// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2020 HiSilicon Limited. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/debugfs.h> #include <linux/delay.h> #include <linux/device.h> #include <linux/dma-mapping.h> #include <linux/kernel.h> #include <linux/kthread.h> #include <linux/math64.h> #include <linux/module.h> #include <linux/pci.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <linux/timekeeping.h> #define DMA_MAP_BENCHMARK _IOWR('d', 1, struct map_benchmark) #define DMA_MAP_MAX_THREADS 1024 #define DMA_MAP_MAX_SECONDS 300 #define DMA_MAP_MAX_TRANS_DELAY (10 * NSEC_PER_MSEC) #define DMA_MAP_BIDIRECTIONAL 0 #define DMA_MAP_TO_DEVICE 1 #define DMA_MAP_FROM_DEVICE 2 struct map_benchmark { __u64 avg_map_100ns; /* average map latency in 100ns */ __u64 map_stddev; /* standard deviation of map latency */ __u64 avg_unmap_100ns; /* as above */ __u64 unmap_stddev; __u32 threads; /* how many threads will do map/unmap in parallel */ __u32 seconds; /* how long the test will last */ __s32 node; /* which numa node this benchmark will run on */ __u32 dma_bits; /* DMA addressing capability */ __u32 dma_dir; /* DMA data direction */ __u32 dma_trans_ns; /* time for DMA transmission in ns */ __u32 granule; /* how many PAGE_SIZE will do map/unmap once a time */ __u8 expansion[76]; /* For future use */ }; struct map_benchmark_data { struct map_benchmark bparam; struct device *dev; struct dentry *debugfs; enum dma_data_direction dir; atomic64_t sum_map_100ns; atomic64_t sum_unmap_100ns; atomic64_t sum_sq_map; atomic64_t sum_sq_unmap; atomic64_t loops; }; static int map_benchmark_thread(void *data) { void *buf; dma_addr_t dma_addr; struct map_benchmark_data *map = data; int npages = map->bparam.granule; u64 size = npages * PAGE_SIZE; int ret = 0; buf = alloc_pages_exact(size, GFP_KERNEL); if (!buf) return -ENOMEM; while (!kthread_should_stop()) { u64 map_100ns, unmap_100ns, map_sq, unmap_sq; ktime_t map_stime, map_etime, unmap_stime, unmap_etime; ktime_t map_delta, unmap_delta; /* * for a non-coherent device, if we don't stain them in the * cache, this will give an underestimate of the real-world * overhead of BIDIRECTIONAL or TO_DEVICE mappings; * 66 means evertything goes well! 66 is lucky. */ if (map->dir != DMA_FROM_DEVICE) memset(buf, 0x66, size); map_stime = ktime_get(); dma_addr = dma_map_single(map->dev, buf, size, map->dir); if (unlikely(dma_mapping_error(map->dev, dma_addr))) { pr_err("dma_map_single failed on %s\n", dev_name(map->dev)); ret = -ENOMEM; goto out; } map_etime = ktime_get(); map_delta = ktime_sub(map_etime, map_stime); /* Pretend DMA is transmitting */ ndelay(map->bparam.dma_trans_ns); unmap_stime = ktime_get(); dma_unmap_single(map->dev, dma_addr, size, map->dir); unmap_etime = ktime_get(); unmap_delta = ktime_sub(unmap_etime, unmap_stime); /* calculate sum and sum of squares */ map_100ns = div64_ul(map_delta, 100); unmap_100ns = div64_ul(unmap_delta, 100); map_sq = map_100ns * map_100ns; unmap_sq = unmap_100ns * unmap_100ns; atomic64_add(map_100ns, &map->sum_map_100ns); atomic64_add(unmap_100ns, &map->sum_unmap_100ns); atomic64_add(map_sq, &map->sum_sq_map); atomic64_add(unmap_sq, &map->sum_sq_unmap); atomic64_inc(&map->loops); } out: free_pages_exact(buf, size); return ret; } static int do_map_benchmark(struct map_benchmark_data *map) { struct task_struct **tsk; int threads = map->bparam.threads; int node = map->bparam.node; const cpumask_t *cpu_mask = cpumask_of_node(node); u64 loops; int ret = 0; int i; tsk = kmalloc_array(threads, sizeof(*tsk), GFP_KERNEL); if (!tsk) return -ENOMEM; get_device(map->dev); for (i = 0; i < threads; i++) { tsk[i] = kthread_create_on_node(map_benchmark_thread, map, map->bparam.node, "dma-map-benchmark/%d", i); if (IS_ERR(tsk[i])) { pr_err("create dma_map thread failed\n"); ret = PTR_ERR(tsk[i]); goto out; } if (node != NUMA_NO_NODE) kthread_bind_mask(tsk[i], cpu_mask); } /* clear the old value in the previous benchmark */ atomic64_set(&map->sum_map_100ns, 0); atomic64_set(&map->sum_unmap_100ns, 0); atomic64_set(&map->sum_sq_map, 0); atomic64_set(&map->sum_sq_unmap, 0); atomic64_set(&map->loops, 0); for (i = 0; i < threads; i++) { get_task_struct(tsk[i]); wake_up_process(tsk[i]); } msleep_interruptible(map->bparam.seconds * 1000); /* wait for the completion of benchmark threads */ for (i = 0; i < threads; i++) { ret = kthread_stop(tsk[i]); if (ret) goto out; } loops = atomic64_read(&map->loops); if (likely(loops > 0)) { u64 map_variance, unmap_variance; u64 sum_map = atomic64_read(&map->sum_map_100ns); u64 sum_unmap = atomic64_read(&map->sum_unmap_100ns); u64 sum_sq_map = atomic64_read(&map->sum_sq_map); u64 sum_sq_unmap = atomic64_read(&map->sum_sq_unmap); /* average latency */ map->bparam.avg_map_100ns = div64_u64(sum_map, loops); map->bparam.avg_unmap_100ns = div64_u64(sum_unmap, loops); /* standard deviation of latency */ map_variance = div64_u64(sum_sq_map, loops) - map->bparam.avg_map_100ns * map->bparam.avg_map_100ns; unmap_variance = div64_u64(sum_sq_unmap, loops) - map->bparam.avg_unmap_100ns * map->bparam.avg_unmap_100ns; map->bparam.map_stddev = int_sqrt64(map_variance); map->bparam.unmap_stddev = int_sqrt64(unmap_variance); } out: for (i = 0; i < threads; i++) put_task_struct(tsk[i]); put_device(map->dev); kfree(tsk); return ret; } static long map_benchmark_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct map_benchmark_data *map = file->private_data; void __user *argp = (void __user *)arg; u64 old_dma_mask; int ret; if (copy_from_user(&map->bparam, argp, sizeof(map->bparam))) return -EFAULT; switch (cmd) { case DMA_MAP_BENCHMARK: if (map->bparam.threads == 0 || map->bparam.threads > DMA_MAP_MAX_THREADS) { pr_err("invalid thread number\n"); return -EINVAL; } if (map->bparam.seconds == 0 || map->bparam.seconds > DMA_MAP_MAX_SECONDS) { pr_err("invalid duration seconds\n"); return -EINVAL; } if (map->bparam.dma_trans_ns > DMA_MAP_MAX_TRANS_DELAY) { pr_err("invalid transmission delay\n"); return -EINVAL; } if (map->bparam.node != NUMA_NO_NODE && !node_possible(map->bparam.node)) { pr_err("invalid numa node\n"); return -EINVAL; } if (map->bparam.granule < 1 || map->bparam.granule > 1024) { pr_err("invalid granule size\n"); return -EINVAL; } switch (map->bparam.dma_dir) { case DMA_MAP_BIDIRECTIONAL: map->dir = DMA_BIDIRECTIONAL; break; case DMA_MAP_FROM_DEVICE: map->dir = DMA_FROM_DEVICE; break; case DMA_MAP_TO_DEVICE: map->dir = DMA_TO_DEVICE; break; default: pr_err("invalid DMA direction\n"); return -EINVAL; } old_dma_mask = dma_get_mask(map->dev); ret = dma_set_mask(map->dev, DMA_BIT_MASK(map->bparam.dma_bits)); if (ret) { pr_err("failed to set dma_mask on device %s\n", dev_name(map->dev)); return -EINVAL; } ret = do_map_benchmark(map); /* * restore the original dma_mask as many devices' dma_mask are * set by architectures, acpi, busses. When we bind them back * to their original drivers, those drivers shouldn't see * dma_mask changed by benchmark */ dma_set_mask(map->dev, old_dma_mask); break; default: return -EINVAL; } if (copy_to_user(argp, &map->bparam, sizeof(map->bparam))) return -EFAULT; return ret; } static const struct file_operations map_benchmark_fops = { .open = simple_open, .unlocked_ioctl = map_benchmark_ioctl, }; static void map_benchmark_remove_debugfs(void *data) { struct map_benchmark_data *map = (struct map_benchmark_data *)data; debugfs_remove(map->debugfs); } static int __map_benchmark_probe(struct device *dev) { struct dentry *entry; struct map_benchmark_data *map; int ret; map = devm_kzalloc(dev, sizeof(*map), GFP_KERNEL); if (!map) return -ENOMEM; map->dev = dev; ret = devm_add_action(dev, map_benchmark_remove_debugfs, map); if (ret) { pr_err("Can't add debugfs remove action\n"); return ret; } /* * we only permit a device bound with this driver, 2nd probe * will fail */ entry = debugfs_create_file("dma_map_benchmark", 0600, NULL, map, &map_benchmark_fops); if (IS_ERR(entry)) return PTR_ERR(entry); map->debugfs = entry; return 0; } static int map_benchmark_platform_probe(struct platform_device *pdev) { return __map_benchmark_probe(&pdev->dev); } static struct platform_driver map_benchmark_platform_driver = { .driver = { .name = "dma_map_benchmark", }, .probe = map_benchmark_platform_probe, }; static int map_benchmark_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id) { return __map_benchmark_probe(&pdev->dev); } static struct pci_driver map_benchmark_pci_driver = { .name = "dma_map_benchmark", .probe = map_benchmark_pci_probe, }; static int __init map_benchmark_init(void) { int ret; ret = pci_register_driver(&map_benchmark_pci_driver); if (ret) return ret; ret = platform_driver_register(&map_benchmark_platform_driver); if (ret) { pci_unregister_driver(&map_benchmark_pci_driver); return ret; } return 0; } static void __exit map_benchmark_cleanup(void) { platform_driver_unregister(&map_benchmark_platform_driver); pci_unregister_driver(&map_benchmark_pci_driver); } module_init(map_benchmark_init); module_exit(map_benchmark_cleanup); MODULE_AUTHOR("Barry Song <song.bao.hua@hisilicon.com>"); MODULE_DESCRIPTION("dma_map benchmark driver"); MODULE_LICENSE("GPL");