, semid); if (IS_ERR(un)) { error = PTR_ERR(un); goto out_free; } } else { un = NULL; rcu_read_lock(); } sma = sem_obtain_object_check(ns, semid); if (IS_ERR(sma)) { rcu_read_unlock(); error = PTR_ERR(sma); goto out_free; } error = -EFBIG; if (max >= sma->sem_nsems) goto out_rcu_wakeup; error = -EACCES; if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) goto out_rcu_wakeup; error = security_sem_semop(sma, sops, nsops, alter); if (error) goto out_rcu_wakeup; error = -EIDRM; locknum = sem_lock(sma, sops, nsops); /* * We eventually might perform the following check in a lockless * fashion, considering ipc_valid_object() locking constraints. * If nsops == 1 and there is no contention for sem_perm.lock, then * only a per-semaphore lock is held and it's OK to proceed with the * check below. More details on the fine grained locking scheme * entangled here and why it's RMID race safe on comments at sem_lock() */ if (!ipc_valid_object(&sma->sem_perm)) goto out_unlock_free; /* * semid identifiers are not unique - find_alloc_undo may have * allocated an undo structure, it was invalidated by an RMID * and now a new array with received the same id. Check and fail. * This case can be detected checking un->semid. The existence of * "un" itself is guaranteed by rcu. */ if (un && un->semid == -1) goto out_unlock_free; queue.sops = sops; queue.nsops = nsops; queue.undo = un; queue.pid = task_tgid_vnr(current); queue.alter = alter; error = perform_atomic_semop(sma, &queue); if (error == 0) { /* If the operation was successful, then do * the required updates. */ if (alter) do_smart_update(sma, sops, nsops, 1, &tasks); else set_semotime(sma, sops); } if (error <= 0) goto out_unlock_free; /* We need to sleep on this operation, so we put the current * task into the pending queue and go to sleep. */ if (nsops == 1) { struct sem *curr; curr = &sma->sem_base[sops->sem_num]; if (alter) { if (sma->complex_count) { list_add_tail(&queue.list, &sma->pending_alter); } else { list_add_tail(&queue.list, &curr->pending_alter); } } else { list_add_tail(&queue.list, &curr->pending_const); } } else { if (!sma->complex_count) merge_queues(sma); if (alter) list_add_tail(&queue.list, &sma->pending_alter); else list_add_tail(&queue.list, &sma->pending_const); sma->complex_count++; } queue.status = -EINTR; queue.sleeper = current; sleep_again: __set_current_state(TASK_INTERRUPTIBLE); sem_unlock(sma, locknum); rcu_read_unlock(); if (timeout) jiffies_left = schedule_timeout(jiffies_left); else schedule(); error = get_queue_result(&queue); if (error != -EINTR) { /* fast path: update_queue already obtained all requested * resources. * Perform a smp_mb(): User space could assume that semop() * is a memory barrier: Without the mb(), the cpu could * speculatively read in user space stale data that was * overwritten by the previous owner of the semaphore. */ smp_mb(); goto out_free; } rcu_read_lock(); sma = sem_obtain_lock(ns, semid, sops, nsops, &locknum); /* * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing. */ error = get_queue_result(&queue); /* * Array removed? If yes, leave without sem_unlock(). */ if (IS_ERR(sma)) { rcu_read_unlock(); goto out_free; } /* * If queue.status != -EINTR we are woken up by another process. * Leave without unlink_queue(), but with sem_unlock(). */ if (error != -EINTR) goto out_unlock_free; /* * If an interrupt occurred we have to clean up the queue */ if (timeout && jiffies_left == 0) error = -EAGAIN; /* * If the wakeup was spurious, just retry */ if (error == -EINTR && !signal_pending(current)) goto sleep_again; unlink_queue(sma, &queue); out_unlock_free: sem_unlock(sma, locknum); out_rcu_wakeup: rcu_read_unlock(); wake_up_sem_queue_do(&tasks); out_free: if (sops != fast_sops) kfree(sops); return error; } SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops, unsigned, nsops) { return sys_semtimedop(semid, tsops, nsops, NULL); } /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between * parent and child tasks. */ int copy_semundo(unsigned long clone_flags, struct task_struct *tsk) { struct sem_undo_list *undo_list; int error; if (clone_flags & CLONE_SYSVSEM) { error = get_undo_list(&undo_list); if (error) return error; atomic_inc(&undo_list->refcnt); tsk->sysvsem.undo_list = undo_list; } else tsk->sysvsem.undo_list = NULL; return 0; } /* * add semadj values to semaphores, free undo structures. * undo structures are not freed when semaphore arrays are destroyed * so some of them may be out of date. * IMPLEMENTATION NOTE: There is some confusion over whether the * set of adjustments that needs to be done should be done in an atomic * manner or not. That is, if we are attempting to decrement the semval * should we queue up and wait until we can do so legally? * The original implementation attempted to do this (queue and wait). * The current implementation does not do so. The POSIX standard * and SVID should be consulted to determine what behavior is mandated. */ void exit_sem(struct task_struct *tsk) { struct sem_undo_list *ulp; ulp = tsk->sysvsem.undo_list; if (!ulp) return; tsk->sysvsem.undo_list = NULL; if (!atomic_dec_and_test(&ulp->refcnt)) return; for (;;) { struct sem_array *sma; struct sem_undo *un; struct list_head tasks; int semid, i; rcu_read_lock(); un = list_entry_rcu(ulp->list_proc.next, struct sem_undo, list_proc); if (&un->list_proc == &ulp->list_proc) semid = -1; else semid = un->semid; if (semid == -1) { rcu_read_unlock(); break; } sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, un->semid); /* exit_sem raced with IPC_RMID, nothing to do */ if (IS_ERR(sma)) { rcu_read_unlock(); continue; } sem_lock(sma, NULL, -1); /* exit_sem raced with IPC_RMID, nothing to do */ if (!ipc_valid_object(&sma->sem_perm)) { sem_unlock(sma, -1); rcu_read_unlock(); continue; } un = __lookup_undo(ulp, semid); if (un == NULL) { /* exit_sem raced with IPC_RMID+semget() that created * exactly the same semid. Nothing to do. */ sem_unlock(sma, -1); rcu_read_unlock(); continue; } /* remove un from the linked lists */ ipc_assert_locked_object(&sma->sem_perm); list_del(&un->list_id); spin_lock(&ulp->lock); list_del_rcu(&un->list_proc); spin_unlock(&ulp->lock); /* perform adjustments registered in un */ for (i = 0; i < sma->sem_nsems; i++) { struct sem *semaphore = &sma->sem_base[i]; if (un->semadj[i]) { semaphore->semval += un->semadj[i]; /* * Range checks of the new semaphore value, * not defined by sus: * - Some unices ignore the undo entirely * (e.g. HP UX 11i 11.22, Tru64 V5.1) * - some cap the value (e.g. FreeBSD caps * at 0, but doesn't enforce SEMVMX) * * Linux caps the semaphore value, both at 0 * and at SEMVMX. * * Manfred <manfred@colorfullife.com> */ if (semaphore->semval < 0) semaphore->semval = 0; if (semaphore->semval > SEMVMX) semaphore->semval = SEMVMX; semaphore->sempid = task_tgid_vnr(current); } } /* maybe some queued-up processes were waiting for this */ INIT_LIST_HEAD(&tasks); do_smart_update(sma, NULL, 0, 1, &tasks); sem_unlock(sma, -1); rcu_read_unlock(); wake_up_sem_queue_do(&tasks); kfree_rcu(un, rcu); } kfree(ulp); } #ifdef CONFIG_PROC_FS static int sysvipc_sem_proc_show(struct seq_file *s, void *it) { struct user_namespace *user_ns = seq_user_ns(s); struct sem_array *sma = it; time_t sem_otime; /* * The proc interface isn't aware of sem_lock(), it calls * ipc_lock_object() directly (in sysvipc_find_ipc). * In order to stay compatible with sem_lock(), we must wait until * all simple semop() calls have left their critical regions. */ sem_wait_array(sma); sem_otime = get_semotime(sma); seq_printf(s, "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n", sma->sem_perm.key, sma->sem_perm.id, sma->sem_perm.mode, sma->sem_nsems, from_kuid_munged(user_ns, sma->sem_perm.uid), from_kgid_munged(user_ns, sma->sem_perm.gid), from_kuid_munged(user_ns, sma->sem_perm.cuid), from_kgid_munged(user_ns, sma->sem_perm.cgid), sem_otime, sma->sem_ctime); return 0; } #endif