/* * linux/kernel/compat.c * * Kernel compatibililty routines for e.g. 32 bit syscall support * on 64 bit kernels. * * Copyright (C) 2002-2003 Stephen Rothwell, IBM Corporation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/linkage.h> #include <linux/compat.h> #include <linux/errno.h> #include <linux/time.h> #include <linux/signal.h> #include <linux/sched.h> /* for MAX_SCHEDULE_TIMEOUT */ #include <linux/syscalls.h> #include <linux/unistd.h> #include <linux/security.h> #include <linux/timex.h> #include <linux/migrate.h> #include <linux/posix-timers.h> #include <asm/uaccess.h> int get_compat_timespec(struct timespec *ts, const struct compat_timespec __user *cts) { return (!access_ok(VERIFY_READ, cts, sizeof(*cts)) || __get_user(ts->tv_sec, &cts->tv_sec) || __get_user(ts->tv_nsec, &cts->tv_nsec)) ? -EFAULT : 0; } int put_compat_timespec(const struct timespec *ts, struct compat_timespec __user *cts) { return (!access_ok(VERIFY_WRITE, cts, sizeof(*cts)) || __put_user(ts->tv_sec, &cts->tv_sec) || __put_user(ts->tv_nsec, &cts->tv_nsec)) ? -EFAULT : 0; } static long compat_nanosleep_restart(struct restart_block *restart) { struct compat_timespec __user *rmtp; struct timespec rmt; mm_segment_t oldfs; long ret; rmtp = (struct compat_timespec __user *)(restart->arg1); restart->arg1 = (unsigned long)&rmt; oldfs = get_fs(); set_fs(KERNEL_DS); ret = hrtimer_nanosleep_restart(restart); set_fs(oldfs); if (ret) { restart->arg1 = (unsigned long)rmtp; if (rmtp && put_compat_timespec(&rmt, rmtp)) return -EFAULT; } return ret; } asmlinkage long compat_sys_nanosleep(struct compat_timespec __user *rqtp, struct compat_timespec __user *rmtp) { struct timespec tu, rmt; mm_segment_t oldfs; long ret; if (get_compat_timespec(&tu, rqtp)) return -EFAULT; if (!timespec_valid(&tu)) return -EINVAL; oldfs = get_fs(); set_fs(KERNEL_DS); ret = hrtimer_nanosleep(&tu, rmtp ? (struct timespec __user *)&rmt : NULL, HRTIMER_MODE_REL, CLOCK_MONOTONIC); set_fs(oldfs); if (ret) { struct restart_block *restart = ¤t_thread_info()->restart_block; restart->fn = compat_nanosleep_restart; restart->arg1 = (unsigned long)rmtp; if (rmtp && put_compat_timespec(&rmt, rmtp)) return -EFAULT; } return ret; } static inline long get_compat_itimerval(struct itimerval *o, struct compat_itimerval __user *i) { return (!access_ok(VERIFY_READ, i, sizeof(*i)) || (__get_user(o->it_interval.tv_sec, &i->it_interval.tv_sec) | __get_user(o->it_interval.tv_usec, &i->it_interval.tv_usec) | __get_user(o->it_value.tv_sec, &i->it_value.tv_sec) | __get_user(o->it_value.tv_usec, &i->it_value.tv_usec))); } static inline long put_compat_itimerval(struct compat_itimerval __user *o, struct itimerval *i) { return (!access_ok(VERIFY_WRITE, o, sizeof(*o)) || (__put_user(i->it_interval.tv_sec, &o->it_interval.tv_sec) | __put_user(i->it_interval.tv_usec, &o->it_interval.tv_usec) | __put_user(i->it_value.tv_sec, &o->it_value.tv_sec) | __put_user(i->it_value.tv_usec, &o->it_value.tv_usec))); } asmlinkage long compat_sys_getitimer(int which, struct compat_itimerval __user *it) { struct itimerval kit; int error; error = do_getitimer(which, &kit); if (!error && put_compat_itimerval(it, &kit)) error = -EFAULT; return error; } asmlinkage long compat_sys_setitimer(int which, struct compat_itimerval __user *in, struct compat_itimerval __user *out) { struct itimerval kin, kout; int error; if (in) { if (get_compat_itimerval(&kin, in)) return -EFAULT; } else memset(&kin, 0, sizeof(kin)); error = do_setitimer(which, &kin, out ? &kout : NULL); if (error || !out) return error; if (put_compat_itimerval(out, &kout)) return -EFAULT; return 0; } asmlinkage long compat_sys_times(struct compat_tms __user *tbuf) { /* * In the SMP world we might just be unlucky and have one of * the times increment as we use it. Since the value is an * atomically safe type this is just fine. Conceptually its * as if the syscall took an instant longer to occur. */ if (tbuf) { struct compat_tms tmp; struct task_struct *tsk = current; struct task_struct *t; cputime_t utime, stime, cutime, cstime; read_lock(&tasklist_lock); utime = tsk->signal->utime; stime = tsk->signal->stime; t = tsk; do { utime = cputime_add(utime, t->utime); stime = cputime_add(stime, t->stime); t = next_thread(t); } while (t != tsk); /* * While we have tasklist_lock read-locked, no dying thread * can be updating current->signal->[us]time. Instead, * we got their counts included in the live thread loop. * However, another thread can come in right now and * do a wait call that updates current->signal->c[us]time. * To make sure we always see that pair updated atomically, * we take the siglock around fetching them. */ spin_lock_irq(&tsk->sighand->siglock); cutime = tsk->signal->cutime; cstime = tsk->signal->cstime; spin_unlock_irq(&tsk->sighand->siglock); read_unlock(&tasklist_lock); tmp.tms_utime = compat_jiffies_to_clock_t(cputime_to_jiffies(utime)); tmp.tms_stime = compat_jiffies_to_clock_t(cputime_to_jiffies(stime)); tmp.tms_cutime = compat_jiffies_to_clock_t(cputime_to_jiffies(cutime)); tmp.tms_cstime = compat_jiffies_to_clock_t(cputime_to_jiffies(cstime)); if (copy_to_user(tbuf, &tmp, sizeof(tmp))) return -EFAULT; } return compat_jiffies_to_clock_t(jiffies); } /* * Assumption: old_sigset_t and compat_old_sigset_t are both * types that can be passed to put_user()/get_user(). */ asmlinkage long compat_sys_sigpending(compat_old_sigset_t __user *set) { old_sigset_t s; long ret; mm_segment_t old_fs = get_fs(); set_fs(KERNEL_DS); ret = sys_sigpending((old_sigset_t __user *) &s); set_fs(old_fs); if (ret == 0) ret = put_user(s, set); return ret; } asmlinkage long compat_sys_sigprocmask(int how, compat_old_sigset_t __user *set, compat_old_sigset_t __user *oset) { old_sigset_t s; long ret; mm_segment_t old_fs; if (set && get_user(s, set)) return -EFAULT; old_fs = get_fs(); set_fs(KERNEL_DS); ret = sys_sigprocmask(how, set ? (old_sigset_t __user *) &s : NULL, oset ? (old_sigset_t __user *) &s : NULL); set_fs(old_fs); if (ret == 0) if (oset) ret = put_user(s, oset); return ret; } asmlinkage long compat_sys_setrlimit(unsigned int resource, struct compat_rlimit __user *rlim) { struct rlimit r; int ret; mm_segment_t old_fs = get_fs (); if (resource >= RLIM_NLIMITS) return -EINVAL; if (!access_ok(VERIFY_READ, rlim, sizeof(*rlim)) || __get_user(r.rlim_cur, &rlim->rlim_cur) || __get_user(r.rlim_max, &rlim->rlim_max)) return -EFAULT; if (r.rlim_cur == COMPAT_RLIM_INFINITY) r.rlim_cur = RLIM_INFINITY; if (r.rlim_max == COMPAT_RLIM_INFINITY) r.rlim_max = RLIM_INFINITY; set_fs(KERNEL_DS); ret = sys_setrlimit(resource, (struct rlimit __user *) &r); set_fs(old_fs); return ret; } #ifdef COMPAT_RLIM_OLD_INFINITY asmlinkage long compat_sys_old_getrlimit(unsigned int resource, struct compat_rlimit __user *rlim) { struct rlimit r; int ret; mm_segment_t old_fs = get_fs(); set_fs(KERNEL_DS); ret = sys_old_getrlimit(resource, &r); set_fs(old_fs); if (!ret) { if (r.rlim_cur > COMPAT_RLIM_OLD_INFINITY) r.rlim_cur = COMPAT_RLIM_INFINITY; if (r.rlim_max > COMPAT_RLIM_OLD_INFINITY) r.rlim_max = COMPAT_RLIM_INFINITY; if (!access_ok(VERIFY_WRITE, rlim, sizeof(*rlim)) || __put_user(r.rlim_cur, &rlim->rlim_cur) || __put_user(r.rlim_max, &rlim->rlim_max)) return -EFAULT; } return ret; } #endif asmlinkage long compat_sys_getrlimit (unsigned int resource, struct compat_rlimit __user *rlim) { struct rlimit r; int ret; mm_segment_t old_fs = get_fs(); set_fs(KERNEL_DS); ret = sys_getrlimit(resource, (struct rlimit __user *) &r); set_fs(old_fs); if (!ret) { if (r.rlim_cur > COMPAT_RLIM_INFINITY) r.rlim_cur = COMPAT_RLIM_INFINITY; if (r.rlim_max > COMPAT_RLIM_INFINITY) r.rlim_max = COMPAT_RLIM_INFINITY; if (!access_ok(VERIFY_WRITE, rlim, sizeof(*rlim)) || __put_user(r.rlim_cur, &rlim->rlim_cur) || __put_user(r.rlim_max, &rlim->rlim_max)) return -EFAULT; } return ret; } int put_compat_rusage(const struct rusage *r, struct compat_rusage __user *ru) { if (!access_ok(VERIFY_WRITE, ru, sizeof(*ru)) || __put_user(r->ru_utime.tv_sec, &ru->ru_utime.tv_sec) || __put_user(r->ru_utime.tv_usec, &ru->ru_utime.tv_usec) || __put_user(r->ru_stime.tv_sec, &ru->ru_stime.tv_sec) || __put_user(r->ru_stime.tv_usec, &ru->ru_stime.tv_usec) || __put_user(r->ru_maxrss, &ru->ru_maxrss) || __put_user(r->ru_ixrss, &ru->ru_ixrss) || __put_user(r->ru_idrss, &ru->ru_idrss) || __put_user(r->ru_isrss, &ru->ru_isrss) || __put_user(r->ru_minflt, &ru->ru_minflt) || __put_user(r->ru_majflt, &ru->ru_majflt) || __put_user(r->ru_nswap, &ru->ru_nswap) || __put_user(r->ru_inblock, &ru->ru_inblock) || __put_user(r->ru_oublock, &ru->ru_oublock) || __put_user(r->ru_msgsnd, &ru->ru_msgsnd) || __put_user(r->ru_msgrcv, &ru->ru_msgrcv) || __put_user(r->ru_nsignals, &ru->ru_nsignals) || __put_user(r->ru_nvcsw, &ru->ru_nvcsw) || __put_user(r->ru_nivcsw, &ru->ru_nivcsw)) return -EFAULT; return 0; } asmlinkage long compat_sys_getrusage(int who, struct compat_rusage __user *ru) { struct rusage r; int ret; mm_segment_t old_fs = get_fs(); set_fs(KERNEL_DS); ret = sys_getrusage(who, (struct rusage __user *) &r); set_fs(old_fs); if (ret) return ret; if (put_compat_rusage(&r, ru)) return -EFAULT; return 0; } asmlinkage long compat_sys_wait4(compat_pid_t pid, compat_uint_t __user *stat_addr, int options, struct compat_rusage __user *ru) { if (!ru) { return sys_wait4(pid, stat_addr, options, NULL); } else { struct rusage r; int ret; unsigned int status; mm_segment_t old_fs = get_fs(); set_fs (KERNEL_DS); ret = sys_wait4(pid, (stat_addr ? (unsigned int __user *) &status : NULL), options, (struct rusage __user *) &r); set_fs (old_fs); if (ret > 0) { if (put_compat_rusage(&r, ru)) return -EFAULT; if (stat_addr && put_user(status, stat_addr)) return -EFAULT; } return ret; } } asmlinkage long compat_sys_waitid(int which, compat_pid_t pid, struct compat_siginfo __user *uinfo, int options, struct compat_rusage __user *uru) { siginfo_t info; struct rusage ru; long ret; mm_segment_t old_fs = get_fs(); memset(&info, 0, sizeof(info)); set_fs(KERNEL_DS); ret = sys_waitid(which, pid, (siginfo_t __user *)&info, options, uru ? (struct rusage __user *)&ru : NULL); set_fs(old_fs); if ((ret < 0) || (info.si_signo == 0)) return ret; if (uru) { ret = put_compat_rusage(&ru, uru); if (ret) return ret; } BUG_ON(info.si_code & __SI_MASK); info.si_code |= __SI_CHLD; return copy_siginfo_to_user32(uinfo, &info); } static int compat_get_user_cpu_mask(compat_ulong_t __user *user_mask_ptr, unsigned len, cpumask_t *new_mask) { unsigned long *k; if (len < sizeof(cpumask_t)) memset(new_mask, 0, sizeof(cpumask_t)); else if (len > sizeof(cpumask_t)) len = sizeof(cpumask_t); k = cpus_addr(*new_mask); return compat_get_bitmap(k, user_mask_ptr, len * 8); } asmlinkage long compat_sys_sched_setaffinity(compat_pid_t pid, unsigned int len, compat_ulong_t __user *user_mask_ptr) { cpumask_t new_mask; int retval; retval = compat_get_user_cpu_mask(user_mask_ptr, len, &new_mask); if (retval) return retval; return sched_setaffinity(pid, new_mask); } asmlinkage long compat_sys_sched_getaffinity(compat_pid_t pid, unsigned int len, compat_ulong_t __user *user_mask_ptr) { int ret; cpumask_t mask; unsigned long *k; unsigned int min_length = sizeof(cpumask_t); if (NR_CPUS <= BITS_PER_COMPAT_LONG) min_length = sizeof(compat_ulong_t); if (len < min_length) return -EINVAL; ret = sched_getaffinity(pid, &mask); if (ret < 0) return ret; k = cpus_addr(mask); ret = compat_put_bitmap(user_mask_ptr, k, min_length * 8); if (ret) return ret; return min_length; } int get_compat_itimerspec(struct itimerspec *dst, const struct compat_itimerspec __user *src) { if (get_compat_timespec(&dst->it_interval, &src->it_interval) || get_compat_timespec(&dst->it_value, &src->it_value)) return -EFAULT; return 0; } int put_compat_itimerspec(struct compat_itimerspec __user *dst, const struct itimerspec *src) { if (put_compat_timespec(&src->it_interval, &dst->it_interval) || put_compat_timespec(&src->it_value, &dst->it_value)) return -EFAULT; return 0; } long compat_sys_timer_create(clockid_t which_clock, struct compat_sigevent __user *timer_event_spec, timer_t __user *created_timer_id) { struct sigevent __user *event = NULL; if (timer_event_spec) { struct sigevent kevent; event = compat_alloc_user_space(sizeof(*event)); if (get_compat_sigevent(&kevent, timer_event_spec) || copy_to_user(event, &kevent, sizeof(*event))) return -EFAULT; } return sys_timer_create(which_clock, event, created_timer_id); } long compat_sys_timer_settime(timer_t timer_id, int flags, struct compat_itimerspec __user *new, struct compat_itimerspec __user *old) { long err; mm_segment_t oldfs; struct itimerspec newts, oldts; if (!new) return -EINVAL; if (get_compat_itimerspec(&newts, new)) return -EFAULT; oldfs = get_fs(); set_fs(KERNEL_DS); err = sys_timer_settime(timer_id, flags, (struct itimerspec __user *) &newts, (struct itimerspec __user *) &oldts); set_fs(oldfs); if (!err && old && put_compat_itimerspec(old, &oldts)) return -EFAULT; return err; } long compat_sys_timer_gettime(timer_t timer_id, struct compat_itimerspec __user *setting) { long err; mm_segment_t oldfs; struct itimerspec ts; oldfs = get_fs(); set_fs(KERNEL_DS); err = sys_timer_gettime(timer_id, (struct itimerspec __user *) &ts); set_fs(oldfs); if (!err && put_compat_itimerspec(setting, &ts)) return -EFAULT; return err; } long compat_sys_clock_settime(clockid_t which_clock, struct compat_timespec __user *tp) { long err; mm_segment_t oldfs; struct timespec ts; if (get_compat_timespec(&ts, tp)) return -EFAULT; oldfs = get_fs(); set_fs(KERNEL_DS); err = sys_clock_settime(which_clock, (struct timespec __user *) &ts); set_fs(oldfs); return err; } long compat_sys_clock_gettime(clockid_t which_clock, struct compat_timespec __user *tp) { long err; mm_segment_t oldfs; struct timespec ts; oldfs = get_fs(); set_fs(KERNEL_DS); err = sys_clock_gettime(which_clock, (struct timespec __user *) &ts); set_fs(oldfs); if (!err && put_compat_timespec(&ts, tp)) return -EFAULT; return err; } long compat_sys_clock_getres(clockid_t which_clock, struct compat_timespec __user *tp) { long err; mm_segment_t oldfs; struct timespec ts; oldfs = get_fs(); set_fs(KERNEL_DS); err = sys_clock_getres(which_clock, (struct timespec __user *) &ts); set_fs(oldfs); if (!err && tp && put_compat_timespec(&ts, tp)) return -EFAULT; return err; } static long compat_clock_nanosleep_restart(struct restart_block *restart) { long err; mm_segment_t oldfs; struct timespec tu; struct compat_timespec *rmtp = (struct compat_timespec *)(restart->arg1); restart->arg1 = (unsigned long) &tu; oldfs = get_fs(); set_fs(KERNEL_DS); err = clock_nanosleep_restart(restart); set_fs(oldfs); if ((err == -ERESTART_RESTARTBLOCK) && rmtp && put_compat_timespec(&tu, rmtp)) return -EFAULT; if (err == -ERESTART_RESTARTBLOCK) { restart->fn = compat_clock_nanosleep_restart; restart->arg1 = (unsigned long) rmtp; } return err; } long compat_sys_clock_nanosleep(clockid_t which_clock, int flags, struct compat_timespec __user *rqtp, struct compat_timespec __user *rmtp) { long err; mm_segment_t oldfs; struct timespec in, out; struct restart_block *restart; if (get_compat_timespec(&in, rqtp)) return -EFAULT; oldfs = get_fs(); set_fs(KERNEL_DS); err = sys_clock_nanosleep(which_clock, flags, (struct timespec __user *) &in, (struct timespec __user *) &out); set_fs(oldfs); if ((err == -ERESTART_RESTARTBLOCK) && rmtp && put_compat_timespec(&out, rmtp)) return -EFAULT; if (err == -ERESTART_RESTARTBLOCK) { restart = ¤t_thread_info()->restart_block; restart->fn = compat_clock_nanosleep_restart; restart->arg1 = (unsigned long) rmtp; } return err; } /* * We currently only need the following fields from the sigevent * structure: sigev_value, sigev_signo, sig_notify and (sometimes * sigev_notify_thread_id). The others are handled in user mode. * We also assume that copying sigev_value.sival_int is sufficient * to keep all the bits of sigev_value.sival_ptr intact. */ int get_compat_sigevent(struct sigevent *event, const struct compat_sigevent __user *u_event) { memset(event, 0, sizeof(*event)); return (!access_ok(VERIFY_READ, u_event, sizeof(*u_event)) || __get_user(event->sigev_value.sival_int, &u_event->sigev_value.sival_int) || __get_user(event->sigev_signo, &u_event->sigev_signo) || __get_user(event->sigev_notify, &u_event->sigev_notify) || __get_user(event->sigev_notify_thread_id, &u_event->sigev_notify_thread_id)) ? -EFAULT : 0; } long compat_get_bitmap(unsigned long *mask, const compat_ulong_t __user *umask, unsigned long bitmap_size) { int i, j; unsigned long m; compat_ulong_t um; unsigned long nr_compat_longs; /* align bitmap up to nearest compat_long_t boundary */ bitmap_size = ALIGN(bitmap_size, BITS_PER_COMPAT_LONG); if (!access_ok(VERIFY_READ, umask, bitmap_size / 8)) return -EFAULT; nr_compat_longs = BITS_TO_COMPAT_LONGS(bitmap_size); for (i = 0; i < BITS_TO_LONGS(bitmap_size); i++) { m = 0; for (j = 0; j < sizeof(m)/sizeof(um); j++) { /* * We dont want to read past the end of the userspace * bitmap. We must however ensure the end of the * kernel bitmap is zeroed. */ if (nr_compat_longs-- > 0) { if (__get_user(um, umask)) return -EFAULT; } else { um = 0; } umask++; m |= (long)um << (j * BITS_PER_COMPAT_LONG); } *mask++ = m; } return 0; } long compat_put_bitmap(compat_ulong_t __user *umask, unsigned long *mask, unsigned long bitmap_size) { int i, j; unsigned long m; compat_ulong_t um; unsigned long nr_compat_longs; /* align bitmap up to nearest compat_long_t boundary */ bitmap_size = ALIGN(bitmap_size, BITS_PER_COMPAT_LONG); if (!access_ok(VERIFY_WRITE, umask, bitmap_size / 8)) return -EFAULT; nr_compat_longs = BITS_TO_COMPAT_LONGS(bitmap_size); for (i = 0; i < BITS_TO_LONGS(bitmap_size); i++) { m = *mask++; for (j = 0; j < sizeof(m)/sizeof(um); j++) { um = m; /* * We dont want to write past the end of the userspace * bitmap. */ if (nr_compat_longs-- > 0) { if (__put_user(um, umask)) return -EFAULT; } umask++; m >>= 4*sizeof(um); m >>= 4*sizeof(um); } } return 0; } void sigset_from_compat (sigset_t *set, compat_sigset_t *compat) { switch (_NSIG_WORDS) { case 4: set->sig[3] = compat->sig[6] | (((long)compat->sig[7]) << 32 ); case 3: set->sig[2] = compat->sig[4] | (((long)compat->sig[5]) << 32 ); case 2: set->sig[1] = compat->sig[2] | (((long)compat->sig[3]) << 32 ); case 1: set->sig[0] = compat->sig[0] | (((long)compat->sig[1]) << 32 ); } } asmlinkage long compat_sys_rt_sigtimedwait (compat_sigset_t __user *uthese, struct compat_siginfo __user *uinfo, struct compat_timespec __user *uts, compat_size_t sigsetsize) { compat_sigset_t s32; sigset_t s; int sig; struct timespec t; siginfo_t info; long ret, timeout = 0; if (sigsetsize != sizeof(sigset_t)) return -EINVAL; if (copy_from_user(&s32, uthese, sizeof(compat_sigset_t))) return -EFAULT; sigset_from_compat(&s, &s32); sigdelsetmask(&s,sigmask(SIGKILL)|sigmask(SIGSTOP)); signotset(&s); if (uts) { if (get_compat_timespec (&t, uts)) return -EFAULT; if (t.tv_nsec >= 1000000000L || t.tv_nsec < 0 || t.tv_sec < 0) return -EINVAL; } spin_lock_irq(¤t->sighand->siglock); sig = dequeue_signal(current, &s, &info); if (!sig) { timeout = MAX_SCHEDULE_TIMEOUT; if (uts) timeout = timespec_to_jiffies(&t) +(t.tv_sec || t.tv_nsec); if (timeout) { current->real_blocked = current->blocked; sigandsets(¤t->blocked, ¤t->blocked, &s); recalc_sigpending(); spin_unlock_irq(¤t->sighand->siglock); timeout = schedule_timeout_interruptible(timeout); spin_lock_irq(¤t->sighand->siglock); sig = dequeue_signal(current, &s, &info); current->blocked = current->real_blocked; siginitset(¤t->real_blocked, 0); recalc_sigpending(); } } spin_unlock_irq(¤t->sighand->siglock); if (sig) { ret = sig; if (uinfo) { if (copy_siginfo_to_user32(uinfo, &info)) ret = -EFAULT; } }else { ret = timeout?-EINTR:-EAGAIN; } return ret; } #ifdef __ARCH_WANT_COMPAT_SYS_TIME /* compat_time_t is a 32 bit "long" and needs to get converted. */ asmlinkage long compat_sys_time(compat_time_t __user * tloc) { compat_time_t i; struct timeval tv; do_gettimeofday(&tv); i = tv.tv_sec; if (tloc) { if (put_user(i,tloc)) i = -EFAULT; } return i; } asmlinkage long compat_sys_stime(compat_time_t __user *tptr) { struct timespec tv; int err; if (get_user(tv.tv_sec, tptr)) return -EFAULT; tv.tv_nsec = 0; err = security_settime(&tv, NULL); if (err) return err; do_settimeofday(&tv); return 0; } #endif /* __ARCH_WANT_COMPAT_SYS_TIME */ #ifdef __ARCH_WANT_COMPAT_SYS_RT_SIGSUSPEND asmlinkage long compat_sys_rt_sigsuspend(compat_sigset_t __user *unewset, compat_size_t sigsetsize) { sigset_t newset; compat_sigset_t newset32; /* XXX: Don't preclude handling different sized sigset_t's. */ if (sigsetsize != sizeof(sigset_t)) return -EINVAL; if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t))) return -EFAULT; sigset_from_compat(&newset, &newset32); sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP)); spin_lock_irq(¤t->sighand->siglock); current->saved_sigmask = current->blocked; current->blocked = newset; recalc_sigpending(); spin_unlock_irq(¤t->sighand->siglock); current->state = TASK_INTERRUPTIBLE; schedule(); set_thread_flag(TIF_RESTORE_SIGMASK); return -ERESTARTNOHAND; } #endif /* __ARCH_WANT_COMPAT_SYS_RT_SIGSUSPEND */ asmlinkage long compat_sys_adjtimex(struct compat_timex __user *utp) { struct timex txc; int ret; memset(&txc, 0, sizeof(struct timex)); if (!access_ok(VERIFY_READ, utp, sizeof(struct compat_timex)) || __get_user(txc.modes, &utp->modes) || __get_user(txc.offset, &utp->offset) || __get_user(txc.freq, &utp->freq) || __get_user(txc.maxerror, &utp->maxerror) || __get_user(txc.esterror, &utp->esterror) || __get_user(txc.status, &utp->status) || __get_user(txc.constant, &utp->constant) || __get_user(txc.precision, &utp->precision) || __get_user(txc.tolerance, &utp->tolerance) || __get_user(txc.time.tv_sec, &utp->time.tv_sec) || __get_user(txc.time.tv_usec, &utp->time.tv_usec) || __get_user(txc.tick, &utp->tick) || __get_user(txc.ppsfreq, &utp->ppsfreq) || __get_user(txc.jitter, &utp->jitter) || __get_user(txc.shift, &utp->shift) || __get_user(txc.stabil, &utp->stabil) || __get_user(txc.jitcnt, &utp->jitcnt) || __get_user(txc.calcnt, &utp->calcnt) || __get_user(txc.errcnt, &utp->errcnt) || __get_user(txc.stbcnt, &utp->stbcnt)) return -EFAULT; ret = do_adjtimex(&txc); if (!access_ok(VERIFY_WRITE, utp, sizeof(struct compat_timex)) || __put_user(txc.modes, &utp->modes) || __put_user(txc.offset, &utp->offset) || __put_user(txc.freq, &utp->freq) || __put_user(txc.maxerror, &utp->maxerror) || __put_user(txc.esterror, &utp->esterror) || __put_user(txc.status, &utp->status) || __put_user(txc.constant, &utp->constant) || __put_user(txc.precision, &utp->precision) || __put_user(txc.tolerance, &utp->tolerance) || __put_user(txc.time.tv_sec, &utp->time.tv_sec) || __put_user(txc.time.tv_usec, &utp->time.tv_usec) || __put_user(txc.tick, &utp->tick) || __put_user(txc.ppsfreq, &utp->ppsfreq) || __put_user(txc.jitter, &utp->jitter) || __put_user(txc.shift, &utp->shift) || __put_user(txc.stabil, &utp->stabil) || __put_user(txc.jitcnt, &utp->jitcnt) || __put_user(txc.calcnt, &utp->calcnt) || __put_user(txc.errcnt, &utp->errcnt) || __put_user(txc.stbcnt, &utp->stbcnt)) ret = -EFAULT; return ret; } #ifdef CONFIG_NUMA asmlinkage long compat_sys_move_pages(pid_t pid, unsigned long nr_pages, compat_uptr_t __user *pages32, const int __user *nodes, int __user *status, int flags) { const void __user * __user *pages; int i; pages = compat_alloc_user_space(nr_pages * sizeof(void *)); for (i = 0; i < nr_pages; i++) { compat_uptr_t p; if (get_user(p, pages32 + i) || put_user(compat_ptr(p), pages + i)) return -EFAULT; } return sys_move_pages(pid, nr_pages, pages, nodes, status, flags); } asmlinkage long compat_sys_migrate_pages(compat_pid_t pid, compat_ulong_t maxnode, const compat_ulong_t __user *old_nodes, const compat_ulong_t __user *new_nodes) { unsigned long __user *old = NULL; unsigned long __user *new = NULL; nodemask_t tmp_mask; unsigned long nr_bits; unsigned long size; nr_bits = min_t(unsigned long, maxnode - 1, MAX_NUMNODES); size = ALIGN(nr_bits, BITS_PER_LONG) / 8; if (old_nodes) { if (compat_get_bitmap(nodes_addr(tmp_mask), old_nodes, nr_bits)) return -EFAULT; old = compat_alloc_user_space(new_nodes ? size * 2 : size); if (new_nodes) new = old + size / sizeof(unsigned long); if (copy_to_user(old, nodes_addr(tmp_mask), size)) return -EFAULT; } if (new_nodes) { if (compat_get_bitmap(nodes_addr(tmp_mask), new_nodes, nr_bits)) return -EFAULT; if (new == NULL) new = compat_alloc_user_space(size); if (copy_to_user(new, nodes_addr(tmp_mask), size)) return -EFAULT; } return sys_migrate_pages(pid, nr_bits + 1, old, new); } #endif struct compat_sysinfo { s32 uptime; u32 loads[3]; u32 totalram; u32 freeram; u32 sharedram; u32 bufferram; u32 totalswap; u32 freeswap; u16 procs; u16 pad; u32 totalhigh; u32 freehigh; u32 mem_unit; char _f[20-2*sizeof(u32)-sizeof(int)]; }; asmlinkage long compat_sys_sysinfo(struct compat_sysinfo __user *info) { struct sysinfo s; do_sysinfo(&s); /* Check to see if any memory value is too large for 32-bit and scale * down if needed */ if ((s.totalram >> 32) || (s.totalswap >> 32)) { int bitcount = 0; while (s.mem_unit < PAGE_SIZE) { s.mem_unit <<= 1; bitcount++; } s.totalram >>= bitcount; s.freeram >>= bitcount; s.sharedram >>= bitcount; s.bufferram >>= bitcount; s.totalswap >>= bitcount; s.freeswap >>= bitcount; s.totalhigh >>= bitcount; s.freehigh >>= bitcount; } if (!access_ok(VERIFY_WRITE, info, sizeof(struct compat_sysinfo)) || __put_user (s.uptime, &info->uptime) || __put_user (s.loads[0], &info->loads[0]) || __put_user (s.loads[1], &info->loads[1]) || __put_user (s.loads[2], &info->loads[2]) || __put_user (s.totalram, &info->totalram) || __put_user (s.freeram, &info->freeram) || __put_user (s.sharedram, &info->sharedram) || __put_user (s.bufferram, &info->bufferram) || __put_user (s.totalswap, &info->totalswap) || __put_user (s.freeswap, &info->freeswap) || __put_user (s.procs, &info->procs) || __put_user (s.totalhigh, &info->totalhigh) || __put_user (s.freehigh, &info->freehigh) || __put_user (s.mem_unit, &info->mem_unit)) return -EFAULT; return 0; }