/* * Generic pidhash and scalable, time-bounded PID allocator * * (C) 2002-2003 Nadia Yvette Chambers, IBM * (C) 2004 Nadia Yvette Chambers, Oracle * (C) 2002-2004 Ingo Molnar, Red Hat * * pid-structures are backing objects for tasks sharing a given ID to chain * against. There is very little to them aside from hashing them and * parking tasks using given ID's on a list. * * The hash is always changed with the tasklist_lock write-acquired, * and the hash is only accessed with the tasklist_lock at least * read-acquired, so there's no additional SMP locking needed here. * * We have a list of bitmap pages, which bitmaps represent the PID space. * Allocating and freeing PIDs is completely lockless. The worst-case * allocation scenario when all but one out of 1 million PIDs possible are * allocated already: the scanning of 32 list entries and at most PAGE_SIZE * bytes. The typical fastpath is a single successful setbit. Freeing is O(1). * * Pid namespaces: * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc. * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM * Many thanks to Oleg Nesterov for comments and help * */ #include <linux/mm.h> #include <linux/export.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/rculist.h> #include <linux/bootmem.h> #include <linux/hash.h> #include <linux/pid_namespace.h> #include <linux/init_task.h> #include <linux/syscalls.h> #include <linux/proc_ns.h> #include <linux/proc_fs.h> #define pid_hashfn(nr, ns) \ hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift) static struct hlist_head *pid_hash; static unsigned int pidhash_shift = 4; struct pid init_struct_pid = INIT_STRUCT_PID; int pid_max = PID_MAX_DEFAULT; #define RESERVED_PIDS 300 int pid_max_min = RESERVED_PIDS + 1; int pid_max_max = PID_MAX_LIMIT; static inline int mk_pid(struct pid_namespace *pid_ns, struct pidmap *map, int off) { return (map - pid_ns->pidmap)*BITS_PER_PAGE + off; } #define find_next_offset(map, off) \ find_next_zero_bit((map)->page, BITS_PER_PAGE, off) /* * PID-map pages start out as NULL, they get allocated upon * first use and are never deallocated. This way a low pid_max * value does not cause lots of bitmaps to be allocated, but * the scheme scales to up to 4 million PIDs, runtime. */ struct pid_namespace init_pid_ns = { .kref = { .refcount = ATOMIC_INIT(2), }, .pidmap = { [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL } }, .last_pid = 0, .nr_hashed = PIDNS_HASH_ADDING, .level = 0, .child_reaper = &init_task, .user_ns = &init_user_ns, .proc_inum = PROC_PID_INIT_INO, }; EXPORT_SYMBOL_GPL(init_pid_ns); /* * Note: disable interrupts while the pidmap_lock is held as an * interrupt might come in and do read_lock(&tasklist_lock). * * If we don't disable interrupts there is a nasty deadlock between * detach_pid()->free_pid() and another cpu that does * spin_lock(&pidmap_lock) followed by an interrupt routine that does * read_lock(&tasklist_lock); * * After we clean up the tasklist_lock and know there are no * irq handlers that take it we can leave the interrupts enabled. * For now it is easier to be safe than to prove it can't happen. */ static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock); static void free_pidmap(struct upid *upid) { int nr = upid->nr; struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE; int offset = nr & BITS_PER_PAGE_MASK; clear_bit(offset, map->page); atomic_inc(&map->nr_free); } /* * If we started walking pids at 'base', is 'a' seen before 'b'? */ static int pid_before(int base, int a, int b) { /* * This is the same as saying * * (a - base + MAXUINT) % MAXUINT < (b - base + MAXUINT) % MAXUINT * and that mapping orders 'a' and 'b' with respect to 'base'. */ return (unsigned)(a - base) < (unsigned)(b - base); } /* * We might be racing with someone else trying to set pid_ns->last_pid * at the pid allocation time (there's also a sysctl for this, but racing * with this one is OK, see comment in kernel/pid_namespace.c about it). * We want the winner to have the "later" value, because if the * "earlier" value prevails, then a pid may get reused immediately. * * Since pids rollover, it is not sufficient to just pick the bigger * value. We have to consider where we started counting from. * * 'base' is the value of pid_ns->last_pid that we observed when * we started looking for a pid. * * 'pid' is the pid that we eventually found. */ static void set_last_pid(struct pid_namespace *pid_ns, int base, int pid) { int prev; int last_write = base; do { prev = last_write; last_write = cmpxchg(&pid_ns->last_pid, prev, pid); } while ((prev != last_write) && (pid_before(base, last_write, pid))); } static int alloc_pidmap(struct pid_namespace *pid_ns) { int i, offset, max_scan, pid, last = pid_ns->last_pid; struct pidmap *map; pid = last + 1; if (pid >= pid_max) pid = RESERVED_PIDS; offset = pid & BITS_PER_PAGE_MASK; map = &pid_ns->pidmap[pid/BITS_PER_PAGE]; /* * If last_pid points into the middle of the map->page we * want to scan this bitmap block twice, the second time * we start with offset == 0 (or RESERVED_PIDS). */ max_scan = DIV_ROUND_UP(pid_max, BITS_PER_PAGE) - !offset; for (i = 0; i <= max_scan; ++i) { if (unlikely(!map->page)) { void *page = kzalloc(PAGE_SIZE, GFP_KERNEL); /* * Free the page if someone raced with us * installing it: */ spin_lock_irq(&pidmap_lock); if (!map->page) { map->page = page; page = NULL; } spin_unlock_irq(&pidmap_lock); kfree(page); if (unlikely(!map->page)) break; } if (likely(atomic_read(&map->nr_free))) { for ( ; ; ) { if (!test_and_set_bit(offset, map->page)) { atomic_dec(&map->nr_free); set_last_pid(pid_ns, last, pid); return pid; } offset = find_next_offset(map, offset); if (offset >= BITS_PER_PAGE) break; pid = mk_pid(pid_ns, map, offset); if (pid >= pid_max) break; } } if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) { ++map; offset = 0; } else { map = &pid_ns->pidmap[0]; offset = RESERVED_PIDS; if (unlikely(last == offset)) break; } pid = mk_pid(pid_ns, map, offset); } return -1; } int next_pidmap(struct pid_namespace *pid_ns, unsigned int last) { int offset; struct pidmap *map, *end; if (last >= PID_MAX_LIMIT) return -1; offset = (last + 1) & BITS_PER_PAGE_MASK; map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE]; end = &pid_ns->pidmap[PIDMAP_ENTRIES]; for (; map < end; map++, offset = 0) { if (unlikely(!map->page)) continue; offset = find_next_bit((map)->page, BITS_PER_PAGE, offset); if (offset < BITS_PER_PAGE) return mk_pid(pid_ns, map, offset); } return -1; } void put_pid(struct pid *pid) { struct pid_namespace *ns; if (!pid) return; ns = pid->numbers[pid->level].ns; if ((atomic_read(&pid->count) == 1) || atomic_dec_and_test(&pid->count)) { kmem_cache_free(ns->pid_cachep, pid); put_pid_ns(ns); } } EXPORT_SYMBOL_GPL(put_pid); static void delayed_put_pid(struct rcu_head *rhp) { struct pid *pid = container_of(rhp, struct pid, rcu); put_pid(pid); } void free_pid(struct pid *pid) { /* We can be called with write_lock_irq(&tasklist_lock) held */ int i; unsigned long flags; spin_lock_irqsave(&pidmap_lock, flags); for (i = 0; i <= pid->level; i++) { struct upid *upid = pid->numbers + i; struct pid_namespace *ns = upid->ns; hlist_del_rcu(&upid->pid_chain); switch(--ns->nr_hashed) { case 2: case 1: /* When all that is left in the pid namespace * is the reaper wake up the reaper. The reaper * may be sleeping in zap_pid_ns_processes(). */ wake_up_process(ns->child_reaper); break; case 0: schedule_work(&ns->proc_work); break; } } spin_unlock_irqrestore(&pidmap_lock, flags); for (i = 0; i <= pid->level; i++) free_pidmap(pid->numbers + i); call_rcu(&pid->rcu, delayed_put_pid); } struct pid *alloc_pid(struct pid_namespace *ns) { struct pid *pid; enum pid_type type; int i, nr; struct pid_namespace *tmp; struct upid *upid; pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL); if (!pid) goto out; tmp = ns; pid->level = ns->level; for (i = ns->level; i >= 0; i--) { nr = alloc_pidmap(tmp); if (nr < 0) goto out_free; pid->numbers[i].nr = nr; pid->numbers[i].ns = tmp; tmp = tmp->parent; } if (unlikely(is_child_reaper(pid))) { if (pid_ns_prepare_proc(ns)) goto out_free; } get_pid_ns(ns); atomic_set(&pid->count, 1); for (type = 0; type < PIDTYPE_MAX; ++type) INIT_HLIST_HEAD(&pid->tasks[type]); upid = pid->numbers + ns->level; spin_lock_irq(&pidmap_lock); if (!(ns->nr_hashed & PIDNS_HASH_ADDING)) goto out_unlock; for ( ; upid >= pid->numbers; --upid) { hlist_add_head_rcu(&upid->pid_chain, &pid_hash[pid_hashfn(upid->nr, upid->ns)]); upid->ns->nr_hashed++; } spin_unlock_irq(&pidmap_lock); out: return pid; out_unlock: spin_unlock_irq(&pidmap_lock); out_free: while (++i <= ns->level) free_pidmap(pid->numbers + i); kmem_cache_free(ns->pid_cachep, pid); pid = NULL; goto out; } void disable_pid_allocation(struct pid_namespace *ns) { spin_lock_irq(&pidmap_lock); ns->nr_hashed &= ~PIDNS_HASH_ADDING; spin_unlock_irq(&pidmap_lock); } struct pid *find_pid_ns(int nr, struct pid_namespace *ns) { struct upid *pnr; hlist_for_each_entry_rcu(pnr, &pid_hash[pid_hashfn(nr, ns)], pid_chain) if (pnr->nr == nr && pnr->ns == ns) return container_of(pnr, struct pid, numbers[ns->level]); return NULL; } EXPORT_SYMBOL_GPL(find_pid_ns); struct pid *find_vpid(int nr) { return find_pid_ns(nr, task_active_pid_ns(current)); } EXPORT_SYMBOL_GPL(find_vpid); /* * attach_pid() must be called with the tasklist_lock write-held. */ void attach_pid(struct task_struct *task, enum pid_type type) { struct pid_link *link = &task->pids[type]; hlist_add_head_rcu(&link->node, &link->pid->tasks[type]); } static void __change_pid(struct task_struct *task, enum pid_type type, struct pid *new) { struct pid_link *link; struct pid *pid; int tmp; link = &task->pids[type]; pid = link->pid; hlist_del_rcu(&link->node); link->pid = new; for (tmp = PIDTYPE_MAX; --tmp >= 0; ) if (!hlist_empty(&pid->tasks[tmp])) return; free_pid(pid); } void detach_pid(struct task_struct *task, enum pid_type type) { __change_pid(task, type, NULL); } void change_pid(struct task_struct *task, enum pid_type type, struct pid *pid) { __change_pid(task, type, pid); attach_pid(task, type); } /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */ void transfer_pid(struct task_struct *old, struct task_struct *new, enum pid_type type) { new->pids[type].pid = old->pids[type].pid; hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node); } struct task_struct *pid_task(struct pid *pid, enum pid_type type) { struct task_struct *result = NULL; if (pid) { struct hlist_node *first; first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]), lockdep_tasklist_lock_is_held()); if (first) result = hlist_entry(first, struct task_struct, pids[(type)].node); } return result; } EXPORT_SYMBOL(pid_task); /* * Must be called under rcu_read_lock(). */ struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns) { rcu_lockdep_assert(rcu_read_lock_held(), "find_task_by_pid_ns() needs rcu_read_lock()" " protection"); return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID); } struct task_struct *find_task_by_vpid(pid_t vnr) { return find_task_by_pid_ns(vnr, task_active_pid_ns(current)); } struct pid *get_task_pid(struct task_struct *task, enum pid_type type) { struct pid *pid; rcu_read_lock(); if (type != PIDTYPE_PID) task = task->group_leader; pid = get_pid(task->pids[type].pid); rcu_read_unlock(); return pid; } EXPORT_SYMBOL_GPL(get_task_pid); struct task_struct *get_pid_task(struct pid *pid, enum pid_type type) { struct task_struct *result; rcu_read_lock(); result = pid_task(pid, type); if (result) get_task_struct(result); rcu_read_unlock(); return result; } EXPORT_SYMBOL_GPL(get_pid_task); struct pid *find_get_pid(pid_t nr) { struct pid *pid; rcu_read_lock(); pid = get_pid(find_vpid(nr)); rcu_read_unlock(); return pid; } EXPORT_SYMBOL_GPL(find_get_pid); pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns) { struct upid *upid; pid_t nr = 0; if (pid && ns->level <= pid->level) { upid = &pid->numbers[ns->level]; if (upid->ns == ns) nr = upid->nr; } return nr; } EXPORT_SYMBOL_GPL(pid_nr_ns); pid_t pid_vnr(struct pid *pid) { return pid_nr_ns(pid, task_active_pid_ns(current)); } EXPORT_SYMBOL_GPL(pid_vnr); pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns) { pid_t nr = 0; rcu_read_lock(); if (!ns) ns = task_active_pid_ns(current); if (likely(pid_alive(task))) { if (type != PIDTYPE_PID) task = task->group_leader; nr = pid_nr_ns(task->pids[type].pid, ns); } rcu_read_unlock(); return nr; } EXPORT_SYMBOL(__task_pid_nr_ns); pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) { return pid_nr_ns(task_tgid(tsk), ns); } EXPORT_SYMBOL(task_tgid_nr_ns); struct pid_namespace *task_active_pid_ns(struct task_struct *tsk) { return ns_of_pid(task_pid(tsk)); } EXPORT_SYMBOL_GPL(task_active_pid_ns); /* * Used by proc to find the first pid that is greater than or equal to nr. * * If there is a pid at nr this function is exactly the same as find_pid_ns. */ struct pid *find_ge_pid(int nr, struct pid_namespace *ns) { struct pid *pid; do { pid = find_pid_ns(nr, ns); if (pid) break; nr = next_pidmap(ns, nr); } while (nr > 0); return pid; } /* * The pid hash table is scaled according to the amount of memory in the * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or * more. */ void __init pidhash_init(void) { unsigned int i, pidhash_size; pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18, HASH_EARLY | HASH_SMALL, &pidhash_shift, NULL, 0, 4096); pidhash_size = 1U << pidhash_shift; for (i = 0; i < pidhash_size; i++) INIT_HLIST_HEAD(&pid_hash[i]); } void __init pidmap_init(void) { /* Veryify no one has done anything silly */ BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_HASH_ADDING); /* bump default and minimum pid_max based on number of cpus */ pid_max = min(pid_max_max, max_t(int, pid_max, PIDS_PER_CPU_DEFAULT * num_possible_cpus())); pid_max_min = max_t(int, pid_max_min, PIDS_PER_CPU_MIN * num_possible_cpus()); pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min); init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL); /* Reserve PID 0. We never call free_pidmap(0) */ set_bit(0, init_pid_ns.pidmap[0].page); atomic_dec(&init_pid_ns.pidmap[0].nr_free); init_pid_ns.pid_cachep = KMEM_CACHE(pid, SLAB_HWCACHE_ALIGN | SLAB_PANIC); }