/* * kernel/power/main.c - PM subsystem core functionality. * * Copyright (c) 2003 Patrick Mochel * Copyright (c) 2003 Open Source Development Lab * * This file is released under the GPLv2 * */ #include #include #include #include #include #include #include #include "power.h" DEFINE_MUTEX(pm_mutex); #ifdef CONFIG_PM_SLEEP /* Routines for PM-transition notifications */ static BLOCKING_NOTIFIER_HEAD(pm_chain_head); int register_pm_notifier(struct notifier_block *nb) { return blocking_notifier_chain_register(&pm_chain_head, nb); } EXPORT_SYMBOL_GPL(register_pm_notifier); int unregister_pm_notifier(struct notifier_block *nb) { return blocking_notifier_chain_unregister(&pm_chain_head, nb); } EXPORT_SYMBOL_GPL(unregister_pm_notifier); int pm_notifier_call_chain(unsigned long val) { int ret = blocking_notifier_call_chain(&pm_chain_head, val, NULL); return notifier_to_errno(ret); } /* If set, devices may be suspended and resumed asynchronously. */ int pm_async_enabled = 1; static ssize_t pm_async_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sprintf(buf, "%d\n", pm_async_enabled); } static ssize_t pm_async_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t n) { unsigned long val; if (strict_strtoul(buf, 10, &val)) return -EINVAL; if (val > 1) return -EINVAL; pm_async_enabled = val; return n; } power_attr(pm_async); #ifdef CONFIG_PM_DEBUG int pm_test_level = TEST_NONE; static const char * const pm_tests[__TEST_AFTER_LAST] = { [TEST_NONE] = "none", [TEST_CORE] = "core", [TEST_CPUS] = "processors", [TEST_PLATFORM] = "platform", [TEST_DEVICES] = "devices", [TEST_FREEZER] = "freezer", }; static ssize_t pm_test_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { char *s = buf; int level; for (level = TEST_FIRST; level <= TEST_MAX; level++) if (pm_tests[level]) { if (level == pm_test_level) s += sprintf(s, "[%s] ", pm_tests[level]); else s += sprintf(s, "%s ", pm_tests[level]); } if (s != buf) /* convert the last space to a newline */ *(s-1) = '\n'; return (s - buf); } static ssize_t pm_test_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t n) { const char * const *s; int level; char *p; int len; int error = -EINVAL; p = memchr(buf, '\n', n); len = p ? p - buf : n; lock_system_sleep(); level = TEST_FIRST; for (s = &pm_tests[level]; level <= TEST_MAX; s++, level++) if (*s && len == strlen(*s) && !strncmp(buf, *s, len)) { pm_test_level = level; error = 0; break; } unlock_system_sleep(); return error ? error : n; } power_attr(pm_test); #endif /* CONFIG_PM_DEBUG */ #ifdef CONFIG_DEBUG_FS static char *suspend_step_name(enum suspend_stat_step step) { switch (step) { case SUSPEND_FREEZE: return "freeze"; case SUSPEND_PREPARE: return "prepare"; case SUSPEND_SUSPEND: return "suspend"; case SUSPEND_SUSPEND_NOIRQ: return "suspend_noirq"; case SUSPEND_RESUME_NOIRQ: return "resume_noirq"; case SUSPEND_RESUME: return "resume"; default: return ""; } } static int suspend_stats_show(struct seq_file *s, void *unused) { int i, index, last_dev, last_errno, last_step; last_dev = suspend_stats.last_failed_dev + REC_FAILED_NUM - 1; last_dev %= REC_FAILED_NUM; last_errno = suspend_stats.last_failed_errno + REC_FAILED_NUM - 1; last_errno %= REC_FAILED_NUM; last_step = suspend_stats.last_failed_step + REC_FAILED_NUM - 1; last_step %= REC_FAILED_NUM; seq_printf(s, "%s: %d\n%s: %d\n%s: %d\n%s: %d\n%s: %d\n" "%s: %d\n%s: %d\n%s: %d\n%s: %d\n%s: %d\n", "success", suspend_stats.success, "fail", suspend_stats.fail, "failed_freeze", suspend_stats.failed_freeze, "failed_prepare", suspend_stats.failed_prepare, "failed_suspend", suspend_stats.failed_suspend, "failed_suspend_late", suspend_stats.failed_suspend_late, "failed_suspend_noirq", suspend_stats.failed_suspend_noirq, "failed_resume", suspend_stats.failed_resume, "failed_resume_early", suspend_stats.failed_resume_early, "failed_resume_noirq", suspend_stats.failed_resume_noirq); seq_printf(s, "failures:\n last_failed_dev:\t%-s\n", suspend_stats.failed_devs[last_dev]); for (i = 1; i < REC_FAILED_NUM; i++) { index = last_dev + REC_FAILED_NUM - i; index %= REC_FAILED_NUM; seq_printf(s, "\t\t\t%-s\n", suspend_stats.failed_devs[index]); } seq_printf(s, " last_failed_errno:\t%-d\n", suspend_stats.errno[last_errno]); for (i = 1; i < REC_FAILED_NUM; i++) { index = last_errno + REC_FAILED_NUM - i; index %= REC_FAILED_NUM; seq_printf(s, "\t\t\t%-d\n", suspend_stats.errno[index]); } seq_printf(s, " last_failed_step:\t%-s\n", suspend_step_name( suspend_stats.failed_steps[last_step])); for (i = 1; i < REC_FAILED_NUM; i++) { index = last_step + REC_FAILED_NUM - i; index %= REC_FAILED_NUM; seq_printf(s, "\t\t\t%-s\n", suspend_step_name( suspend_stats.failed_steps[index])); } return 0; } static int suspend_stats_open(struct inode *inode, struct file *file) { return single_open(file, suspend_stats_show, NULL); } static const struct file_operations suspend_stats_operations = { .open = suspend_stats_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static int __init pm_debugfs_init(void) { debugfs_create_file("suspend_stats", S_IFREG | S_IRUGO, NULL, NULL, &suspend_stats_operations); return 0; } late_initcall(pm_debugfs_init); #endif /* CONFIG_DEBUG_FS */ #endif /* CONFIG_PM_SLEEP */ struct kobject *power_kobj; /** * state - control system power state. * * show() returns what states are supported, which is hard-coded to * 'standby' (Power-On Suspend), 'mem' (Suspend-to-RAM), and * 'disk' (Suspend-to-Disk). * * store() accepts one of those strings, translates it into the * proper enumerated value, and initiates a suspend transition. */ static ssize_t state_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { char *s = buf; #ifdef CONFIG_SUSPEND int i; for (i = 0; i < PM_SUSPEND_MAX; i++) { if (pm_states[i] && valid_state(i)) s += sprintf(s,"%s ", pm_states[i]); } #endif #ifdef CONFIG_HIBERNATION s += sprintf(s, "%s\n", "disk"); #else if (s != buf) /* convert the last space to a newline */ *(s-1) = '\n'; #endif return (s - buf); } static ssize_t state_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t n) { #ifdef CONFIG_SUSPEND suspend_state_t state = PM_SUSPEND_STANDBY; const char * const *s; #endif char *p; int len; int error = -EINVAL; p = memchr(buf, '\n', n); len = p ? p - buf : n; /* First, check if we are requested to hibernate */ if (len == 4 && !strncmp(buf, "disk", len)) { error = hibernate(); goto Exit; } #ifdef CONFIG_SUSPEND for (s = &pm_states[state]; state < PM_SUSPEND_MAX; s++, state++) { if (*s && len == strlen(*s) && !strncmp(buf, *s, len)) break; } if (state < PM_SUSPEND_MAX && *s) { error = enter_state(state); if (error) { suspend_stats.fail++; dpm_save_failed_errno(error); } else suspend_stats.success++; } #endif Exit: return error ? error : n; } power_attr(state); #ifdef CONFIG_PM_SLEEP /* * The 'wakeup_count' attribute, along with the functions defined in * drivers/base/power/wakeup.c, provides a means by which wakeup events can be * handled in a non-racy way. * * If a wakeup event occurs when the system is in a sleep state, it simply is * woken up. In turn, if an event that would wake the system up from a sleep * state occurs when it is undergoing a transition to that sleep state, the * transition should be aborted. Moreover, if such an event occurs when the * system is in the working state, an attempt to start a transition to the * given sleep state should fail during certain period after the detection of * the event. Using the 'state' attribute alone is not sufficient to satisfy * these requirements, because a wakeup event may occur exactly when 'state' * is being written to and may be delivered to user space right before it is * frozen, so the event will remain only partially processed until the system is * woken up by another event. In particular, it won't cause the transition to * a sleep state to be aborted. * * This difficulty may be overcome if user space uses 'wakeup_count' before * writing to 'state'. It first should read from 'wakeup_count' and store * the read value. Then, after carrying out its own preparations for the system * transition to a sleep state, it should write the stored value to * 'wakeup_count'. If that fails, at least one wakeup event has occurred since * 'wakeup_count' was read and 'state' should not be written to. Otherwise, it * is allowed to write to 'state', but the transition will be aborted if there * are any wakeup events detected after 'wakeup_count' was written to. */ static ssize_t wakeup_count_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { unsigned int val; return pm_get_wakeup_count(&val) ? sprintf(buf, "%u\n", val) : -EINTR; } static ssize_t wakeup_count_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t n) { unsigned int val; if (sscanf(buf, "%u", &val) == 1) { if (pm_save_wakeup_count(val)) return n; } return -EINVAL; } power_attr(wakeup_count); #endif /* CONFIG_PM_SLEEP */ #ifdef CONFIG_PM_TRACE int pm_trace_enabled; static ssize_t pm_trace_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sprintf(buf, "%d\n", pm_trace_enabled); } static ssize_t pm_trace_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t n) { int val; if (sscanf(buf, "%d", &val) == 1) { pm_trace_enabled = !!val; return n; } return -EINVAL; } power_attr(pm_trace); static ssize_t pm_trace_dev_match_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return show_trace_dev_match(buf, PAGE_SIZE); } static ssize_t pm_trace_dev_match_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t n) { return -EINVAL; } power_attr(pm_trace_dev_match); #endif /* CONFIG_PM_TRACE */ static struct attribute * g[] = { &state_attr.attr, #ifdef CONFIG_PM_TRACE &pm_trace_attr.attr, &pm_trace_dev_match_attr.attr, #endif #ifdef CONFIG_PM_SLEEP &pm_async_attr.attr, &wakeup_count_attr.attr, #ifdef CONFIG_PM_DEBUG &pm_test_attr.attr, #endif #endif NULL, }; static struct attribute_group attr_group = { .attrs = g, }; #ifdef CONFIG_PM_RUNTIME struct workqueue_struct *pm_wq; EXPORT_SYMBOL_GPL(pm_wq); static int __init pm_start_workqueue(void) { pm_wq = alloc_workqueue("pm", WQ_FREEZABLE, 0); return pm_wq ? 0 : -ENOMEM; } #else static inline int pm_start_workqueue(void) { return 0; } #endif static int __init pm_init(void) { int error = pm_start_workqueue(); if (error) return error; hibernate_image_size_init(); hibernate_reserved_size_init(); power_kobj = kobject_create_and_add("power", NULL); if (!power_kobj) return -ENOMEM; return sysfs_create_group(power_kobj, &attr_group); } core_initcall(pm_init);