// SPDX-License-Identifier: GPL-2.0 /* * Energy Model of devices * * Copyright (c) 2018-2021, Arm ltd. * Written by: Quentin Perret, Arm ltd. * Improvements provided by: Lukasz Luba, Arm ltd. */ #define pr_fmt(fmt) "energy_model: " fmt #include <linux/cpu.h> #include <linux/cpufreq.h> #include <linux/cpumask.h> #include <linux/debugfs.h> #include <linux/energy_model.h> #include <linux/sched/topology.h> #include <linux/slab.h> /* * Mutex serializing the registrations of performance domains and letting * callbacks defined by drivers sleep. */ static DEFINE_MUTEX(em_pd_mutex); static bool _is_cpu_device(struct device *dev) { return (dev->bus == &cpu_subsys); } #ifdef CONFIG_DEBUG_FS static struct dentry *rootdir; static void em_debug_create_ps(struct em_perf_state *ps, struct dentry *pd) { struct dentry *d; char name[24]; snprintf(name, sizeof(name), "ps:%lu", ps->frequency); /* Create per-ps directory */ d = debugfs_create_dir(name, pd); debugfs_create_ulong("frequency", 0444, d, &ps->frequency); debugfs_create_ulong("power", 0444, d, &ps->power); debugfs_create_ulong("cost", 0444, d, &ps->cost); debugfs_create_ulong("inefficient", 0444, d, &ps->flags); } static int em_debug_cpus_show(struct seq_file *s, void *unused) { seq_printf(s, "%*pbl\n", cpumask_pr_args(to_cpumask(s->private))); return 0; } DEFINE_SHOW_ATTRIBUTE(em_debug_cpus); static int em_debug_flags_show(struct seq_file *s, void *unused) { struct em_perf_domain *pd = s->private; seq_printf(s, "%#lx\n", pd->flags); return 0; } DEFINE_SHOW_ATTRIBUTE(em_debug_flags); static void em_debug_create_pd(struct device *dev) { struct dentry *d; int i; /* Create the directory of the performance domain */ d = debugfs_create_dir(dev_name(dev), rootdir); if (_is_cpu_device(dev)) debugfs_create_file("cpus", 0444, d, dev->em_pd->cpus, &em_debug_cpus_fops); debugfs_create_file("flags", 0444, d, dev->em_pd, &em_debug_flags_fops); /* Create a sub-directory for each performance state */ for (i = 0; i < dev->em_pd->nr_perf_states; i++) em_debug_create_ps(&dev->em_pd->table[i], d); } static void em_debug_remove_pd(struct device *dev) { struct dentry *debug_dir; debug_dir = debugfs_lookup(dev_name(dev), rootdir); debugfs_remove_recursive(debug_dir); } static int __init em_debug_init(void) { /* Create /sys/kernel/debug/energy_model directory */ rootdir = debugfs_create_dir("energy_model", NULL); return 0; } fs_initcall(em_debug_init); #else /* CONFIG_DEBUG_FS */ static void em_debug_create_pd(struct device *dev) {} static void em_debug_remove_pd(struct device *dev) {} #endif static int em_create_perf_table(struct device *dev, struct em_perf_domain *pd, int nr_states, struct em_data_callback *cb, unsigned long flags) { unsigned long power, freq, prev_freq = 0, prev_cost = ULONG_MAX; struct em_perf_state *table; int i, ret; u64 fmax; table = kcalloc(nr_states, sizeof(*table), GFP_KERNEL); if (!table) return -ENOMEM; /* Build the list of performance states for this performance domain */ for (i = 0, freq = 0; i < nr_states; i++, freq++) { /* * active_power() is a driver callback which ceils 'freq' to * lowest performance state of 'dev' above 'freq' and updates * 'power' and 'freq' accordingly. */ ret = cb->active_power(dev, &power, &freq); if (ret) { dev_err(dev, "EM: invalid perf. state: %d\n", ret); goto free_ps_table; } /* * We expect the driver callback to increase the frequency for * higher performance states. */ if (freq <= prev_freq) { dev_err(dev, "EM: non-increasing freq: %lu\n", freq); goto free_ps_table; } /* * The power returned by active_state() is expected to be * positive and be in range. */ if (!power || power > EM_MAX_POWER) { dev_err(dev, "EM: invalid power: %lu\n", power); goto free_ps_table; } table[i].power = power; table[i].frequency = prev_freq = freq; } /* Compute the cost of each performance state. */ fmax = (u64) table[nr_states - 1].frequency; for (i = nr_states - 1; i >= 0; i--) { unsigned long power_res, cost; if (flags & EM_PERF_DOMAIN_ARTIFICIAL) { ret = cb->get_cost(dev, table[i].frequency, &cost); if (ret || !cost || cost > EM_MAX_POWER) { dev_err(dev, "EM: invalid cost %lu %d\n", cost, ret); goto free_ps_table; } } else { power_res = table[i].power; cost = div64_u64(fmax * power_res, table[i].frequency); } table[i].cost = cost; if (table[i].cost >= prev_cost) { table[i].flags = EM_PERF_STATE_INEFFICIENT; dev_dbg(dev, "EM: OPP:%lu is inefficient\n", table[i].frequency); } else { prev_cost = table[i].cost; } } pd->table = table; pd->nr_perf_states = nr_states; return 0; free_ps_table: kfree(table); return -EINVAL; } static int em_create_pd(struct device *dev, int nr_states, struct em_data_callback *cb, cpumask_t *cpus, unsigned long flags) { struct em_perf_domain *pd; struct device *cpu_dev; int cpu, ret, num_cpus; if (_is_cpu_device(dev)) { num_cpus = cpumask_weight(cpus); /* Prevent max possible energy calculation to not overflow */ if (num_cpus > EM_MAX_NUM_CPUS) { dev_err(dev, "EM: too many CPUs, overflow possible\n"); return -EINVAL; } pd = kzalloc(sizeof(*pd) + cpumask_size(), GFP_KERNEL); if (!pd) return -ENOMEM; cpumask_copy(em_span_cpus(pd), cpus); } else { pd = kzalloc(sizeof(*pd), GFP_KERNEL); if (!pd) return -ENOMEM; } ret = em_create_perf_table(dev, pd, nr_states, cb, flags); if (ret) { kfree(pd); return ret; } if (_is_cpu_device(dev)) for_each_cpu(cpu, cpus) { cpu_dev = get_cpu_device(cpu); cpu_dev->em_pd = pd; } dev->em_pd = pd; return 0; } static void em_cpufreq_update_efficiencies(struct device *dev) { struct em_perf_domain *pd = dev->em_pd; struct em_perf_state *table; struct cpufreq_policy *policy; int found = 0; int i; if (!_is_cpu_device(dev) || !pd) return; policy = cpufreq_cpu_get(cpumask_first(em_span_cpus(pd))); if (!policy) { dev_warn(dev, "EM: Access to CPUFreq policy failed"); return; } table = pd->table; for (i = 0; i < pd->nr_perf_states; i++) { if (!(table[i].flags & EM_PERF_STATE_INEFFICIENT)) continue; if (!cpufreq_table_set_inefficient(policy, table[i].frequency)) found++; } cpufreq_cpu_put(policy); if (!found) return; /* * Efficiencies have been installed in CPUFreq, inefficient frequencies * will be skipped. The EM can do the same. */ pd->flags |= EM_PERF_DOMAIN_SKIP_INEFFICIENCIES; } /** * em_pd_get() - Return the performance domain for a device * @dev : Device to find the performance domain for * * Returns the performance domain to which @dev belongs, or NULL if it doesn't * exist. */ struct em_perf_domain *em_pd_get(struct device *dev) { if (IS_ERR_OR_NULL(dev)) return NULL; return dev->em_pd; } EXPORT_SYMBOL_GPL(em_pd_get); /** * em_cpu_get() - Return the performance domain for a CPU * @cpu : CPU to find the performance domain for * * Returns the performance domain to which @cpu belongs, or NULL if it doesn't * exist. */ struct em_perf_domain *em_cpu_get(int cpu) { struct device *cpu_dev; cpu_dev = get_cpu_device(cpu); if (!cpu_dev) return NULL; return em_pd_get(cpu_dev); } EXPORT_SYMBOL_GPL(em_cpu_get); /** * em_dev_register_perf_domain() - Register the Energy Model (EM) for a device * @dev : Device for which the EM is to register * @nr_states : Number of performance states to register * @cb : Callback functions providing the data of the Energy Model * @cpus : Pointer to cpumask_t, which in case of a CPU device is * obligatory. It can be taken from i.e. 'policy->cpus'. For other * type of devices this should be set to NULL. * @microwatts : Flag indicating that the power values are in micro-Watts or * in some other scale. It must be set properly. * * Create Energy Model tables for a performance domain using the callbacks * defined in cb. * * The @microwatts is important to set with correct value. Some kernel * sub-systems might rely on this flag and check if all devices in the EM are * using the same scale. * * If multiple clients register the same performance domain, all but the first * registration will be ignored. * * Return 0 on success */ int em_dev_register_perf_domain(struct device *dev, unsigned int nr_states, struct em_data_callback *cb, cpumask_t *cpus, bool microwatts) { unsigned long cap, prev_cap = 0; unsigned long flags = 0; int cpu, ret; if (!dev || !nr_states || !cb) return -EINVAL; /* * Use a mutex to serialize the registration of performance domains and * let the driver-defined callback functions sleep. */ mutex_lock(&em_pd_mutex); if (dev->em_pd) { ret = -EEXIST; goto unlock; } if (_is_cpu_device(dev)) { if (!cpus) { dev_err(dev, "EM: invalid CPU mask\n"); ret = -EINVAL; goto unlock; } for_each_cpu(cpu, cpus) { if (em_cpu_get(cpu)) { dev_err(dev, "EM: exists for CPU%d\n", cpu); ret = -EEXIST; goto unlock; } /* * All CPUs of a domain must have the same * micro-architecture since they all share the same * table. */ cap = arch_scale_cpu_capacity(cpu); if (prev_cap && prev_cap != cap) { dev_err(dev, "EM: CPUs of %*pbl must have the same capacity\n", cpumask_pr_args(cpus)); ret = -EINVAL; goto unlock; } prev_cap = cap; } } if (microwatts) flags |= EM_PERF_DOMAIN_MICROWATTS; else if (cb->get_cost) flags |= EM_PERF_DOMAIN_ARTIFICIAL; ret = em_create_pd(dev, nr_states, cb, cpus, flags); if (ret) goto unlock; dev->em_pd->flags |= flags; em_cpufreq_update_efficiencies(dev); em_debug_create_pd(dev); dev_info(dev, "EM: created perf domain\n"); unlock: mutex_unlock(&em_pd_mutex); return ret; } EXPORT_SYMBOL_GPL(em_dev_register_perf_domain); /** * em_dev_unregister_perf_domain() - Unregister Energy Model (EM) for a device * @dev : Device for which the EM is registered * * Unregister the EM for the specified @dev (but not a CPU device). */ void em_dev_unregister_perf_domain(struct device *dev) { if (IS_ERR_OR_NULL(dev) || !dev->em_pd) return; if (_is_cpu_device(dev)) return; /* * The mutex separates all register/unregister requests and protects * from potential clean-up/setup issues in the debugfs directories. * The debugfs directory name is the same as device's name. */ mutex_lock(&em_pd_mutex); em_debug_remove_pd(dev); kfree(dev->em_pd->table); kfree(dev->em_pd); dev->em_pd = NULL; mutex_unlock(&em_pd_mutex); } EXPORT_SYMBOL_GPL(em_dev_unregister_perf_domain);