/* * Read-Copy Update module-based performance-test facility * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you can access it online at * http://www.gnu.org/licenses/gpl-2.0.html. * * Copyright (C) IBM Corporation, 2015 * * Authors: Paul E. McKenney */ #define pr_fmt(fmt) fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "rcu.h" MODULE_LICENSE("GPL"); MODULE_AUTHOR("Paul E. McKenney "); #define PERF_FLAG "-perf:" #define PERFOUT_STRING(s) \ pr_alert("%s" PERF_FLAG " %s\n", perf_type, s) #define VERBOSE_PERFOUT_STRING(s) \ do { if (verbose) pr_alert("%s" PERF_FLAG " %s\n", perf_type, s); } while (0) #define VERBOSE_PERFOUT_ERRSTRING(s) \ do { if (verbose) pr_alert("%s" PERF_FLAG "!!! %s\n", perf_type, s); } while (0) /* * The intended use cases for the nreaders and nwriters module parameters * are as follows: * * 1. Specify only the nr_cpus kernel boot parameter. This will * set both nreaders and nwriters to the value specified by * nr_cpus for a mixed reader/writer test. * * 2. Specify the nr_cpus kernel boot parameter, but set * rcuperf.nreaders to zero. This will set nwriters to the * value specified by nr_cpus for an update-only test. * * 3. Specify the nr_cpus kernel boot parameter, but set * rcuperf.nwriters to zero. This will set nreaders to the * value specified by nr_cpus for a read-only test. * * Various other use cases may of course be specified. */ torture_param(bool, gp_async, false, "Use asynchronous GP wait primitives"); torture_param(int, gp_async_max, 1000, "Max # outstanding waits per reader"); torture_param(bool, gp_exp, false, "Use expedited GP wait primitives"); torture_param(int, holdoff, 10, "Holdoff time before test start (s)"); torture_param(int, nreaders, -1, "Number of RCU reader threads"); torture_param(int, nwriters, -1, "Number of RCU updater threads"); torture_param(bool, shutdown, !IS_ENABLED(MODULE), "Shutdown at end of performance tests."); torture_param(int, verbose, 1, "Enable verbose debugging printk()s"); torture_param(int, writer_holdoff, 0, "Holdoff (us) between GPs, zero to disable"); static char *perf_type = "rcu"; module_param(perf_type, charp, 0444); MODULE_PARM_DESC(perf_type, "Type of RCU to performance-test (rcu, rcu_bh, ...)"); static int nrealreaders; static int nrealwriters; static struct task_struct **writer_tasks; static struct task_struct **reader_tasks; static struct task_struct *shutdown_task; static u64 **writer_durations; static int *writer_n_durations; static atomic_t n_rcu_perf_reader_started; static atomic_t n_rcu_perf_writer_started; static atomic_t n_rcu_perf_writer_finished; static wait_queue_head_t shutdown_wq; static u64 t_rcu_perf_writer_started; static u64 t_rcu_perf_writer_finished; static unsigned long b_rcu_perf_writer_started; static unsigned long b_rcu_perf_writer_finished; static DEFINE_PER_CPU(atomic_t, n_async_inflight); static int rcu_perf_writer_state; #define RTWS_INIT 0 #define RTWS_ASYNC 1 #define RTWS_BARRIER 2 #define RTWS_EXP_SYNC 3 #define RTWS_SYNC 4 #define RTWS_IDLE 5 #define RTWS_STOPPING 6 #define MAX_MEAS 10000 #define MIN_MEAS 100 /* * Operations vector for selecting different types of tests. */ struct rcu_perf_ops { int ptype; void (*init)(void); void (*cleanup)(void); int (*readlock)(void); void (*readunlock)(int idx); unsigned long (*get_gp_seq)(void); unsigned long (*exp_completed)(void); void (*async)(struct rcu_head *head, rcu_callback_t func); void (*gp_barrier)(void); void (*sync)(void); void (*exp_sync)(void); const char *name; }; static struct rcu_perf_ops *cur_ops; /* * Definitions for rcu perf testing. */ static int rcu_perf_read_lock(void) __acquires(RCU) { rcu_read_lock(); return 0; } static void rcu_perf_read_unlock(int idx) __releases(RCU) { rcu_read_unlock(); } static unsigned long __maybe_unused rcu_no_completed(void) { return 0; } static void rcu_sync_perf_init(void) { } static struct rcu_perf_ops rcu_ops = { .ptype = RCU_FLAVOR, .init = rcu_sync_perf_init, .readlock = rcu_perf_read_lock, .readunlock = rcu_perf_read_unlock, .get_gp_seq = rcu_get_gp_seq, .exp_completed = rcu_exp_batches_completed, .async = call_rcu, .gp_barrier = rcu_barrier, .sync = synchronize_rcu, .exp_sync = synchronize_rcu_expedited, .name = "rcu" }; /* * Definitions for rcu_bh perf testing. */ static int rcu_bh_perf_read_lock(void) __acquires(RCU_BH) { rcu_read_lock_bh(); return 0; } static void rcu_bh_perf_read_unlock(int idx) __releases(RCU_BH) { rcu_read_unlock_bh(); } static struct rcu_perf_ops rcu_bh_ops = { .ptype = RCU_BH_FLAVOR, .init = rcu_sync_perf_init, .readlock = rcu_bh_perf_read_lock, .readunlock = rcu_bh_perf_read_unlock, .get_gp_seq = rcu_bh_get_gp_seq, .exp_completed = rcu_exp_batches_completed_sched, .async = call_rcu_bh, .gp_barrier = rcu_barrier_bh, .sync = synchronize_rcu_bh, .exp_sync = synchronize_rcu_bh_expedited, .name = "rcu_bh" }; /* * Definitions for srcu perf testing. */ DEFINE_STATIC_SRCU(srcu_ctl_perf); static struct srcu_struct *srcu_ctlp = &srcu_ctl_perf; static int srcu_perf_read_lock(void) __acquires(srcu_ctlp) { return srcu_read_lock(srcu_ctlp); } static void srcu_perf_read_unlock(int idx) __releases(srcu_ctlp) { srcu_read_unlock(srcu_ctlp, idx); } static unsigned long srcu_perf_completed(void) { return srcu_batches_completed(srcu_ctlp); } static void srcu_call_rcu(struct rcu_head *head, rcu_callback_t func) { call_srcu(srcu_ctlp, head, func); } static void srcu_rcu_barrier(void) { srcu_barrier(srcu_ctlp); } static void srcu_perf_synchronize(void) { synchronize_srcu(srcu_ctlp); } static void srcu_perf_synchronize_expedited(void) { synchronize_srcu_expedited(srcu_ctlp); } static struct rcu_perf_ops srcu_ops = { .ptype = SRCU_FLAVOR, .init = rcu_sync_perf_init, .readlock = srcu_perf_read_lock, .readunlock = srcu_perf_read_unlock, .get_gp_seq = srcu_perf_completed, .exp_completed = srcu_perf_completed, .async = srcu_call_rcu, .gp_barrier = srcu_rcu_barrier, .sync = srcu_perf_synchronize, .exp_sync = srcu_perf_synchronize_expedited, .name = "srcu" }; static struct srcu_struct srcud; static void srcu_sync_perf_init(void) { srcu_ctlp = &srcud; init_srcu_struct(srcu_ctlp); } static void srcu_sync_perf_cleanup(void) { cleanup_srcu_struct(srcu_ctlp); } static struct rcu_perf_ops srcud_ops = { .ptype = SRCU_FLAVOR, .init = srcu_sync_perf_init, .cleanup = srcu_sync_perf_cleanup, .readlock = srcu_perf_read_lock, .readunlock = srcu_perf_read_unlock, .get_gp_seq = srcu_perf_completed, .exp_completed = srcu_perf_completed, .async = srcu_call_rcu, .gp_barrier = srcu_rcu_barrier, .sync = srcu_perf_synchronize, .exp_sync = srcu_perf_synchronize_expedited, .name = "srcud" }; /* * Definitions for sched perf testing. */ static int sched_perf_read_lock(void) { preempt_disable(); return 0; } static void sched_perf_read_unlock(int idx) { preempt_enable(); } static struct rcu_perf_ops sched_ops = { .ptype = RCU_SCHED_FLAVOR, .init = rcu_sync_perf_init, .readlock = sched_perf_read_lock, .readunlock = sched_perf_read_unlock, .get_gp_seq = rcu_sched_get_gp_seq, .exp_completed = rcu_exp_batches_completed_sched, .async = call_rcu_sched, .gp_barrier = rcu_barrier_sched, .sync = synchronize_sched, .exp_sync = synchronize_sched_expedited, .name = "sched" }; /* * Definitions for RCU-tasks perf testing. */ static int tasks_perf_read_lock(void) { return 0; } static void tasks_perf_read_unlock(int idx) { } static struct rcu_perf_ops tasks_ops = { .ptype = RCU_TASKS_FLAVOR, .init = rcu_sync_perf_init, .readlock = tasks_perf_read_lock, .readunlock = tasks_perf_read_unlock, .get_gp_seq = rcu_no_completed, .async = call_rcu_tasks, .gp_barrier = rcu_barrier_tasks, .sync = synchronize_rcu_tasks, .exp_sync = synchronize_rcu_tasks, .name = "tasks" }; static bool __maybe_unused torturing_tasks(void) { return cur_ops == &tasks_ops; } /* * If performance tests complete, wait for shutdown to commence. */ static void rcu_perf_wait_shutdown(void) { cond_resched_tasks_rcu_qs(); if (atomic_read(&n_rcu_perf_writer_finished) < nrealwriters) return; while (!torture_must_stop()) schedule_timeout_uninterruptible(1); } /* * RCU perf reader kthread. Repeatedly does empty RCU read-side * critical section, minimizing update-side interference. */ static int rcu_perf_reader(void *arg) { unsigned long flags; int idx; long me = (long)arg; VERBOSE_PERFOUT_STRING("rcu_perf_reader task started"); set_cpus_allowed_ptr(current, cpumask_of(me % nr_cpu_ids)); set_user_nice(current, MAX_NICE); atomic_inc(&n_rcu_perf_reader_started); do { local_irq_save(flags); idx = cur_ops->readlock(); cur_ops->readunlock(idx); local_irq_restore(flags); rcu_perf_wait_shutdown(); } while (!torture_must_stop()); torture_kthread_stopping("rcu_perf_reader"); return 0; } /* * Callback function for asynchronous grace periods from rcu_perf_writer(). */ static void rcu_perf_async_cb(struct rcu_head *rhp) { atomic_dec(this_cpu_ptr(&n_async_inflight)); kfree(rhp); } /* * RCU perf writer kthread. Repeatedly does a grace period. */ static int rcu_perf_writer(void *arg) { int i = 0; int i_max; long me = (long)arg; struct rcu_head *rhp = NULL; struct sched_param sp; bool started = false, done = false, alldone = false; u64 t; u64 *wdp; u64 *wdpp = writer_durations[me]; VERBOSE_PERFOUT_STRING("rcu_perf_writer task started"); WARN_ON(!wdpp); set_cpus_allowed_ptr(current, cpumask_of(me % nr_cpu_ids)); sp.sched_priority = 1; sched_setscheduler_nocheck(current, SCHED_FIFO, &sp); if (holdoff) schedule_timeout_uninterruptible(holdoff * HZ); t = ktime_get_mono_fast_ns(); if (atomic_inc_return(&n_rcu_perf_writer_started) >= nrealwriters) { t_rcu_perf_writer_started = t; if (gp_exp) { b_rcu_perf_writer_started = cur_ops->exp_completed() / 2; } else { b_rcu_perf_writer_started = cur_ops->get_gp_seq(); } } do { if (writer_holdoff) udelay(writer_holdoff); wdp = &wdpp[i]; *wdp = ktime_get_mono_fast_ns(); if (gp_async) { retry: if (!rhp) rhp = kmalloc(sizeof(*rhp), GFP_KERNEL); if (rhp && atomic_read(this_cpu_ptr(&n_async_inflight)) < gp_async_max) { rcu_perf_writer_state = RTWS_ASYNC; atomic_inc(this_cpu_ptr(&n_async_inflight)); cur_ops->async(rhp, rcu_perf_async_cb); rhp = NULL; } else if (!kthread_should_stop()) { rcu_perf_writer_state = RTWS_BARRIER; cur_ops->gp_barrier(); goto retry; } else { kfree(rhp); /* Because we are stopping. */ } } else if (gp_exp) { rcu_perf_writer_state = RTWS_EXP_SYNC; cur_ops->exp_sync(); } else { rcu_perf_writer_state = RTWS_SYNC; cur_ops->sync(); } rcu_perf_writer_state = RTWS_IDLE; t = ktime_get_mono_fast_ns(); *wdp = t - *wdp; i_max = i; if (!started && atomic_read(&n_rcu_perf_writer_started) >= nrealwriters) started = true; if (!done && i >= MIN_MEAS) { done = true; sp.sched_priority = 0; sched_setscheduler_nocheck(current, SCHED_NORMAL, &sp); pr_alert("%s%s rcu_perf_writer %ld has %d measurements\n", perf_type, PERF_FLAG, me, MIN_MEAS); if (atomic_inc_return(&n_rcu_perf_writer_finished) >= nrealwriters) { schedule_timeout_interruptible(10); rcu_ftrace_dump(DUMP_ALL); PERFOUT_STRING("Test complete"); t_rcu_perf_writer_finished = t; if (gp_exp) { b_rcu_perf_writer_finished = cur_ops->exp_completed() / 2; } else { b_rcu_perf_writer_finished = cur_ops->get_gp_seq(); } if (shutdown) { smp_mb(); /* Assign before wake. */ wake_up(&shutdown_wq); } } } if (done && !alldone && atomic_read(&n_rcu_perf_writer_finished) >= nrealwriters) alldone = true; if (started && !alldone && i < MAX_MEAS - 1) i++; rcu_perf_wait_shutdown(); } while (!torture_must_stop()); if (gp_async) { rcu_perf_writer_state = RTWS_BARRIER; cur_ops->gp_barrier(); } rcu_perf_writer_state = RTWS_STOPPING; writer_n_durations[me] = i_max; torture_kthread_stopping("rcu_perf_writer"); return 0; } static inline void rcu_perf_print_module_parms(struct rcu_perf_ops *cur_ops, const char *tag) { pr_alert("%s" PERF_FLAG "--- %s: nreaders=%d nwriters=%d verbose=%d shutdown=%d\n", perf_type, tag, nrealreaders, nrealwriters, verbose, shutdown); } static void rcu_perf_cleanup(void) { int i; int j; int ngps = 0; u64 *wdp; u64 *wdpp; /* * Would like warning at start, but everything is expedited * during the mid-boot phase, so have to wait till the end. */ if (rcu_gp_is_expedited() && !rcu_gp_is_normal() && !gp_exp) VERBOSE_PERFOUT_ERRSTRING("All grace periods expedited, no normal ones to measure!"); if (rcu_gp_is_normal() && gp_exp) VERBOSE_PERFOUT_ERRSTRING("All grace periods normal, no expedited ones to measure!"); if (gp_exp && gp_async) VERBOSE_PERFOUT_ERRSTRING("No expedited async GPs, so went with async!"); if (torture_cleanup_begin()) return; if (reader_tasks) { for (i = 0; i < nrealreaders; i++) torture_stop_kthread(rcu_perf_reader, reader_tasks[i]); kfree(reader_tasks); } if (writer_tasks) { for (i = 0; i < nrealwriters; i++) { torture_stop_kthread(rcu_perf_writer, writer_tasks[i]); if (!writer_n_durations) continue; j = writer_n_durations[i]; pr_alert("%s%s writer %d gps: %d\n", perf_type, PERF_FLAG, i, j); ngps += j; } pr_alert("%s%s start: %llu end: %llu duration: %llu gps: %d batches: %ld\n", perf_type, PERF_FLAG, t_rcu_perf_writer_started, t_rcu_perf_writer_finished, t_rcu_perf_writer_finished - t_rcu_perf_writer_started, ngps, b_rcu_perf_writer_finished - b_rcu_perf_writer_started); for (i = 0; i < nrealwriters; i++) { if (!writer_durations) break; if (!writer_n_durations) continue; wdpp = writer_durations[i]; if (!wdpp) continue; for (j = 0; j <= writer_n_durations[i]; j++) { wdp = &wdpp[j]; pr_alert("%s%s %4d writer-duration: %5d %llu\n", perf_type, PERF_FLAG, i, j, *wdp); if (j % 100 == 0) schedule_timeout_uninterruptible(1); } kfree(writer_durations[i]); } kfree(writer_tasks); kfree(writer_durations); kfree(writer_n_durations); } /* Do flavor-specific cleanup operations. */ if (cur_ops->cleanup != NULL) cur_ops->cleanup(); torture_cleanup_end(); } /* * Return the number if non-negative. If -1, the number of CPUs. * If less than -1, that much less than the number of CPUs, but * at least one. */ static int compute_real(int n) { int nr; if (n >= 0) { nr = n; } else { nr = num_online_cpus() + 1 + n; if (nr <= 0) nr = 1; } return nr; } /* * RCU perf shutdown kthread. Just waits to be awakened, then shuts * down system. */ static int rcu_perf_shutdown(void *arg) { do { wait_event(shutdown_wq, atomic_read(&n_rcu_perf_writer_finished) >= nrealwriters); } while (atomic_read(&n_rcu_perf_writer_finished) < nrealwriters); smp_mb(); /* Wake before output. */ rcu_perf_cleanup(); kernel_power_off(); return -EINVAL; } static int __init rcu_perf_init(void) { long i; int firsterr = 0; static struct rcu_perf_ops *perf_ops[] = { &rcu_ops, &rcu_bh_ops, &srcu_ops, &srcud_ops, &sched_ops, &tasks_ops, }; if (!torture_init_begin(perf_type, verbose)) return -EBUSY; /* Process args and tell the world that the perf'er is on the job. */ for (i = 0; i < ARRAY_SIZE(perf_ops); i++) { cur_ops = perf_ops[i]; if (strcmp(perf_type, cur_ops->name) == 0) break; } if (i == ARRAY_SIZE(perf_ops)) { pr_alert("rcu-perf: invalid perf type: \"%s\"\n", perf_type); pr_alert("rcu-perf types:"); for (i = 0; i < ARRAY_SIZE(perf_ops); i++) pr_alert(" %s", perf_ops[i]->name); pr_alert("\n"); firsterr = -EINVAL; goto unwind; } if (cur_ops->init) cur_ops->init(); nrealwriters = compute_real(nwriters); nrealreaders = compute_real(nreaders); atomic_set(&n_rcu_perf_reader_started, 0); atomic_set(&n_rcu_perf_writer_started, 0); atomic_set(&n_rcu_perf_writer_finished, 0); rcu_perf_print_module_parms(cur_ops, "Start of test"); /* Start up the kthreads. */ if (shutdown) { init_waitqueue_head(&shutdown_wq); firsterr = torture_create_kthread(rcu_perf_shutdown, NULL, shutdown_task); if (firsterr) goto unwind; schedule_timeout_uninterruptible(1); } reader_tasks = kcalloc(nrealreaders, sizeof(reader_tasks[0]), GFP_KERNEL); if (reader_tasks == NULL) { VERBOSE_PERFOUT_ERRSTRING("out of memory"); firsterr = -ENOMEM; goto unwind; } for (i = 0; i < nrealreaders; i++) { firsterr = torture_create_kthread(rcu_perf_reader, (void *)i, reader_tasks[i]); if (firsterr) goto unwind; } while (atomic_read(&n_rcu_perf_reader_started) < nrealreaders) schedule_timeout_uninterruptible(1); writer_tasks = kcalloc(nrealwriters, sizeof(reader_tasks[0]), GFP_KERNEL); writer_durations = kcalloc(nrealwriters, sizeof(*writer_durations), GFP_KERNEL); writer_n_durations = kcalloc(nrealwriters, sizeof(*writer_n_durations), GFP_KERNEL); if (!writer_tasks || !writer_durations || !writer_n_durations) { VERBOSE_PERFOUT_ERRSTRING("out of memory"); firsterr = -ENOMEM; goto unwind; } for (i = 0; i < nrealwriters; i++) { writer_durations[i] = kcalloc(MAX_MEAS, sizeof(*writer_durations[i]), GFP_KERNEL); if (!writer_durations[i]) { firsterr = -ENOMEM; goto unwind; } firsterr = torture_create_kthread(rcu_perf_writer, (void *)i, writer_tasks[i]); if (firsterr) goto unwind; } torture_init_end(); return 0; unwind: torture_init_end(); rcu_perf_cleanup(); return firsterr; } module_init(rcu_perf_init); module_exit(rcu_perf_cleanup);