// SPDX-License-Identifier: GPL-2.0-only #include <linux/atomic.h> #include <linux/percpu.h> #include <linux/wait.h> #include <linux/lockdep.h> #include <linux/percpu-rwsem.h> #include <linux/rcupdate.h> #include <linux/sched.h> #include <linux/sched/task.h> #include <linux/sched/debug.h> #include <linux/errno.h> #include <trace/events/lock.h> int __percpu_init_rwsem(struct percpu_rw_semaphore *sem, const char *name, struct lock_class_key *key) { sem->read_count = alloc_percpu(int); if (unlikely(!sem->read_count)) return -ENOMEM; rcu_sync_init(&sem->rss); rcuwait_init(&sem->writer); init_waitqueue_head(&sem->waiters); atomic_set(&sem->block, 0); #ifdef CONFIG_DEBUG_LOCK_ALLOC debug_check_no_locks_freed((void *)sem, sizeof(*sem)); lockdep_init_map(&sem->dep_map, name, key, 0); #endif return 0; } EXPORT_SYMBOL_GPL(__percpu_init_rwsem); void percpu_free_rwsem(struct percpu_rw_semaphore *sem) { /* * XXX: temporary kludge. The error path in alloc_super() * assumes that percpu_free_rwsem() is safe after kzalloc(). */ if (!sem->read_count) return; rcu_sync_dtor(&sem->rss); free_percpu(sem->read_count); sem->read_count = NULL; /* catch use after free bugs */ } EXPORT_SYMBOL_GPL(percpu_free_rwsem); static bool __percpu_down_read_trylock(struct percpu_rw_semaphore *sem) { this_cpu_inc(*sem->read_count); /* * Due to having preemption disabled the decrement happens on * the same CPU as the increment, avoiding the * increment-on-one-CPU-and-decrement-on-another problem. * * If the reader misses the writer's assignment of sem->block, then the * writer is guaranteed to see the reader's increment. * * Conversely, any readers that increment their sem->read_count after * the writer looks are guaranteed to see the sem->block value, which * in turn means that they are guaranteed to immediately decrement * their sem->read_count, so that it doesn't matter that the writer * missed them. */ smp_mb(); /* A matches D */ /* * If !sem->block the critical section starts here, matched by the * release in percpu_up_write(). */ if (likely(!atomic_read_acquire(&sem->block))) return true; this_cpu_dec(*sem->read_count); /* Prod writer to re-evaluate readers_active_check() */ rcuwait_wake_up(&sem->writer); return false; } static inline bool __percpu_down_write_trylock(struct percpu_rw_semaphore *sem) { if (atomic_read(&sem->block)) return false; return atomic_xchg(&sem->block, 1) == 0; } static bool __percpu_rwsem_trylock(struct percpu_rw_semaphore *sem, bool reader) { if (reader) { bool ret; preempt_disable(); ret = __percpu_down_read_trylock(sem); preempt_enable(); return ret; } return __percpu_down_write_trylock(sem); } /* * The return value of wait_queue_entry::func means: * * <0 - error, wakeup is terminated and the error is returned * 0 - no wakeup, a next waiter is tried * >0 - woken, if EXCLUSIVE, counted towards @nr_exclusive. * * We use EXCLUSIVE for both readers and writers to preserve FIFO order, * and play games with the return value to allow waking multiple readers. * * Specifically, we wake readers until we've woken a single writer, or until a * trylock fails. */ static int percpu_rwsem_wake_function(struct wait_queue_entry *wq_entry, unsigned int mode, int wake_flags, void *key) { bool reader = wq_entry->flags & WQ_FLAG_CUSTOM; struct percpu_rw_semaphore *sem = key; struct task_struct *p; /* concurrent against percpu_down_write(), can get stolen */ if (!__percpu_rwsem_trylock(sem, reader)) return 1; p = get_task_struct(wq_entry->private); list_del_init(&wq_entry->entry); smp_store_release(&wq_entry->private, NULL); wake_up_process(p); put_task_struct(p); return !reader; /* wake (readers until) 1 writer */ } static void percpu_rwsem_wait(struct percpu_rw_semaphore *sem, bool reader) { DEFINE_WAIT_FUNC(wq_entry, percpu_rwsem_wake_function); bool wait; spin_lock_irq(&sem->waiters.lock); /* * Serialize against the wakeup in percpu_up_write(), if we fail * the trylock, the wakeup must see us on the list. */ wait = !__percpu_rwsem_trylock(sem, reader); if (wait) { wq_entry.flags |= WQ_FLAG_EXCLUSIVE | reader * WQ_FLAG_CUSTOM; __add_wait_queue_entry_tail(&sem->waiters, &wq_entry); } spin_unlock_irq(&sem->waiters.lock); while (wait) { set_current_state(TASK_UNINTERRUPTIBLE); if (!smp_load_acquire(&wq_entry.private)) break; schedule(); } __set_current_state(TASK_RUNNING); } bool __sched __percpu_down_read(struct percpu_rw_semaphore *sem, bool try) { if (__percpu_down_read_trylock(sem)) return true; if (try) return false; trace_contention_begin(sem, LCB_F_PERCPU | LCB_F_READ); preempt_enable(); percpu_rwsem_wait(sem, /* .reader = */ true); preempt_disable(); trace_contention_end(sem, 0); return true; } EXPORT_SYMBOL_GPL(__percpu_down_read); #define per_cpu_sum(var) \ ({ \ typeof(var) __sum = 0; \ int cpu; \ compiletime_assert_atomic_type(__sum); \ for_each_possible_cpu(cpu) \ __sum += per_cpu(var, cpu); \ __sum; \ }) bool percpu_is_read_locked(struct percpu_rw_semaphore *sem) { return per_cpu_sum(*sem->read_count) != 0 && !atomic_read(&sem->block); } EXPORT_SYMBOL_GPL(percpu_is_read_locked); /* * Return true if the modular sum of the sem->read_count per-CPU variable is * zero. If this sum is zero, then it is stable due to the fact that if any * newly arriving readers increment a given counter, they will immediately * decrement that same counter. * * Assumes sem->block is set. */ static bool readers_active_check(struct percpu_rw_semaphore *sem) { if (per_cpu_sum(*sem->read_count) != 0) return false; /* * If we observed the decrement; ensure we see the entire critical * section. */ smp_mb(); /* C matches B */ return true; } void __sched percpu_down_write(struct percpu_rw_semaphore *sem) { might_sleep(); rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_); trace_contention_begin(sem, LCB_F_PERCPU | LCB_F_WRITE); /* Notify readers to take the slow path. */ rcu_sync_enter(&sem->rss); /* * Try set sem->block; this provides writer-writer exclusion. * Having sem->block set makes new readers block. */ if (!__percpu_down_write_trylock(sem)) percpu_rwsem_wait(sem, /* .reader = */ false); /* smp_mb() implied by __percpu_down_write_trylock() on success -- D matches A */ /* * If they don't see our store of sem->block, then we are guaranteed to * see their sem->read_count increment, and therefore will wait for * them. */ /* Wait for all active readers to complete. */ rcuwait_wait_event(&sem->writer, readers_active_check(sem), TASK_UNINTERRUPTIBLE); trace_contention_end(sem, 0); } EXPORT_SYMBOL_GPL(percpu_down_write); void percpu_up_write(struct percpu_rw_semaphore *sem) { rwsem_release(&sem->dep_map, _RET_IP_); /* * Signal the writer is done, no fast path yet. * * One reason that we cannot just immediately flip to readers_fast is * that new readers might fail to see the results of this writer's * critical section. * * Therefore we force it through the slow path which guarantees an * acquire and thereby guarantees the critical section's consistency. */ atomic_set_release(&sem->block, 0); /* * Prod any pending reader/writer to make progress. */ __wake_up(&sem->waiters, TASK_NORMAL, 1, sem); /* * Once this completes (at least one RCU-sched grace period hence) the * reader fast path will be available again. Safe to use outside the * exclusive write lock because its counting. */ rcu_sync_exit(&sem->rss); } EXPORT_SYMBOL_GPL(percpu_up_write);