/*
   Copyright (C) 2002 Richard Henderson
   Copyright (C) 2001 Rusty Russell, 2002 Rusty Russell IBM.

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
*/
#include <linux/module.h>
#include <linux/moduleloader.h>
#include <linux/ftrace_event.h>
#include <linux/init.h>
#include <linux/kallsyms.h>
#include <linux/fs.h>
#include <linux/sysfs.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/elf.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/syscalls.h>
#include <linux/fcntl.h>
#include <linux/rcupdate.h>
#include <linux/capability.h>
#include <linux/cpu.h>
#include <linux/moduleparam.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/vermagic.h>
#include <linux/notifier.h>
#include <linux/sched.h>
#include <linux/stop_machine.h>
#include <linux/device.h>
#include <linux/string.h>
#include <linux/mutex.h>
#include <linux/rculist.h>
#include <asm/uaccess.h>
#include <asm/cacheflush.h>
#include <linux/license.h>
#include <asm/sections.h>
#include <linux/tracepoint.h>
#include <linux/ftrace.h>
#include <linux/async.h>
#include <linux/percpu.h>
#include <linux/kmemleak.h>

#define CREATE_TRACE_POINTS
#include <trace/events/module.h>

EXPORT_TRACEPOINT_SYMBOL(module_get);

#if 0
#define DEBUGP printk
#else
#define DEBUGP(fmt , a...)
#endif

#ifndef ARCH_SHF_SMALL
#define ARCH_SHF_SMALL 0
#endif

/* If this is set, the section belongs in the init part of the module */
#define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))

/* List of modules, protected by module_mutex or preempt_disable
 * (delete uses stop_machine/add uses RCU list operations). */
DEFINE_MUTEX(module_mutex);
EXPORT_SYMBOL_GPL(module_mutex);
static LIST_HEAD(modules);

/* Block module loading/unloading? */
int modules_disabled = 0;

/* Waiting for a module to finish initializing? */
static DECLARE_WAIT_QUEUE_HEAD(module_wq);

static BLOCKING_NOTIFIER_HEAD(module_notify_list);

/* Bounds of module allocation, for speeding __module_address */
static unsigned long module_addr_min = -1UL, module_addr_max = 0;

int register_module_notifier(struct notifier_block * nb)
{
	return blocking_notifier_chain_register(&module_notify_list, nb);
}
EXPORT_SYMBOL(register_module_notifier);

int unregister_module_notifier(struct notifier_block * nb)
{
	return blocking_notifier_chain_unregister(&module_notify_list, nb);
}
EXPORT_SYMBOL(unregister_module_notifier);

/* We require a truly strong try_module_get(): 0 means failure due to
   ongoing or failed initialization etc. */
static inline int strong_try_module_get(struct module *mod)
{
	if (mod && mod->state == MODULE_STATE_COMING)
		return -EBUSY;
	if (try_module_get(mod))
		return 0;
	else
		return -ENOENT;
}

static inline void add_taint_module(struct module *mod, unsigned flag)
{
	add_taint(flag);
	mod->taints |= (1U << flag);
}

/*
 * A thread that wants to hold a reference to a module only while it
 * is running can call this to safely exit.  nfsd and lockd use this.
 */
void __module_put_and_exit(struct module *mod, long code)
{
	module_put(mod);
	do_exit(code);
}
EXPORT_SYMBOL(__module_put_and_exit);

/* Find a module section: 0 means not found. */
static unsigned int find_sec(Elf_Ehdr *hdr,
			     Elf_Shdr *sechdrs,
			     const char *secstrings,
			     const char *name)
{
	unsigned int i;

	for (i = 1; i < hdr->e_shnum; i++)
		/* Alloc bit cleared means "ignore it." */
		if ((sechdrs[i].sh_flags & SHF_ALLOC)
		    && strcmp(secstrings+sechdrs[i].sh_name, name) == 0)
			return i;
	return 0;
}

/* Find a module section, or NULL. */
static void *section_addr(Elf_Ehdr *hdr, Elf_Shdr *shdrs,
			  const char *secstrings, const char *name)
{
	/* Section 0 has sh_addr 0. */
	return (void *)shdrs[find_sec(hdr, shdrs, secstrings, name)].sh_addr;
}

/* Find a module section, or NULL.  Fill in number of "objects" in section. */
static void *section_objs(Elf_Ehdr *hdr,
			  Elf_Shdr *sechdrs,
			  const char *secstrings,
			  const char *name,
			  size_t object_size,
			  unsigned int *num)
{
	unsigned int sec = find_sec(hdr, sechdrs, secstrings, name);

	/* Section 0 has sh_addr 0 and sh_size 0. */
	*num = sechdrs[sec].sh_size / object_size;
	return (void *)sechdrs[sec].sh_addr;
}

/* Provided by the linker */
extern const struct kernel_symbol __start___ksymtab[];
extern const struct kernel_symbol __stop___ksymtab[];
extern const struct kernel_symbol __start___ksymtab_gpl[];
extern const struct kernel_symbol __stop___ksymtab_gpl[];
extern const struct kernel_symbol __start___ksymtab_gpl_future[];
extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
extern const struct kernel_symbol __start___ksymtab_gpl_future[];
extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
extern const unsigned long __start___kcrctab[];
extern const unsigned long __start___kcrctab_gpl[];
extern const unsigned long __start___kcrctab_gpl_future[];
#ifdef CONFIG_UNUSED_SYMBOLS
extern const struct kernel_symbol __start___ksymtab_unused[];
extern const struct kernel_symbol __stop___ksymtab_unused[];
extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
extern const unsigned long __start___kcrctab_unused[];
extern const unsigned long __start___kcrctab_unused_gpl[];
#endif

#ifndef CONFIG_MODVERSIONS
#define symversion(base, idx) NULL
#else
#define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
#endif

static bool each_symbol_in_section(const struct symsearch *arr,
				   unsigned int arrsize,
				   struct module *owner,
				   bool (*fn)(const struct symsearch *syms,
					      struct module *owner,
					      unsigned int symnum, void *data),
				   void *data)
{
	unsigned int i, j;

	for (j = 0; j < arrsize; j++) {
		for (i = 0; i < arr[j].stop - arr[j].start; i++)
			if (fn(&arr[j], owner, i, data))
				return true;
	}

	return false;
}

/* Returns true as soon as fn returns true, otherwise false. */
bool each_symbol(bool (*fn)(const struct symsearch *arr, struct module *owner,
			    unsigned int symnum, void *data), void *data)
{
	struct module *mod;
	const struct symsearch arr[] = {
		{ __start___ksymtab, __stop___ksymtab, __start___kcrctab,
		  NOT_GPL_ONLY, false },
		{ __start___ksymtab_gpl, __stop___ksymtab_gpl,
		  __start___kcrctab_gpl,
		  GPL_ONLY, false },
		{ __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
		  __start___kcrctab_gpl_future,
		  WILL_BE_GPL_ONLY, false },
#ifdef CONFIG_UNUSED_SYMBOLS
		{ __start___ksymtab_unused, __stop___ksymtab_unused,
		  __start___kcrctab_unused,
		  NOT_GPL_ONLY, true },
		{ __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
		  __start___kcrctab_unused_gpl,
		  GPL_ONLY, true },
#endif
	};

	if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
		return true;

	list_for_each_entry_rcu(mod, &modules, list) {
		struct symsearch arr[] = {
			{ mod->syms, mod->syms + mod->num_syms, mod->crcs,
			  NOT_GPL_ONLY, false },
			{ mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
			  mod->gpl_crcs,
			  GPL_ONLY, false },
			{ mod->gpl_future_syms,
			  mod->gpl_future_syms + mod->num_gpl_future_syms,
			  mod->gpl_future_crcs,
			  WILL_BE_GPL_ONLY, false },
#ifdef CONFIG_UNUSED_SYMBOLS
			{ mod->unused_syms,
			  mod->unused_syms + mod->num_unused_syms,
			  mod->unused_crcs,
			  NOT_GPL_ONLY, true },
			{ mod->unused_gpl_syms,
			  mod->unused_gpl_syms + mod->num_unused_gpl_syms,
			  mod->unused_gpl_crcs,
			  GPL_ONLY, true },
#endif
		};

		if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
			return true;
	}
	return false;
}
EXPORT_SYMBOL_GPL(each_symbol);

struct find_symbol_arg {
	/* Input */
	const char *name;
	bool gplok;
	bool warn;

	/* Output */
	struct module *owner;
	const unsigned long *crc;
	const struct kernel_symbol *sym;
};

static bool find_symbol_in_section(const struct symsearch *syms,
				   struct module *owner,
				   unsigned int symnum, void *data)
{
	struct find_symbol_arg *fsa = data;

	if (strcmp(syms->start[symnum].name, fsa->name) != 0)
		return false;

	if (!fsa->gplok) {
		if (syms->licence == GPL_ONLY)
			return false;
		if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
			printk(KERN_WARNING "Symbol %s is being used "
			       "by a non-GPL module, which will not "
			       "be allowed in the future\n", fsa->name);
			printk(KERN_WARNING "Please see the file "
			       "Documentation/feature-removal-schedule.txt "
			       "in the kernel source tree for more details.\n");
		}
	}

#ifdef CONFIG_UNUSED_SYMBOLS
	if (syms->unused && fsa->warn) {
		printk(KERN_WARNING "Symbol %s is marked as UNUSED, "
		       "however this module is using it.\n", fsa->name);
		printk(KERN_WARNING
		       "This symbol will go away in the future.\n");
		printk(KERN_WARNING
		       "Please evalute if this is the right api to use and if "
		       "it really is, submit a report the linux kernel "
		       "mailinglist together with submitting your code for "
		       "inclusion.\n");
	}
#endif

	fsa->owner = owner;
	fsa->crc = symversion(syms->crcs, symnum);
	fsa->sym = &syms->start[symnum];
	return true;
}

/* Find a symbol and return it, along with, (optional) crc and
 * (optional) module which owns it */
const struct kernel_symbol *find_symbol(const char *name,
					struct module **owner,
					const unsigned long **crc,
					bool gplok,
					bool warn)
{
	struct find_symbol_arg fsa;

	fsa.name = name;
	fsa.gplok = gplok;
	fsa.warn = warn;

	if (each_symbol(find_symbol_in_section, &fsa)) {
		if (owner)
			*owner = fsa.owner;
		if (crc)
			*crc = fsa.crc;
		return fsa.sym;
	}

	DEBUGP("Failed to find symbol %s\n", name);
	return NULL;
}
EXPORT_SYMBOL_GPL(find_symbol);

/* Search for module by name: must hold module_mutex. */
struct module *find_module(const char *name)
{
	struct module *mod;

	list_for_each_entry(mod, &modules, list) {
		if (strcmp(mod->name, name) == 0)
			return mod;
	}
	return NULL;
}
EXPORT_SYMBOL_GPL(find_module);

#ifdef CONFIG_SMP

#ifndef CONFIG_HAVE_LEGACY_PER_CPU_AREA

static void *percpu_modalloc(unsigned long size, unsigned long align,
			     const char *name)
{
	void *ptr;

	if (align > PAGE_SIZE) {
		printk(KERN_WARNING "%s: per-cpu alignment %li > %li\n",
		       name, align, PAGE_SIZE);
		align = PAGE_SIZE;
	}

	ptr = __alloc_reserved_percpu(size, align);
	if (!ptr)
		printk(KERN_WARNING
		       "Could not allocate %lu bytes percpu data\n", size);
	return ptr;
}

static void percpu_modfree(void *freeme)
{
	free_percpu(freeme);
}

#else /* ... CONFIG_HAVE_LEGACY_PER_CPU_AREA */

/* Number of blocks used and allocated. */
static unsigned int pcpu_num_used, pcpu_num_allocated;
/* Size of each block.  -ve means used. */
static int *pcpu_size;

static int split_block(unsigned int i, unsigned short size)
{
	/* Reallocation required? */
	if (pcpu_num_used + 1 > pcpu_num_allocated) {
		int *new;

		new = krealloc(pcpu_size, sizeof(new[0])*pcpu_num_allocated*2,
			       GFP_KERNEL);
		if (!new)
			return 0;

		pcpu_num_allocated *= 2;
		pcpu_size = new;
	}

	/* Insert a new subblock */
	memmove(&pcpu_size[i+1], &pcpu_size[i],
		sizeof(pcpu_size[0]) * (pcpu_num_used - i));
	pcpu_num_used++;

	pcpu_size[i+1] -= size;
	pcpu_size[i] = size;
	return 1;
}

static inline unsigned int block_size(int val)
{
	if (val < 0)
		return -val;
	return val;
}

static void *percpu_modalloc(unsigned long size, unsigned long align,
			     const char *name)
{
	unsigned long extra;
	unsigned int i;
	void *ptr;
	int cpu;

	if (align > PAGE_SIZE) {
		printk(KERN_WARNING "%s: per-cpu alignment %li > %li\n",
		       name, align, PAGE_SIZE);
		align = PAGE_SIZE;
	}

	ptr = __per_cpu_start;
	for (i = 0; i < pcpu_num_used; ptr += block_size(pcpu_size[i]), i++) {
		/* Extra for alignment requirement. */
		extra = ALIGN((unsigned long)ptr, align) - (unsigned long)ptr;
		BUG_ON(i == 0 && extra != 0);

		if (pcpu_size[i] < 0 || pcpu_size[i] < extra + size)
			continue;

		/* Transfer extra to previous block. */
		if (pcpu_size[i-1] < 0)
			pcpu_size[i-1] -= extra;
		else
			pcpu_size[i-1] += extra;
		pcpu_size[i] -= extra;
		ptr += extra;

		/* Split block if warranted */
		if (pcpu_size[i] - size > sizeof(unsigned long))
			if (!split_block(i, size))
				return NULL;

		/* add the per-cpu scanning areas */
		for_each_possible_cpu(cpu)
			kmemleak_alloc(ptr + per_cpu_offset(cpu), size, 0,
				       GFP_KERNEL);

		/* Mark allocated */
		pcpu_size[i] = -pcpu_size[i];
		return ptr;
	}

	printk(KERN_WARNING "Could not allocate %lu bytes percpu data\n",
	       size);
	return NULL;
}

static void percpu_modfree(void *freeme)
{
	unsigned int i;
	void *ptr = __per_cpu_start + block_size(pcpu_size[0]);
	int cpu;

	/* First entry is core kernel percpu data. */
	for (i = 1; i < pcpu_num_used; ptr += block_size(pcpu_size[i]), i++) {
		if (ptr == freeme) {
			pcpu_size[i] = -pcpu_size[i];
			goto free;
		}
	}
	BUG();

 free:
	/* remove the per-cpu scanning areas */
	for_each_possible_cpu(cpu)
		kmemleak_free(freeme + per_cpu_offset(cpu));

	/* Merge with previous? */
	if (pcpu_size[i-1] >= 0) {
		pcpu_size[i-1] += pcpu_size[i];
		pcpu_num_used--;
		memmove(&pcpu_size[i], &pcpu_size[i+1],
			(pcpu_num_used - i) * sizeof(pcpu_size[0]));
		i--;
	}
	/* Merge with next? */
	if (i+1 < pcpu_num_used && pcpu_size[i+1] >= 0) {
		pcpu_size[i] += pcpu_size[i+1];
		pcpu_num_used--;
		memmove(&pcpu_size[i+1], &pcpu_size[i+2],
			(pcpu_num_used - (i+1)) * sizeof(pcpu_size[0]));
	}
}

static int percpu_modinit(void)
{
	pcpu_num_used = 2;
	pcpu_num_allocated = 2;
	pcpu_size = kmalloc(sizeof(pcpu_size[0]) * pcpu_num_allocated,
			    GFP_KERNEL);
	/* Static in-kernel percpu data (used). */
	pcpu_size[0] = -(__per_cpu_end-__per_cpu_start);
	/* Free room. */
	pcpu_size[1] = PERCPU_ENOUGH_ROOM + pcpu_size[0];
	if (pcpu_size[1] < 0) {
		printk(KERN_ERR "No per-cpu room for modules.\n");
		pcpu_num_used = 1;
	}

	return 0;
}
__initcall(percpu_modinit);

#endif /* CONFIG_HAVE_LEGACY_PER_CPU_AREA */

static unsigned int find_pcpusec(Elf_Ehdr *hdr,
				 Elf_Shdr *sechdrs,
				 const char *secstrings)
{
	return find_sec(hdr, sechdrs, secstrings, ".data.percpu");
}

static void percpu_modcopy(void *pcpudest, const void *from, unsigned long size)
{
	int cpu;

	for_each_possible_cpu(cpu)
		memcpy(pcpudest + per_cpu_offset(cpu), from, size);
}

#else /* ... !CONFIG_SMP */

static inline void *percpu_modalloc(unsigned long size, unsigned long align,
				    const char *name)
{
	return NULL;
}
static inline void percpu_modfree(void *pcpuptr)
{
	BUG();
}
static inline unsigned int find_pcpusec(Elf_Ehdr *hdr,
					Elf_Shdr *sechdrs,
					const char *secstrings)
{
	return 0;
}
static inline void percpu_modcopy(void *pcpudst, const void *src,
				  unsigned long size)
{
	/* pcpusec should be 0, and size of that section should be 0. */
	BUG_ON(size != 0);
}

#endif /* CONFIG_SMP */

#define MODINFO_ATTR(field)	\
static void setup_modinfo_##field(struct module *mod, const char *s)  \
{                                                                     \
	mod->field = kstrdup(s, GFP_KERNEL);                          \
}                                                                     \
static ssize_t show_modinfo_##field(struct module_attribute *mattr,   \
	                struct module *mod, char *buffer)             \
{                                                                     \
	return sprintf(buffer, "%s\n", mod->field);                   \
}                                                                     \
static int modinfo_##field##_exists(struct module *mod)               \
{                                                                     \
	return mod->field != NULL;                                    \
}                                                                     \
static void free_modinfo_##field(struct module *mod)                  \
{                                                                     \
	kfree(mod->field);                                            \
	mod->field = NULL;                                            \
}                                                                     \
static struct module_attribute modinfo_##field = {                    \
	.attr = { .name = __stringify(field), .mode = 0444 },         \
	.show = show_modinfo_##field,                                 \
	.setup = setup_modinfo_##field,                               \
	.test = modinfo_##field##_exists,                             \
	.free = free_modinfo_##field,                                 \
};

MODINFO_ATTR(version);
MODINFO_ATTR(srcversion);

static char last_unloaded_module[MODULE_NAME_LEN+1];

#ifdef CONFIG_MODULE_UNLOAD
/* Init the unload section of the module. */
static void module_unload_init(struct module *mod)
{
	int cpu;

	INIT_LIST_HEAD(&mod->modules_which_use_me);
	for_each_possible_cpu(cpu)
		local_set(__module_ref_addr(mod, cpu), 0);
	/* Hold reference count during initialization. */
	local_set(__module_ref_addr(mod, raw_smp_processor_id()), 1);
	/* Backwards compatibility macros put refcount during init. */
	mod->waiter = current;
}

/* modules using other modules */
struct module_use
{
	struct list_head list;
	struct module *module_which_uses;
};

/* Does a already use b? */
static int already_uses(struct module *a, struct module *b)
{
	struct module_use *use;

	list_for_each_entry(use, &b->modules_which_use_me, list) {
		if (use->module_which_uses == a) {
			DEBUGP("%s uses %s!\n", a->name, b->name);
			return 1;
		}
	}
	DEBUGP("%s does not use %s!\n", a->name, b->name);
	return 0;
}

/* Module a uses b */
int use_module(struct module *a, struct module *b)
{
	struct module_use *use;
	int no_warn, err;

	if (b == NULL || already_uses(a, b)) return 1;

	/* If we're interrupted or time out, we fail. */
	if (wait_event_interruptible_timeout(
		    module_wq, (err = strong_try_module_get(b)) != -EBUSY,
		    30 * HZ) <= 0) {
		printk("%s: gave up waiting for init of module %s.\n",
		       a->name, b->name);
		return 0;
	}

	/* If strong_try_module_get() returned a different error, we fail. */
	if (err)
		return 0;

	DEBUGP("Allocating new usage for %s.\n", a->name);
	use = kmalloc(sizeof(*use), GFP_ATOMIC);
	if (!use) {
		printk("%s: out of memory loading\n", a->name);
		module_put(b);
		return 0;
	}

	use->module_which_uses = a;
	list_add(&use->list, &b->modules_which_use_me);
	no_warn = sysfs_create_link(b->holders_dir, &a->mkobj.kobj, a->name);
	return 1;
}
EXPORT_SYMBOL_GPL(use_module);

/* Clear the unload stuff of the module. */
static void module_unload_free(struct module *mod)
{
	struct module *i;

	list_for_each_entry(i, &modules, list) {
		struct module_use *use;

		list_for_each_entry(use, &i->modules_which_use_me, list) {
			if (use->module_which_uses == mod) {
				DEBUGP("%s unusing %s\n", mod->name, i->name);
				module_put(i);
				list_del(&use->list);
				kfree(use);
				sysfs_remove_link(i->holders_dir, mod->name);
				/* There can be at most one match. */
				break;
			}
		}
	}
}

#ifdef CONFIG_MODULE_FORCE_UNLOAD
static inline int try_force_unload(unsigned int flags)
{
	int ret = (flags & O_TRUNC);
	if (ret)
		add_taint(TAINT_FORCED_RMMOD);
	return ret;
}
#else
static inline int try_force_unload(unsigned int flags)
{
	return 0;
}
#endif /* CONFIG_MODULE_FORCE_UNLOAD */

struct stopref
{
	struct module *mod;
	int flags;
	int *forced;
};

/* Whole machine is stopped with interrupts off when this runs. */
static int __try_stop_module(void *_sref)
{
	struct stopref *sref = _sref;

	/* If it's not unused, quit unless we're forcing. */
	if (module_refcount(sref->mod) != 0) {
		if (!(*sref->forced = try_force_unload(sref->flags)))
			return -EWOULDBLOCK;
	}

	/* Mark it as dying. */
	sref->mod->state = MODULE_STATE_GOING;
	return 0;
}

static int try_stop_module(struct module *mod, int flags, int *forced)
{
	if (flags & O_NONBLOCK) {
		struct stopref sref = { mod, flags, forced };

		return stop_machine(__try_stop_module, &sref, NULL);
	} else {
		/* We don't need to stop the machine for this. */
		mod->state = MODULE_STATE_GOING;
		synchronize_sched();
		return 0;
	}
}

unsigned int module_refcount(struct module *mod)
{
	unsigned int total = 0;
	int cpu;

	for_each_possible_cpu(cpu)
		total += local_read(__module_ref_addr(mod, cpu));
	return total;
}
EXPORT_SYMBOL(module_refcount);

/* This exists whether we can unload or not */
static void free_module(struct module *mod);

static void wait_for_zero_refcount(struct module *mod)
{
	/* Since we might sleep for some time, release the mutex first */
	mutex_unlock(&module_mutex);
	for (;;) {
		DEBUGP("Looking at refcount...\n");
		set_current_state(TASK_UNINTERRUPTIBLE);
		if (module_refcount(mod) == 0)
			break;
		schedule();
	}
	current->state = TASK_RUNNING;
	mutex_lock(&module_mutex);
}

SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
		unsigned int, flags)
{
	struct module *mod;
	char name[MODULE_NAME_LEN];
	int ret, forced = 0;

	if (!capable(CAP_SYS_MODULE) || modules_disabled)
		return -EPERM;

	if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
		return -EFAULT;
	name[MODULE_NAME_LEN-1] = '\0';

	/* Create stop_machine threads since free_module relies on
	 * a non-failing stop_machine call. */
	ret = stop_machine_create();
	if (ret)
		return ret;

	if (mutex_lock_interruptible(&module_mutex) != 0) {
		ret = -EINTR;
		goto out_stop;
	}

	mod = find_module(name);
	if (!mod) {
		ret = -ENOENT;
		goto out;
	}

	if (!list_empty(&mod->modules_which_use_me)) {
		/* Other modules depend on us: get rid of them first. */
		ret = -EWOULDBLOCK;
		goto out;
	}

	/* Doing init or already dying? */
	if (mod->state != MODULE_STATE_LIVE) {
		/* FIXME: if (force), slam module count and wake up
                   waiter --RR */
		DEBUGP("%s already dying\n", mod->name);
		ret = -EBUSY;
		goto out;
	}

	/* If it has an init func, it must have an exit func to unload */
	if (mod->init && !mod->exit) {
		forced = try_force_unload(flags);
		if (!forced) {
			/* This module can't be removed */
			ret = -EBUSY;
			goto out;
		}
	}

	/* Set this up before setting mod->state */
	mod->waiter = current;

	/* Stop the machine so refcounts can't move and disable module. */
	ret = try_stop_module(mod, flags, &forced);
	if (ret != 0)
		goto out;

	/* Never wait if forced. */
	if (!forced && module_refcount(mod) != 0)
		wait_for_zero_refcount(mod);

	mutex_unlock(&module_mutex);
	/* Final destruction now noone is using it. */
	if (mod->exit != NULL)
		mod->exit();
	blocking_notifier_call_chain(&module_notify_list,
				     MODULE_STATE_GOING, mod);
	async_synchronize_full();
	mutex_lock(&module_mutex);
	/* Store the name of the last unloaded module for diagnostic purposes */
	strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
	ddebug_remove_module(mod->name);
	free_module(mod);

 out:
	mutex_unlock(&module_mutex);
out_stop:
	stop_machine_destroy();
	return ret;
}

static inline void print_unload_info(struct seq_file *m, struct module *mod)
{
	struct module_use *use;
	int printed_something = 0;

	seq_printf(m, " %u ", module_refcount(mod));

	/* Always include a trailing , so userspace can differentiate
           between this and the old multi-field proc format. */
	list_for_each_entry(use, &mod->modules_which_use_me, list) {
		printed_something = 1;
		seq_printf(m, "%s,", use->module_which_uses->name);
	}

	if (mod->init != NULL && mod->exit == NULL) {
		printed_something = 1;
		seq_printf(m, "[permanent],");
	}

	if (!printed_something)
		seq_printf(m, "-");
}

void __symbol_put(const char *symbol)
{
	struct module *owner;

	preempt_disable();
	if (!find_symbol(symbol, &owner, NULL, true, false))
		BUG();
	module_put(owner);
	preempt_enable();
}
EXPORT_SYMBOL(__symbol_put);

/* Note this assumes addr is a function, which it currently always is. */
void symbol_put_addr(void *addr)
{
	struct module *modaddr;
	unsigned long a = (unsigned long)dereference_function_descriptor(addr);

	if (core_kernel_text(a))
		return;

	/* module_text_address is safe here: we're supposed to have reference
	 * to module from symbol_get, so it can't go away. */
	modaddr = __module_text_address(a);
	BUG_ON(!modaddr);
	module_put(modaddr);
}
EXPORT_SYMBOL_GPL(symbol_put_addr);

static ssize_t show_refcnt(struct module_attribute *mattr,
			   struct module *mod, char *buffer)
{
	return sprintf(buffer, "%u\n", module_refcount(mod));
}

static struct module_attribute refcnt = {
	.attr = { .name = "refcnt", .mode = 0444 },
	.show = show_refcnt,
};

void module_put(struct module *module)
{
	if (module) {
		unsigned int cpu = get_cpu();
		local_dec(__module_ref_addr(module, cpu));
		trace_module_put(module, _RET_IP_,
				 local_read(__module_ref_addr(module, cpu)));
		/* Maybe they're waiting for us to drop reference? */
		if (unlikely(!module_is_live(module)))
			wake_up_process(module->waiter);
		put_cpu();
	}
}
EXPORT_SYMBOL(module_put);

#else /* !CONFIG_MODULE_UNLOAD */
static inline void print_unload_info(struct seq_file *m, struct module *mod)
{
	/* We don't know the usage count, or what modules are using. */
	seq_printf(m, " - -");
}

static inline void module_unload_free(struct module *mod)
{
}

int use_module(struct module *a, struct module *b)
{
	return strong_try_module_get(b) == 0;
}
EXPORT_SYMBOL_GPL(use_module);

static inline void module_unload_init(struct module *mod)
{
}
#endif /* CONFIG_MODULE_UNLOAD */

static ssize_t show_initstate(struct module_attribute *mattr,
			   struct module *mod, char *buffer)
{
	const char *state = "unknown";

	switch (mod->state) {
	case MODULE_STATE_LIVE:
		state = "live";
		break;
	case MODULE_STATE_COMING:
		state = "coming";
		break;
	case MODULE_STATE_GOING:
		state = "going";
		break;
	}
	return sprintf(buffer, "%s\n", state);
}

static struct module_attribute initstate = {
	.attr = { .name = "initstate", .mode = 0444 },
	.show = show_initstate,
};

static struct module_attribute *modinfo_attrs[] = {
	&modinfo_version,
	&modinfo_srcversion,
	&initstate,
#ifdef CONFIG_MODULE_UNLOAD
	&refcnt,
#endif
	NULL,
};

static const char vermagic[] = VERMAGIC_STRING;

static int try_to_force_load(struct module *mod, const char *reason)
{
#ifdef CONFIG_MODULE_FORCE_LOAD
	if (!test_taint(TAINT_FORCED_MODULE))
		printk(KERN_WARNING "%s: %s: kernel tainted.\n",
		       mod->name, reason);
	add_taint_module(mod, TAINT_FORCED_MODULE);
	return 0;
#else
	return -ENOEXEC;
#endif
}

#ifdef CONFIG_MODVERSIONS
static int check_version(Elf_Shdr *sechdrs,
			 unsigned int versindex,
			 const char *symname,
			 struct module *mod, 
			 const unsigned long *crc)
{
	unsigned int i, num_versions;
	struct modversion_info *versions;

	/* Exporting module didn't supply crcs?  OK, we're already tainted. */
	if (!crc)
		return 1;

	/* No versions at all?  modprobe --force does this. */
	if (versindex == 0)
		return try_to_force_load(mod, symname) == 0;

	versions = (void *) sechdrs[versindex].sh_addr;
	num_versions = sechdrs[versindex].sh_size
		/ sizeof(struct modversion_info);

	for (i = 0; i < num_versions; i++) {
		if (strcmp(versions[i].name, symname) != 0)
			continue;

		if (versions[i].crc == *crc)
			return 1;
		DEBUGP("Found checksum %lX vs module %lX\n",
		       *crc, versions[i].crc);
		goto bad_version;
	}

	printk(KERN_WARNING "%s: no symbol version for %s\n",
	       mod->name, symname);
	return 0;

bad_version:
	printk("%s: disagrees about version of symbol %s\n",
	       mod->name, symname);
	return 0;
}

static inline int check_modstruct_version(Elf_Shdr *sechdrs,
					  unsigned int versindex,
					  struct module *mod)
{
	const unsigned long *crc;

	if (!find_symbol(MODULE_SYMBOL_PREFIX "module_layout", NULL,
			 &crc, true, false))
		BUG();
	return check_version(sechdrs, versindex, "module_layout", mod, crc);
}

/* First part is kernel version, which we ignore if module has crcs. */
static inline int same_magic(const char *amagic, const char *bmagic,
			     bool has_crcs)
{
	if (has_crcs) {
		amagic += strcspn(amagic, " ");
		bmagic += strcspn(bmagic, " ");
	}
	return strcmp(amagic, bmagic) == 0;
}
#else
static inline int check_version(Elf_Shdr *sechdrs,
				unsigned int versindex,
				const char *symname,
				struct module *mod, 
				const unsigned long *crc)
{
	return 1;
}

static inline int check_modstruct_version(Elf_Shdr *sechdrs,
					  unsigned int versindex,
					  struct module *mod)
{
	return 1;
}

static inline int same_magic(const char *amagic, const char *bmagic,
			     bool has_crcs)
{
	return strcmp(amagic, bmagic) == 0;
}
#endif /* CONFIG_MODVERSIONS */

/* Resolve a symbol for this module.  I.e. if we find one, record usage.
   Must be holding module_mutex. */
static const struct kernel_symbol *resolve_symbol(Elf_Shdr *sechdrs,
						  unsigned int versindex,
						  const char *name,
						  struct module *mod)
{
	struct module *owner;
	const struct kernel_symbol *sym;
	const unsigned long *crc;

	sym = find_symbol(name, &owner, &crc,
			  !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
	/* use_module can fail due to OOM,
	   or module initialization or unloading */
	if (sym) {
		if (!check_version(sechdrs, versindex, name, mod, crc) ||
		    !use_module(mod, owner))
			sym = NULL;
	}
	return sym;
}

/*
 * /sys/module/foo/sections stuff
 * J. Corbet <corbet@lwn.net>
 */
#if defined(CONFIG_KALLSYMS) && defined(CONFIG_SYSFS)
struct module_sect_attr
{
	struct module_attribute mattr;
	char *name;
	unsigned long address;
};

struct module_sect_attrs
{
	struct attribute_group grp;
	unsigned int nsections;
	struct module_sect_attr attrs[0];
};

static ssize_t module_sect_show(struct module_attribute *mattr,
				struct module *mod, char *buf)
{
	struct module_sect_attr *sattr =
		container_of(mattr, struct module_sect_attr, mattr);
	return sprintf(buf, "0x%lx\n", sattr->address);
}

static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
{
	unsigned int section;

	for (section = 0; section < sect_attrs->nsections; section++)
		kfree(sect_attrs->attrs[section].name);
	kfree(sect_attrs);
}

static void add_sect_attrs(struct module *mod, unsigned int nsect,
		char *secstrings, Elf_Shdr *sechdrs)
{
	unsigned int nloaded = 0, i, size[2];
	struct module_sect_attrs *sect_attrs;
	struct module_sect_attr *sattr;
	struct attribute **gattr;

	/* Count loaded sections and allocate structures */
	for (i = 0; i < nsect; i++)
		if (sechdrs[i].sh_flags & SHF_ALLOC)
			nloaded++;
	size[0] = ALIGN(sizeof(*sect_attrs)
			+ nloaded * sizeof(sect_attrs->attrs[0]),
			sizeof(sect_attrs->grp.attrs[0]));
	size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
	sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
	if (sect_attrs == NULL)
		return;

	/* Setup section attributes. */
	sect_attrs->grp.name = "sections";
	sect_attrs->grp.attrs = (void *)sect_attrs + size[0];

	sect_attrs->nsections = 0;
	sattr = &sect_attrs->attrs[0];
	gattr = &sect_attrs->grp.attrs[0];
	for (i = 0; i < nsect; i++) {
		if (! (sechdrs[i].sh_flags & SHF_ALLOC))
			continue;
		sattr->address = sechdrs[i].sh_addr;
		sattr->name = kstrdup(secstrings + sechdrs[i].sh_name,
					GFP_KERNEL);
		if (sattr->name == NULL)
			goto out;
		sect_attrs->nsections++;
		sattr->mattr.show = module_sect_show;
		sattr->mattr.store = NULL;
		sattr->mattr.attr.name = sattr->name;
		sattr->mattr.attr.mode = S_IRUGO;
		*(gattr++) = &(sattr++)->mattr.attr;
	}
	*gattr = NULL;

	if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
		goto out;

	mod->sect_attrs = sect_attrs;
	return;
  out:
	free_sect_attrs(sect_attrs);
}

static void remove_sect_attrs(struct module *mod)
{
	if (mod->sect_attrs) {
		sysfs_remove_group(&mod->mkobj.kobj,
				   &mod->sect_attrs->grp);
		/* We are positive that no one is using any sect attrs
		 * at this point.  Deallocate immediately. */
		free_sect_attrs(mod->sect_attrs);
		mod->sect_attrs = NULL;
	}
}

/*
 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
 */

struct module_notes_attrs {
	struct kobject *dir;
	unsigned int notes;
	struct bin_attribute attrs[0];
};

static ssize_t module_notes_read(struct kobject *kobj,
				 struct bin_attribute *bin_attr,
				 char *buf, loff_t pos, size_t count)
{
	/*
	 * The caller checked the pos and count against our size.
	 */
	memcpy(buf, bin_attr->private + pos, count);
	return count;
}

static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
			     unsigned int i)
{
	if (notes_attrs->dir) {
		while (i-- > 0)
			sysfs_remove_bin_file(notes_attrs->dir,
					      &notes_attrs->attrs[i]);
		kobject_put(notes_attrs->dir);
	}
	kfree(notes_attrs);
}

static void add_notes_attrs(struct module *mod, unsigned int nsect,
			    char *secstrings, Elf_Shdr *sechdrs)
{
	unsigned int notes, loaded, i;
	struct module_notes_attrs *notes_attrs;
	struct bin_attribute *nattr;

	/* failed to create section attributes, so can't create notes */
	if (!mod->sect_attrs)
		return;

	/* Count notes sections and allocate structures.  */
	notes = 0;
	for (i = 0; i < nsect; i++)
		if ((sechdrs[i].sh_flags & SHF_ALLOC) &&
		    (sechdrs[i].sh_type == SHT_NOTE))
			++notes;

	if (notes == 0)
		return;

	notes_attrs = kzalloc(sizeof(*notes_attrs)
			      + notes * sizeof(notes_attrs->attrs[0]),
			      GFP_KERNEL);
	if (notes_attrs == NULL)
		return;

	notes_attrs->notes = notes;
	nattr = &notes_attrs->attrs[0];
	for (loaded = i = 0; i < nsect; ++i) {
		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
			continue;
		if (sechdrs[i].sh_type == SHT_NOTE) {
			nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
			nattr->attr.mode = S_IRUGO;
			nattr->size = sechdrs[i].sh_size;
			nattr->private = (void *) sechdrs[i].sh_addr;
			nattr->read = module_notes_read;
			++nattr;
		}
		++loaded;
	}

	notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
	if (!notes_attrs->dir)
		goto out;

	for (i = 0; i < notes; ++i)
		if (sysfs_create_bin_file(notes_attrs->dir,
					  &notes_attrs->attrs[i]))
			goto out;

	mod->notes_attrs = notes_attrs;
	return;

  out:
	free_notes_attrs(notes_attrs, i);
}

static void remove_notes_attrs(struct module *mod)
{
	if (mod->notes_attrs)
		free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
}

#else

static inline void add_sect_attrs(struct module *mod, unsigned int nsect,
		char *sectstrings, Elf_Shdr *sechdrs)
{
}

static inline void remove_sect_attrs(struct module *mod)
{
}

static inline void add_notes_attrs(struct module *mod, unsigned int nsect,
				   char *sectstrings, Elf_Shdr *sechdrs)
{
}

static inline void remove_notes_attrs(struct module *mod)
{
}
#endif

#ifdef CONFIG_SYSFS
int module_add_modinfo_attrs(struct module *mod)
{
	struct module_attribute *attr;
	struct module_attribute *temp_attr;
	int error = 0;
	int i;

	mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
					(ARRAY_SIZE(modinfo_attrs) + 1)),
					GFP_KERNEL);
	if (!mod->modinfo_attrs)
		return -ENOMEM;

	temp_attr = mod->modinfo_attrs;
	for (i = 0; (attr = modinfo_attrs[i]) && !error; i++) {
		if (!attr->test ||
		    (attr->test && attr->test(mod))) {
			memcpy(temp_attr, attr, sizeof(*temp_attr));
			error = sysfs_create_file(&mod->mkobj.kobj,&temp_attr->attr);
			++temp_attr;
		}
	}
	return error;
}

void module_remove_modinfo_attrs(struct module *mod)
{
	struct module_attribute *attr;
	int i;

	for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
		/* pick a field to test for end of list */
		if (!attr->attr.name)
			break;
		sysfs_remove_file(&mod->mkobj.kobj,&attr->attr);
		if (attr->free)
			attr->free(mod);
	}
	kfree(mod->modinfo_attrs);
}

int mod_sysfs_init(struct module *mod)
{
	int err;
	struct kobject *kobj;

	if (!module_sysfs_initialized) {
		printk(KERN_ERR "%s: module sysfs not initialized\n",
		       mod->name);
		err = -EINVAL;
		goto out;
	}

	kobj = kset_find_obj(module_kset, mod->name);
	if (kobj) {
		printk(KERN_ERR "%s: module is already loaded\n", mod->name);
		kobject_put(kobj);
		err = -EINVAL;
		goto out;
	}

	mod->mkobj.mod = mod;

	memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
	mod->mkobj.kobj.kset = module_kset;
	err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
				   "%s", mod->name);
	if (err)
		kobject_put(&mod->mkobj.kobj);

	/* delay uevent until full sysfs population */
out:
	return err;
}

int mod_sysfs_setup(struct module *mod,
			   struct kernel_param *kparam,
			   unsigned int num_params)
{
	int err;

	mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
	if (!mod->holders_dir) {
		err = -ENOMEM;
		goto out_unreg;
	}

	err = module_param_sysfs_setup(mod, kparam, num_params);
	if (err)
		goto out_unreg_holders;

	err = module_add_modinfo_attrs(mod);
	if (err)
		goto out_unreg_param;

	kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
	return 0;

out_unreg_param:
	module_param_sysfs_remove(mod);
out_unreg_holders:
	kobject_put(mod->holders_dir);
out_unreg:
	kobject_put(&mod->mkobj.kobj);
	return err;
}

static void mod_sysfs_fini(struct module *mod)
{
	kobject_put(&mod->mkobj.kobj);
}

#else /* CONFIG_SYSFS */

static void mod_sysfs_fini(struct module *mod)
{
}

#endif /* CONFIG_SYSFS */

static void mod_kobject_remove(struct module *mod)
{
	module_remove_modinfo_attrs(mod);
	module_param_sysfs_remove(mod);
	kobject_put(mod->mkobj.drivers_dir);
	kobject_put(mod->holders_dir);
	mod_sysfs_fini(mod);
}

/*
 * unlink the module with the whole machine is stopped with interrupts off
 * - this defends against kallsyms not taking locks
 */
static int __unlink_module(void *_mod)
{
	struct module *mod = _mod;
	list_del(&mod->list);
	return 0;
}

/* Free a module, remove from lists, etc (must hold module_mutex). */
static void free_module(struct module *mod)
{
	trace_module_free(mod);

	/* Delete from various lists */
	stop_machine(__unlink_module, mod, NULL);
	remove_notes_attrs(mod);
	remove_sect_attrs(mod);
	mod_kobject_remove(mod);

	/* Arch-specific cleanup. */
	module_arch_cleanup(mod);

	/* Module unload stuff */
	module_unload_free(mod);

	/* Free any allocated parameters. */
	destroy_params(mod->kp, mod->num_kp);

	/* This may be NULL, but that's OK */
	module_free(mod, mod->module_init);
	kfree(mod->args);
	if (mod->percpu)
		percpu_modfree(mod->percpu);
#if defined(CONFIG_MODULE_UNLOAD) && defined(CONFIG_SMP)
	if (mod->refptr)
		percpu_modfree(mod->refptr);
#endif
	/* Free lock-classes: */
	lockdep_free_key_range(mod->module_core, mod->core_size);

	/* Finally, free the core (containing the module structure) */
	module_free(mod, mod->module_core);
}

void *__symbol_get(const char *symbol)
{
	struct module *owner;
	const struct kernel_symbol *sym;

	preempt_disable();
	sym = find_symbol(symbol, &owner, NULL, true, true);
	if (sym && strong_try_module_get(owner))
		sym = NULL;
	preempt_enable();

	return sym ? (void *)sym->value : NULL;
}
EXPORT_SYMBOL_GPL(__symbol_get);

/*
 * Ensure that an exported symbol [global namespace] does not already exist
 * in the kernel or in some other module's exported symbol table.
 */
static int verify_export_symbols(struct module *mod)
{
	unsigned int i;
	struct module *owner;
	const struct kernel_symbol *s;
	struct {
		const struct kernel_symbol *sym;
		unsigned int num;
	} arr[] = {
		{ mod->syms, mod->num_syms },
		{ mod->gpl_syms, mod->num_gpl_syms },
		{ mod->gpl_future_syms, mod->num_gpl_future_syms },
#ifdef CONFIG_UNUSED_SYMBOLS
		{ mod->unused_syms, mod->num_unused_syms },
		{ mod->unused_gpl_syms, mod->num_unused_gpl_syms },
#endif
	};

	for (i = 0; i < ARRAY_SIZE(arr); i++) {
		for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
			if (find_symbol(s->name, &owner, NULL, true, false)) {
				printk(KERN_ERR
				       "%s: exports duplicate symbol %s"
				       " (owned by %s)\n",
				       mod->name, s->name, module_name(owner));
				return -ENOEXEC;
			}
		}
	}
	return 0;
}

/* Change all symbols so that st_value encodes the pointer directly. */
static int simplify_symbols(Elf_Shdr *sechdrs,
			    unsigned int symindex,
			    const char *strtab,
			    unsigned int versindex,
			    unsigned int pcpuindex,
			    struct module *mod)
{
	Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
	unsigned long secbase;
	unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
	int ret = 0;
	const struct kernel_symbol *ksym;

	for (i = 1; i < n; i++) {
		switch (sym[i].st_shndx) {
		case SHN_COMMON:
			/* We compiled with -fno-common.  These are not
			   supposed to happen.  */
			DEBUGP("Common symbol: %s\n", strtab + sym[i].st_name);
			printk("%s: please compile with -fno-common\n",
			       mod->name);
			ret = -ENOEXEC;
			break;

		case SHN_ABS:
			/* Don't need to do anything */
			DEBUGP("Absolute symbol: 0x%08lx\n",
			       (long)sym[i].st_value);
			break;

		case SHN_UNDEF:
			ksym = resolve_symbol(sechdrs, versindex,
					      strtab + sym[i].st_name, mod);
			/* Ok if resolved.  */
			if (ksym) {
				sym[i].st_value = ksym->value;
				break;
			}

			/* Ok if weak.  */
			if (ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
				break;

			printk(KERN_WARNING "%s: Unknown symbol %s\n",
			       mod->name, strtab + sym[i].st_name);
			ret = -ENOENT;
			break;

		default:
			/* Divert to percpu allocation if a percpu var. */
			if (sym[i].st_shndx == pcpuindex)
				secbase = (unsigned long)mod->percpu;
			else
				secbase = sechdrs[sym[i].st_shndx].sh_addr;
			sym[i].st_value += secbase;
			break;
		}
	}

	return ret;
}

/* Additional bytes needed by arch in front of individual sections */
unsigned int __weak arch_mod_section_prepend(struct module *mod,
					     unsigned int section)
{
	/* default implementation just returns zero */
	return 0;
}

/* Update size with this section: return offset. */
static long get_offset(struct module *mod, unsigned int *size,
		       Elf_Shdr *sechdr, unsigned int section)
{
	long ret;

	*size += arch_mod_section_prepend(mod, section);
	ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
	*size = ret + sechdr->sh_size;
	return ret;
}

/* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
   might -- code, read-only data, read-write data, small data.  Tally
   sizes, and place the offsets into sh_entsize fields: high bit means it
   belongs in init. */
static void layout_sections(struct module *mod,
			    const Elf_Ehdr *hdr,
			    Elf_Shdr *sechdrs,
			    const char *secstrings)
{
	static unsigned long const masks[][2] = {
		/* NOTE: all executable code must be the first section
		 * in this array; otherwise modify the text_size
		 * finder in the two loops below */
		{ SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
		{ SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
		{ SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
		{ ARCH_SHF_SMALL | SHF_ALLOC, 0 }
	};
	unsigned int m, i;

	for (i = 0; i < hdr->e_shnum; i++)
		sechdrs[i].sh_entsize = ~0UL;

	DEBUGP("Core section allocation order:\n");
	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
		for (i = 0; i < hdr->e_shnum; ++i) {
			Elf_Shdr *s = &sechdrs[i];

			if ((s->sh_flags & masks[m][0]) != masks[m][0]
			    || (s->sh_flags & masks[m][1])
			    || s->sh_entsize != ~0UL
			    || strstarts(secstrings + s->sh_name, ".init"))
				continue;
			s->sh_entsize = get_offset(mod, &mod->core_size, s, i);
			DEBUGP("\t%s\n", secstrings + s->sh_name);
		}
		if (m == 0)
			mod->core_text_size = mod->core_size;
	}

	DEBUGP("Init section allocation order:\n");
	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
		for (i = 0; i < hdr->e_shnum; ++i) {
			Elf_Shdr *s = &sechdrs[i];

			if ((s->sh_flags & masks[m][0]) != masks[m][0]
			    || (s->sh_flags & masks[m][1])
			    || s->sh_entsize != ~0UL
			    || !strstarts(secstrings + s->sh_name, ".init"))
				continue;
			s->sh_entsize = (get_offset(mod, &mod->init_size, s, i)
					 | INIT_OFFSET_MASK);
			DEBUGP("\t%s\n", secstrings + s->sh_name);
		}
		if (m == 0)
			mod->init_text_size = mod->init_size;
	}
}

static void set_license(struct module *mod, const char *license)
{
	if (!license)
		license = "unspecified";

	if (!license_is_gpl_compatible(license)) {
		if (!test_taint(TAINT_PROPRIETARY_MODULE))
			printk(KERN_WARNING "%s: module license '%s' taints "
				"kernel.\n", mod->name, license);
		add_taint_module(mod, TAINT_PROPRIETARY_MODULE);
	}
}

/* Parse tag=value strings from .modinfo section */
static char *next_string(char *string, unsigned long *secsize)
{
	/* Skip non-zero chars */
	while (string[0]) {
		string++;
		if ((*secsize)-- <= 1)
			return NULL;
	}

	/* Skip any zero padding. */
	while (!string[0]) {
		string++;
		if ((*secsize)-- <= 1)
			return NULL;
	}
	return string;
}

static char *get_modinfo(Elf_Shdr *sechdrs,
			 unsigned int info,
			 const char *tag)
{
	char *p;
	unsigned int taglen = strlen(tag);
	unsigned long size = sechdrs[info].sh_size;

	for (p = (char *)sechdrs[info].sh_addr; p; p = next_string(p, &size)) {
		if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
			return p + taglen + 1;
	}
	return NULL;
}

static void setup_modinfo(struct module *mod, Elf_Shdr *sechdrs,
			  unsigned int infoindex)
{
	struct module_attribute *attr;
	int i;

	for (i = 0; (attr = modinfo_attrs[i]); i++) {
		if (attr->setup)
			attr->setup(mod,
				    get_modinfo(sechdrs,
						infoindex,
						attr->attr.name));
	}
}

#ifdef CONFIG_KALLSYMS

/* lookup symbol in given range of kernel_symbols */
static const struct kernel_symbol *lookup_symbol(const char *name,
	const struct kernel_symbol *start,
	const struct kernel_symbol *stop)
{
	const struct kernel_symbol *ks = start;
	for (; ks < stop; ks++)
		if (strcmp(ks->name, name) == 0)
			return ks;
	return NULL;
}

static int is_exported(const char *name, unsigned long value,
		       const struct module *mod)
{
	const struct kernel_symbol *ks;
	if (!mod)
		ks = lookup_symbol(name, __start___ksymtab, __stop___ksymtab);
	else
		ks = lookup_symbol(name, mod->syms, mod->syms + mod->num_syms);
	return ks != NULL && ks->value == value;
}

/* As per nm */
static char elf_type(const Elf_Sym *sym,
		     Elf_Shdr *sechdrs,
		     const char *secstrings,
		     struct module *mod)
{
	if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
		if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
			return 'v';
		else
			return 'w';
	}
	if (sym->st_shndx == SHN_UNDEF)
		return 'U';
	if (sym->st_shndx == SHN_ABS)
		return 'a';
	if (sym->st_shndx >= SHN_LORESERVE)
		return '?';
	if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
		return 't';
	if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
	    && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
		if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
			return 'r';
		else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
			return 'g';
		else
			return 'd';
	}
	if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
		if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
			return 's';
		else
			return 'b';
	}
	if (strstarts(secstrings + sechdrs[sym->st_shndx].sh_name, ".debug"))
		return 'n';
	return '?';
}

static void add_kallsyms(struct module *mod,
			 Elf_Shdr *sechdrs,
			 unsigned int symindex,
			 unsigned int strindex,
			 const char *secstrings)
{
	unsigned int i;

	mod->symtab = (void *)sechdrs[symindex].sh_addr;
	mod->num_symtab = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
	mod->strtab = (void *)sechdrs[strindex].sh_addr;

	/* Set types up while we still have access to sections. */
	for (i = 0; i < mod->num_symtab; i++)
		mod->symtab[i].st_info
			= elf_type(&mod->symtab[i], sechdrs, secstrings, mod);
}
#else
static inline void add_kallsyms(struct module *mod,
				Elf_Shdr *sechdrs,
				unsigned int symindex,
				unsigned int strindex,
				const char *secstrings)
{
}
#endif /* CONFIG_KALLSYMS */

static void dynamic_debug_setup(struct _ddebug *debug, unsigned int num)
{
#ifdef CONFIG_DYNAMIC_DEBUG
	if (ddebug_add_module(debug, num, debug->modname))
		printk(KERN_ERR "dynamic debug error adding module: %s\n",
					debug->modname);
#endif
}

static void *module_alloc_update_bounds(unsigned long size)
{
	void *ret = module_alloc(size);

	if (ret) {
		/* Update module bounds. */
		if ((unsigned long)ret < module_addr_min)
			module_addr_min = (unsigned long)ret;
		if ((unsigned long)ret + size > module_addr_max)
			module_addr_max = (unsigned long)ret + size;
	}
	return ret;
}

#ifdef CONFIG_DEBUG_KMEMLEAK
static void kmemleak_load_module(struct module *mod, Elf_Ehdr *hdr,
				 Elf_Shdr *sechdrs, char *secstrings)
{
	unsigned int i;

	/* only scan the sections containing data */
	kmemleak_scan_area(mod->module_core, (unsigned long)mod -
			   (unsigned long)mod->module_core,
			   sizeof(struct module), GFP_KERNEL);

	for (i = 1; i < hdr->e_shnum; i++) {
		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
			continue;
		if (strncmp(secstrings + sechdrs[i].sh_name, ".data", 5) != 0
		    && strncmp(secstrings + sechdrs[i].sh_name, ".bss", 4) != 0)
			continue;

		kmemleak_scan_area(mod->module_core, sechdrs[i].sh_addr -
				   (unsigned long)mod->module_core,
				   sechdrs[i].sh_size, GFP_KERNEL);
	}
}
#else
static inline void kmemleak_load_module(struct module *mod, Elf_Ehdr *hdr,
					Elf_Shdr *sechdrs, char *secstrings)
{
}
#endif

/* Allocate and load the module: note that size of section 0 is always
   zero, and we rely on this for optional sections. */
static noinline struct module *load_module(void __user *umod,
				  unsigned long len,
				  const char __user *uargs)
{
	Elf_Ehdr *hdr;
	Elf_Shdr *sechdrs;
	char *secstrings, *args, *modmagic, *strtab = NULL;
	char *staging;
	unsigned int i;
	unsigned int symindex = 0;
	unsigned int strindex = 0;
	unsigned int modindex, versindex, infoindex, pcpuindex;
	struct module *mod;
	long err = 0;
	void *percpu = NULL, *ptr = NULL; /* Stops spurious gcc warning */
	mm_segment_t old_fs;

	DEBUGP("load_module: umod=%p, len=%lu, uargs=%p\n",
	       umod, len, uargs);
	if (len < sizeof(*hdr))
		return ERR_PTR(-ENOEXEC);

	/* Suck in entire file: we'll want most of it. */
	/* vmalloc barfs on "unusual" numbers.  Check here */
	if (len > 64 * 1024 * 1024 || (hdr = vmalloc(len)) == NULL)
		return ERR_PTR(-ENOMEM);

	if (copy_from_user(hdr, umod, len) != 0) {
		err = -EFAULT;
		goto free_hdr;
	}

	/* Sanity checks against insmoding binaries or wrong arch,
           weird elf version */
	if (memcmp(hdr->e_ident, ELFMAG, SELFMAG) != 0
	    || hdr->e_type != ET_REL
	    || !elf_check_arch(hdr)
	    || hdr->e_shentsize != sizeof(*sechdrs)) {
		err = -ENOEXEC;
		goto free_hdr;
	}

	if (len < hdr->e_shoff + hdr->e_shnum * sizeof(Elf_Shdr))
		goto truncated;

	/* Convenience variables */
	sechdrs = (void *)hdr + hdr->e_shoff;
	secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
	sechdrs[0].sh_addr = 0;

	for (i = 1; i < hdr->e_shnum; i++) {
		if (sechdrs[i].sh_type != SHT_NOBITS
		    && len < sechdrs[i].sh_offset + sechdrs[i].sh_size)
			goto truncated;

		/* Mark all sections sh_addr with their address in the
		   temporary image. */
		sechdrs[i].sh_addr = (size_t)hdr + sechdrs[i].sh_offset;

		/* Internal symbols and strings. */
		if (sechdrs[i].sh_type == SHT_SYMTAB) {
			symindex = i;
			strindex = sechdrs[i].sh_link;
			strtab = (char *)hdr + sechdrs[strindex].sh_offset;
		}
#ifndef CONFIG_MODULE_UNLOAD
		/* Don't load .exit sections */
		if (strstarts(secstrings+sechdrs[i].sh_name, ".exit"))
			sechdrs[i].sh_flags &= ~(unsigned long)SHF_ALLOC;
#endif
	}

	modindex = find_sec(hdr, sechdrs, secstrings,
			    ".gnu.linkonce.this_module");
	if (!modindex) {
		printk(KERN_WARNING "No module found in object\n");
		err = -ENOEXEC;
		goto free_hdr;
	}
	/* This is temporary: point mod into copy of data. */
	mod = (void *)sechdrs[modindex].sh_addr;

	if (symindex == 0) {
		printk(KERN_WARNING "%s: module has no symbols (stripped?)\n",
		       mod->name);
		err = -ENOEXEC;
		goto free_hdr;
	}

	versindex = find_sec(hdr, sechdrs, secstrings, "__versions");
	infoindex = find_sec(hdr, sechdrs, secstrings, ".modinfo");
	pcpuindex = find_pcpusec(hdr, sechdrs, secstrings);

	/* Don't keep modinfo and version sections. */
	sechdrs[infoindex].sh_flags &= ~(unsigned long)SHF_ALLOC;
	sechdrs[versindex].sh_flags &= ~(unsigned long)SHF_ALLOC;
#ifdef CONFIG_KALLSYMS
	/* Keep symbol and string tables for decoding later. */
	sechdrs[symindex].sh_flags |= SHF_ALLOC;
	sechdrs[strindex].sh_flags |= SHF_ALLOC;
#endif

	/* Check module struct version now, before we try to use module. */
	if (!check_modstruct_version(sechdrs, versindex, mod)) {
		err = -ENOEXEC;
		goto free_hdr;
	}

	modmagic = get_modinfo(sechdrs, infoindex, "vermagic");
	/* This is allowed: modprobe --force will invalidate it. */
	if (!modmagic) {
		err = try_to_force_load(mod, "bad vermagic");
		if (err)
			goto free_hdr;
	} else if (!same_magic(modmagic, vermagic, versindex)) {
		printk(KERN_ERR "%s: version magic '%s' should be '%s'\n",
		       mod->name, modmagic, vermagic);
		err = -ENOEXEC;
		goto free_hdr;
	}

	staging = get_modinfo(sechdrs, infoindex, "staging");
	if (staging) {
		add_taint_module(mod, TAINT_CRAP);
		printk(KERN_WARNING "%s: module is from the staging directory,"
		       " the quality is unknown, you have been warned.\n",
		       mod->name);
	}

	/* Now copy in args */
	args = strndup_user(uargs, ~0UL >> 1);
	if (IS_ERR(args)) {
		err = PTR_ERR(args);
		goto free_hdr;
	}

	if (find_module(mod->name)) {
		err = -EEXIST;
		goto free_mod;
	}

	mod->state = MODULE_STATE_COMING;

	/* Allow arches to frob section contents and sizes.  */
	err = module_frob_arch_sections(hdr, sechdrs, secstrings, mod);
	if (err < 0)
		goto free_mod;

	if (pcpuindex) {
		/* We have a special allocation for this section. */
		percpu = percpu_modalloc(sechdrs[pcpuindex].sh_size,
					 sechdrs[pcpuindex].sh_addralign,
					 mod->name);
		if (!percpu) {
			err = -ENOMEM;
			goto free_mod;
		}
		sechdrs[pcpuindex].sh_flags &= ~(unsigned long)SHF_ALLOC;
		mod->percpu = percpu;
	}

	/* Determine total sizes, and put offsets in sh_entsize.  For now
	   this is done generically; there doesn't appear to be any
	   special cases for the architectures. */
	layout_sections(mod, hdr, sechdrs, secstrings);

	/* Do the allocs. */
	ptr = module_alloc_update_bounds(mod->core_size);
	/*
	 * The pointer to this block is stored in the module structure
	 * which is inside the block. Just mark it as not being a
	 * leak.
	 */
	kmemleak_not_leak(ptr);
	if (!ptr) {
		err = -ENOMEM;
		goto free_percpu;
	}
	memset(ptr, 0, mod->core_size);
	mod->module_core = ptr;

	ptr = module_alloc_update_bounds(mod->init_size);
	/*
	 * The pointer to this block is stored in the module structure
	 * which is inside the block. This block doesn't need to be
	 * scanned as it contains data and code that will be freed
	 * after the module is initialized.
	 */
	kmemleak_ignore(ptr);
	if (!ptr && mod->init_size) {
		err = -ENOMEM;
		goto free_core;
	}
	memset(ptr, 0, mod->init_size);
	mod->module_init = ptr;

	/* Transfer each section which specifies SHF_ALLOC */
	DEBUGP("final section addresses:\n");
	for (i = 0; i < hdr->e_shnum; i++) {
		void *dest;

		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
			continue;

		if (sechdrs[i].sh_entsize & INIT_OFFSET_MASK)
			dest = mod->module_init
				+ (sechdrs[i].sh_entsize & ~INIT_OFFSET_MASK);
		else
			dest = mod->module_core + sechdrs[i].sh_entsize;

		if (sechdrs[i].sh_type != SHT_NOBITS)
			memcpy(dest, (void *)sechdrs[i].sh_addr,
			       sechdrs[i].sh_size);
		/* Update sh_addr to point to copy in image. */
		sechdrs[i].sh_addr = (unsigned long)dest;
		DEBUGP("\t0x%lx %s\n", sechdrs[i].sh_addr, secstrings + sechdrs[i].sh_name);
	}
	/* Module has been moved. */
	mod = (void *)sechdrs[modindex].sh_addr;
	kmemleak_load_module(mod, hdr, sechdrs, secstrings);

#if defined(CONFIG_MODULE_UNLOAD) && defined(CONFIG_SMP)
	mod->refptr = percpu_modalloc(sizeof(local_t), __alignof__(local_t),
				      mod->name);
	if (!mod->refptr) {
		err = -ENOMEM;
		goto free_init;
	}
#endif
	/* Now we've moved module, initialize linked lists, etc. */
	module_unload_init(mod);

	/* add kobject, so we can reference it. */
	err = mod_sysfs_init(mod);
	if (err)
		goto free_unload;

	/* Set up license info based on the info section */
	set_license(mod, get_modinfo(sechdrs, infoindex, "license"));

	/*
	 * ndiswrapper is under GPL by itself, but loads proprietary modules.
	 * Don't use add_taint_module(), as it would prevent ndiswrapper from
	 * using GPL-only symbols it needs.
	 */
	if (strcmp(mod->name, "ndiswrapper") == 0)
		add_taint(TAINT_PROPRIETARY_MODULE);

	/* driverloader was caught wrongly pretending to be under GPL */
	if (strcmp(mod->name, "driverloader") == 0)
		add_taint_module(mod, TAINT_PROPRIETARY_MODULE);

	/* Set up MODINFO_ATTR fields */
	setup_modinfo(mod, sechdrs, infoindex);

	/* Fix up syms, so that st_value is a pointer to location. */
	err = simplify_symbols(sechdrs, symindex, strtab, versindex, pcpuindex,
			       mod);
	if (err < 0)
		goto cleanup;

	/* Now we've got everything in the final locations, we can
	 * find optional sections. */
	mod->kp = section_objs(hdr, sechdrs, secstrings, "__param",
			       sizeof(*mod->kp), &mod->num_kp);
	mod->syms = section_objs(hdr, sechdrs, secstrings, "__ksymtab",
				 sizeof(*mod->syms), &mod->num_syms);
	mod->crcs = section_addr(hdr, sechdrs, secstrings, "__kcrctab");
	mod->gpl_syms = section_objs(hdr, sechdrs, secstrings, "__ksymtab_gpl",
				     sizeof(*mod->gpl_syms),
				     &mod->num_gpl_syms);
	mod->gpl_crcs = section_addr(hdr, sechdrs, secstrings, "__kcrctab_gpl");
	mod->gpl_future_syms = section_objs(hdr, sechdrs, secstrings,
					    "__ksymtab_gpl_future",
					    sizeof(*mod->gpl_future_syms),
					    &mod->num_gpl_future_syms);
	mod->gpl_future_crcs = section_addr(hdr, sechdrs, secstrings,
					    "__kcrctab_gpl_future");

#ifdef CONFIG_UNUSED_SYMBOLS
	mod->unused_syms = section_objs(hdr, sechdrs, secstrings,
					"__ksymtab_unused",
					sizeof(*mod->unused_syms),
					&mod->num_unused_syms);
	mod->unused_crcs = section_addr(hdr, sechdrs, secstrings,
					"__kcrctab_unused");
	mod->unused_gpl_syms = section_objs(hdr, sechdrs, secstrings,
					    "__ksymtab_unused_gpl",
					    sizeof(*mod->unused_gpl_syms),
					    &mod->num_unused_gpl_syms);
	mod->unused_gpl_crcs = section_addr(hdr, sechdrs, secstrings,
					    "__kcrctab_unused_gpl");
#endif
#ifdef CONFIG_CONSTRUCTORS
	mod->ctors = section_objs(hdr, sechdrs, secstrings, ".ctors",
				  sizeof(*mod->ctors), &mod->num_ctors);
#endif

#ifdef CONFIG_TRACEPOINTS
	mod->tracepoints = section_objs(hdr, sechdrs, secstrings,
					"__tracepoints",
					sizeof(*mod->tracepoints),
					&mod->num_tracepoints);
#endif
#ifdef CONFIG_EVENT_TRACING
	mod->trace_events = section_objs(hdr, sechdrs, secstrings,
					 "_ftrace_events",
					 sizeof(*mod->trace_events),
					 &mod->num_trace_events);
#endif
#ifdef CONFIG_FTRACE_MCOUNT_RECORD
	/* sechdrs[0].sh_size is always zero */
	mod->ftrace_callsites = section_objs(hdr, sechdrs, secstrings,
					     "__mcount_loc",
					     sizeof(*mod->ftrace_callsites),
					     &mod->num_ftrace_callsites);
#endif
#ifdef CONFIG_MODVERSIONS
	if ((mod->num_syms && !mod->crcs)
	    || (mod->num_gpl_syms && !mod->gpl_crcs)
	    || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
#ifdef CONFIG_UNUSED_SYMBOLS
	    || (mod->num_unused_syms && !mod->unused_crcs)
	    || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
#endif
		) {
		err = try_to_force_load(mod,
					"no versions for exported symbols");
		if (err)
			goto cleanup;
	}
#endif

	/* Now do relocations. */
	for (i = 1; i < hdr->e_shnum; i++) {
		const char *strtab = (char *)sechdrs[strindex].sh_addr;
		unsigned int info = sechdrs[i].sh_info;

		/* Not a valid relocation section? */
		if (info >= hdr->e_shnum)
			continue;

		/* Don't bother with non-allocated sections */
		if (!(sechdrs[info].sh_flags & SHF_ALLOC))
			continue;

		if (sechdrs[i].sh_type == SHT_REL)
			err = apply_relocate(sechdrs, strtab, symindex, i,mod);
		else if (sechdrs[i].sh_type == SHT_RELA)
			err = apply_relocate_add(sechdrs, strtab, symindex, i,
						 mod);
		if (err < 0)
			goto cleanup;
	}

        /* Find duplicate symbols */
	err = verify_export_symbols(mod);
	if (err < 0)
		goto cleanup;

  	/* Set up and sort exception table */
	mod->extable = section_objs(hdr, sechdrs, secstrings, "__ex_table",
				    sizeof(*mod->extable), &mod->num_exentries);
	sort_extable(mod->extable, mod->extable + mod->num_exentries);

	/* Finally, copy percpu area over. */
	percpu_modcopy(mod->percpu, (void *)sechdrs[pcpuindex].sh_addr,
		       sechdrs[pcpuindex].sh_size);

	add_kallsyms(mod, sechdrs, symindex, strindex, secstrings);

	if (!mod->taints) {
		struct _ddebug *debug;
		unsigned int num_debug;

		debug = section_objs(hdr, sechdrs, secstrings, "__verbose",
				     sizeof(*debug), &num_debug);
		if (debug)
			dynamic_debug_setup(debug, num_debug);
	}

	err = module_finalize(hdr, sechdrs, mod);
	if (err < 0)
		goto cleanup;

	/* flush the icache in correct context */
	old_fs = get_fs();
	set_fs(KERNEL_DS);

	/*
	 * Flush the instruction cache, since we've played with text.
	 * Do it before processing of module parameters, so the module
	 * can provide parameter accessor functions of its own.
	 */
	if (mod->module_init)
		flush_icache_range((unsigned long)mod->module_init,
				   (unsigned long)mod->module_init
				   + mod->init_size);
	flush_icache_range((unsigned long)mod->module_core,
			   (unsigned long)mod->module_core + mod->core_size);

	set_fs(old_fs);

	mod->args = args;
	if (section_addr(hdr, sechdrs, secstrings, "__obsparm"))
		printk(KERN_WARNING "%s: Ignoring obsolete parameters\n",
		       mod->name);

	/* Now sew it into the lists so we can get lockdep and oops
	 * info during argument parsing.  Noone should access us, since
	 * strong_try_module_get() will fail.
	 * lockdep/oops can run asynchronous, so use the RCU list insertion
	 * function to insert in a way safe to concurrent readers.
	 * The mutex protects against concurrent writers.
	 */
	list_add_rcu(&mod->list, &modules);

	err = parse_args(mod->name, mod->args, mod->kp, mod->num_kp, NULL);
	if (err < 0)
		goto unlink;

	err = mod_sysfs_setup(mod, mod->kp, mod->num_kp);
	if (err < 0)
		goto unlink;
	add_sect_attrs(mod, hdr->e_shnum, secstrings, sechdrs);
	add_notes_attrs(mod, hdr->e_shnum, secstrings, sechdrs);

	/* Get rid of temporary copy */
	vfree(hdr);

	trace_module_load(mod);

	/* Done! */
	return mod;

 unlink:
	/* Unlink carefully: kallsyms could be walking list. */
	list_del_rcu(&mod->list);
	synchronize_sched();
	module_arch_cleanup(mod);
 cleanup:
	kobject_del(&mod->mkobj.kobj);
	kobject_put(&mod->mkobj.kobj);
 free_unload:
	module_unload_free(mod);
#if defined(CONFIG_MODULE_UNLOAD) && defined(CONFIG_SMP)
 free_init:
	percpu_modfree(mod->refptr);
#endif
	module_free(mod, mod->module_init);
 free_core:
	module_free(mod, mod->module_core);
	/* mod will be freed with core. Don't access it beyond this line! */
 free_percpu:
	if (percpu)
		percpu_modfree(percpu);
 free_mod:
	kfree(args);
 free_hdr:
	vfree(hdr);
	return ERR_PTR(err);

 truncated:
	printk(KERN_ERR "Module len %lu truncated\n", len);
	err = -ENOEXEC;
	goto free_hdr;
}

/* Call module constructors. */
static void do_mod_ctors(struct module *mod)
{
#ifdef CONFIG_CONSTRUCTORS
	unsigned long i;

	for (i = 0; i < mod->num_ctors; i++)
		mod->ctors[i]();
#endif
}

/* This is where the real work happens */
SYSCALL_DEFINE3(init_module, void __user *, umod,
		unsigned long, len, const char __user *, uargs)
{
	struct module *mod;
	int ret = 0;

	/* Must have permission */
	if (!capable(CAP_SYS_MODULE) || modules_disabled)
		return -EPERM;

	/* Only one module load at a time, please */
	if (mutex_lock_interruptible(&module_mutex) != 0)
		return -EINTR;

	/* Do all the hard work */
	mod = load_module(umod, len, uargs);
	if (IS_ERR(mod)) {
		mutex_unlock(&module_mutex);
		return PTR_ERR(mod);
	}

	/* Drop lock so they can recurse */
	mutex_unlock(&module_mutex);

	blocking_notifier_call_chain(&module_notify_list,
			MODULE_STATE_COMING, mod);

	do_mod_ctors(mod);
	/* Start the module */
	if (mod->init != NULL)
		ret = do_one_initcall(mod->init);
	if (ret < 0) {
		/* Init routine failed: abort.  Try to protect us from
                   buggy refcounters. */
		mod->state = MODULE_STATE_GOING;
		synchronize_sched();
		module_put(mod);
		blocking_notifier_call_chain(&module_notify_list,
					     MODULE_STATE_GOING, mod);
		mutex_lock(&module_mutex);
		free_module(mod);
		mutex_unlock(&module_mutex);
		wake_up(&module_wq);
		return ret;
	}
	if (ret > 0) {
		printk(KERN_WARNING
"%s: '%s'->init suspiciously returned %d, it should follow 0/-E convention\n"
"%s: loading module anyway...\n",
		       __func__, mod->name, ret,
		       __func__);
		dump_stack();
	}

	/* Now it's a first class citizen!  Wake up anyone waiting for it. */
	mod->state = MODULE_STATE_LIVE;
	wake_up(&module_wq);
	blocking_notifier_call_chain(&module_notify_list,
				     MODULE_STATE_LIVE, mod);

	/* We need to finish all async code before the module init sequence is done */
	async_synchronize_full();

	mutex_lock(&module_mutex);
	/* Drop initial reference. */
	module_put(mod);
	trim_init_extable(mod);
	module_free(mod, mod->module_init);
	mod->module_init = NULL;
	mod->init_size = 0;
	mod->init_text_size = 0;
	mutex_unlock(&module_mutex);

	return 0;
}

static inline int within(unsigned long addr, void *start, unsigned long size)
{
	return ((void *)addr >= start && (void *)addr < start + size);
}

#ifdef CONFIG_KALLSYMS
/*
 * This ignores the intensely annoying "mapping symbols" found
 * in ARM ELF files: $a, $t and $d.
 */
static inline int is_arm_mapping_symbol(const char *str)
{
	return str[0] == '$' && strchr("atd", str[1])
	       && (str[2] == '\0' || str[2] == '.');
}

static const char *get_ksymbol(struct module *mod,
			       unsigned long addr,
			       unsigned long *size,
			       unsigned long *offset)
{
	unsigned int i, best = 0;
	unsigned long nextval;

	/* At worse, next value is at end of module */
	if (within_module_init(addr, mod))
		nextval = (unsigned long)mod->module_init+mod->init_text_size;
	else
		nextval = (unsigned long)mod->module_core+mod->core_text_size;

	/* Scan for closest preceeding symbol, and next symbol. (ELF
	   starts real symbols at 1). */
	for (i = 1; i < mod->num_symtab; i++) {
		if (mod->symtab[i].st_shndx == SHN_UNDEF)
			continue;

		/* We ignore unnamed symbols: they're uninformative
		 * and inserted at a whim. */
		if (mod->symtab[i].st_value <= addr
		    && mod->symtab[i].st_value > mod->symtab[best].st_value
		    && *(mod->strtab + mod->symtab[i].st_name) != '\0'
		    && !is_arm_mapping_symbol(mod->strtab + mod->symtab[i].st_name))
			best = i;
		if (mod->symtab[i].st_value > addr
		    && mod->symtab[i].st_value < nextval
		    && *(mod->strtab + mod->symtab[i].st_name) != '\0'
		    && !is_arm_mapping_symbol(mod->strtab + mod->symtab[i].st_name))
			nextval = mod->symtab[i].st_value;
	}

	if (!best)
		return NULL;

	if (size)
		*size = nextval - mod->symtab[best].st_value;
	if (offset)
		*offset = addr - mod->symtab[best].st_value;
	return mod->strtab + mod->symtab[best].st_name;
}

/* For kallsyms to ask for address resolution.  NULL means not found.  Careful
 * not to lock to avoid deadlock on oopses, simply disable preemption. */
const char *module_address_lookup(unsigned long addr,
			    unsigned long *size,
			    unsigned long *offset,
			    char **modname,
			    char *namebuf)
{
	struct module *mod;
	const char *ret = NULL;

	preempt_disable();
	list_for_each_entry_rcu(mod, &modules, list) {
		if (within_module_init(addr, mod) ||
		    within_module_core(addr, mod)) {
			if (modname)
				*modname = mod->name;
			ret = get_ksymbol(mod, addr, size, offset);
			break;
		}
	}
	/* Make a copy in here where it's safe */
	if (ret) {
		strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
		ret = namebuf;
	}
	preempt_enable();
	return ret;
}

int lookup_module_symbol_name(unsigned long addr, char *symname)
{
	struct module *mod;

	preempt_disable();
	list_for_each_entry_rcu(mod, &modules, list) {
		if (within_module_init(addr, mod) ||
		    within_module_core(addr, mod)) {
			const char *sym;

			sym = get_ksymbol(mod, addr, NULL, NULL);
			if (!sym)
				goto out;
			strlcpy(symname, sym, KSYM_NAME_LEN);
			preempt_enable();
			return 0;
		}
	}
out:
	preempt_enable();
	return -ERANGE;
}

int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
			unsigned long *offset, char *modname, char *name)
{
	struct module *mod;

	preempt_disable();
	list_for_each_entry_rcu(mod, &modules, list) {
		if (within_module_init(addr, mod) ||
		    within_module_core(addr, mod)) {
			const char *sym;

			sym = get_ksymbol(mod, addr, size, offset);
			if (!sym)
				goto out;
			if (modname)
				strlcpy(modname, mod->name, MODULE_NAME_LEN);
			if (name)
				strlcpy(name, sym, KSYM_NAME_LEN);
			preempt_enable();
			return 0;
		}
	}
out:
	preempt_enable();
	return -ERANGE;
}

int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
			char *name, char *module_name, int *exported)
{
	struct module *mod;

	preempt_disable();
	list_for_each_entry_rcu(mod, &modules, list) {
		if (symnum < mod->num_symtab) {
			*value = mod->symtab[symnum].st_value;
			*type = mod->symtab[symnum].st_info;
			strlcpy(name, mod->strtab + mod->symtab[symnum].st_name,
				KSYM_NAME_LEN);
			strlcpy(module_name, mod->name, MODULE_NAME_LEN);
			*exported = is_exported(name, *value, mod);
			preempt_enable();
			return 0;
		}
		symnum -= mod->num_symtab;
	}
	preempt_enable();
	return -ERANGE;
}

static unsigned long mod_find_symname(struct module *mod, const char *name)
{
	unsigned int i;

	for (i = 0; i < mod->num_symtab; i++)
		if (strcmp(name, mod->strtab+mod->symtab[i].st_name) == 0 &&
		    mod->symtab[i].st_info != 'U')
			return mod->symtab[i].st_value;
	return 0;
}

/* Look for this name: can be of form module:name. */
unsigned long module_kallsyms_lookup_name(const char *name)
{
	struct module *mod;
	char *colon;
	unsigned long ret = 0;

	/* Don't lock: we're in enough trouble already. */
	preempt_disable();
	if ((colon = strchr(name, ':')) != NULL) {
		*colon = '\0';
		if ((mod = find_module(name)) != NULL)
			ret = mod_find_symname(mod, colon+1);
		*colon = ':';
	} else {
		list_for_each_entry_rcu(mod, &modules, list)
			if ((ret = mod_find_symname(mod, name)) != 0)
				break;
	}
	preempt_enable();
	return ret;
}

int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
					     struct module *, unsigned long),
				   void *data)
{
	struct module *mod;
	unsigned int i;
	int ret;

	list_for_each_entry(mod, &modules, list) {
		for (i = 0; i < mod->num_symtab; i++) {
			ret = fn(data, mod->strtab + mod->symtab[i].st_name,
				 mod, mod->symtab[i].st_value);
			if (ret != 0)
				return ret;
		}
	}
	return 0;
}
#endif /* CONFIG_KALLSYMS */

static char *module_flags(struct module *mod, char *buf)
{
	int bx = 0;

	if (mod->taints ||
	    mod->state == MODULE_STATE_GOING ||
	    mod->state == MODULE_STATE_COMING) {
		buf[bx++] = '(';
		if (mod->taints & (1 << TAINT_PROPRIETARY_MODULE))
			buf[bx++] = 'P';
		if (mod->taints & (1 << TAINT_FORCED_MODULE))
			buf[bx++] = 'F';
		if (mod->taints & (1 << TAINT_CRAP))
			buf[bx++] = 'C';
		/*
		 * TAINT_FORCED_RMMOD: could be added.
		 * TAINT_UNSAFE_SMP, TAINT_MACHINE_CHECK, TAINT_BAD_PAGE don't
		 * apply to modules.
		 */

		/* Show a - for module-is-being-unloaded */
		if (mod->state == MODULE_STATE_GOING)
			buf[bx++] = '-';
		/* Show a + for module-is-being-loaded */
		if (mod->state == MODULE_STATE_COMING)
			buf[bx++] = '+';
		buf[bx++] = ')';
	}
	buf[bx] = '\0';

	return buf;
}

#ifdef CONFIG_PROC_FS
/* Called by the /proc file system to return a list of modules. */
static void *m_start(struct seq_file *m, loff_t *pos)
{
	mutex_lock(&module_mutex);
	return seq_list_start(&modules, *pos);
}

static void *m_next(struct seq_file *m, void *p, loff_t *pos)
{
	return seq_list_next(p, &modules, pos);
}

static void m_stop(struct seq_file *m, void *p)
{
	mutex_unlock(&module_mutex);
}

static int m_show(struct seq_file *m, void *p)
{
	struct module *mod = list_entry(p, struct module, list);
	char buf[8];

	seq_printf(m, "%s %u",
		   mod->name, mod->init_size + mod->core_size);
	print_unload_info(m, mod);

	/* Informative for users. */
	seq_printf(m, " %s",
		   mod->state == MODULE_STATE_GOING ? "Unloading":
		   mod->state == MODULE_STATE_COMING ? "Loading":
		   "Live");
	/* Used by oprofile and other similar tools. */
	seq_printf(m, " 0x%p", mod->module_core);

	/* Taints info */
	if (mod->taints)
		seq_printf(m, " %s", module_flags(mod, buf));

	seq_printf(m, "\n");
	return 0;
}

/* Format: modulename size refcount deps address

   Where refcount is a number or -, and deps is a comma-separated list
   of depends or -.
*/
static const struct seq_operations modules_op = {
	.start	= m_start,
	.next	= m_next,
	.stop	= m_stop,
	.show	= m_show
};

static int modules_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &modules_op);
}

static const struct file_operations proc_modules_operations = {
	.open		= modules_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

static int __init proc_modules_init(void)
{
	proc_create("modules", 0, NULL, &proc_modules_operations);
	return 0;
}
module_init(proc_modules_init);
#endif

/* Given an address, look for it in the module exception tables. */
const struct exception_table_entry *search_module_extables(unsigned long addr)
{
	const struct exception_table_entry *e = NULL;
	struct module *mod;

	preempt_disable();
	list_for_each_entry_rcu(mod, &modules, list) {
		if (mod->num_exentries == 0)
			continue;

		e = search_extable(mod->extable,
				   mod->extable + mod->num_exentries - 1,
				   addr);
		if (e)
			break;
	}
	preempt_enable();

	/* Now, if we found one, we are running inside it now, hence
	   we cannot unload the module, hence no refcnt needed. */
	return e;
}

/*
 * is_module_address - is this address inside a module?
 * @addr: the address to check.
 *
 * See is_module_text_address() if you simply want to see if the address
 * is code (not data).
 */
bool is_module_address(unsigned long addr)
{
	bool ret;

	preempt_disable();
	ret = __module_address(addr) != NULL;
	preempt_enable();

	return ret;
}

/*
 * __module_address - get the module which contains an address.
 * @addr: the address.
 *
 * Must be called with preempt disabled or module mutex held so that
 * module doesn't get freed during this.
 */
struct module *__module_address(unsigned long addr)
{
	struct module *mod;

	if (addr < module_addr_min || addr > module_addr_max)
		return NULL;

	list_for_each_entry_rcu(mod, &modules, list)
		if (within_module_core(addr, mod)
		    || within_module_init(addr, mod))
			return mod;
	return NULL;
}
EXPORT_SYMBOL_GPL(__module_address);

/*
 * is_module_text_address - is this address inside module code?
 * @addr: the address to check.
 *
 * See is_module_address() if you simply want to see if the address is
 * anywhere in a module.  See kernel_text_address() for testing if an
 * address corresponds to kernel or module code.
 */
bool is_module_text_address(unsigned long addr)
{
	bool ret;

	preempt_disable();
	ret = __module_text_address(addr) != NULL;
	preempt_enable();

	return ret;
}

/*
 * __module_text_address - get the module whose code contains an address.
 * @addr: the address.
 *
 * Must be called with preempt disabled or module mutex held so that
 * module doesn't get freed during this.
 */
struct module *__module_text_address(unsigned long addr)
{
	struct module *mod = __module_address(addr);
	if (mod) {
		/* Make sure it's within the text section. */
		if (!within(addr, mod->module_init, mod->init_text_size)
		    && !within(addr, mod->module_core, mod->core_text_size))
			mod = NULL;
	}
	return mod;
}
EXPORT_SYMBOL_GPL(__module_text_address);

/* Don't grab lock, we're oopsing. */
void print_modules(void)
{
	struct module *mod;
	char buf[8];

	printk(KERN_DEFAULT "Modules linked in:");
	/* Most callers should already have preempt disabled, but make sure */
	preempt_disable();
	list_for_each_entry_rcu(mod, &modules, list)
		printk(" %s%s", mod->name, module_flags(mod, buf));
	preempt_enable();
	if (last_unloaded_module[0])
		printk(" [last unloaded: %s]", last_unloaded_module);
	printk("\n");
}

#ifdef CONFIG_MODVERSIONS
/* Generate the signature for all relevant module structures here.
 * If these change, we don't want to try to parse the module. */
void module_layout(struct module *mod,
		   struct modversion_info *ver,
		   struct kernel_param *kp,
		   struct kernel_symbol *ks,
		   struct marker *marker,
		   struct tracepoint *tp)
{
}
EXPORT_SYMBOL(module_layout);
#endif

#ifdef CONFIG_TRACEPOINTS
void module_update_tracepoints(void)
{
	struct module *mod;

	mutex_lock(&module_mutex);
	list_for_each_entry(mod, &modules, list)
		if (!mod->taints)
			tracepoint_update_probe_range(mod->tracepoints,
				mod->tracepoints + mod->num_tracepoints);
	mutex_unlock(&module_mutex);
}

/*
 * Returns 0 if current not found.
 * Returns 1 if current found.
 */
int module_get_iter_tracepoints(struct tracepoint_iter *iter)
{
	struct module *iter_mod;
	int found = 0;

	mutex_lock(&module_mutex);
	list_for_each_entry(iter_mod, &modules, list) {
		if (!iter_mod->taints) {
			/*
			 * Sorted module list
			 */
			if (iter_mod < iter->module)
				continue;
			else if (iter_mod > iter->module)
				iter->tracepoint = NULL;
			found = tracepoint_get_iter_range(&iter->tracepoint,
				iter_mod->tracepoints,
				iter_mod->tracepoints
					+ iter_mod->num_tracepoints);
			if (found) {
				iter->module = iter_mod;
				break;
			}
		}
	}
	mutex_unlock(&module_mutex);
	return found;
}
#endif