#include #include #include #include #include #include "sched.h" #ifdef CONFIG_IRQ_TIME_ACCOUNTING /* * There are no locks covering percpu hardirq/softirq time. * They are only modified in vtime_account, on corresponding CPU * with interrupts disabled. So, writes are safe. * They are read and saved off onto struct rq in update_rq_clock(). * This may result in other CPU reading this CPU's irq time and can * race with irq/vtime_account on this CPU. We would either get old * or new value with a side effect of accounting a slice of irq time to wrong * task when irq is in progress while we read rq->clock. That is a worthy * compromise in place of having locks on each irq in account_system_time. */ DEFINE_PER_CPU(u64, cpu_hardirq_time); DEFINE_PER_CPU(u64, cpu_softirq_time); static DEFINE_PER_CPU(u64, irq_start_time); static int sched_clock_irqtime; void enable_sched_clock_irqtime(void) { sched_clock_irqtime = 1; } void disable_sched_clock_irqtime(void) { sched_clock_irqtime = 0; } #ifndef CONFIG_64BIT DEFINE_PER_CPU(seqcount_t, irq_time_seq); #endif /* CONFIG_64BIT */ /* * Called before incrementing preempt_count on {soft,}irq_enter * and before decrementing preempt_count on {soft,}irq_exit. */ void vtime_account(struct task_struct *curr) { unsigned long flags; s64 delta; int cpu; if (!sched_clock_irqtime) return; local_irq_save(flags); cpu = smp_processor_id(); delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time); __this_cpu_add(irq_start_time, delta); irq_time_write_begin(); /* * We do not account for softirq time from ksoftirqd here. * We want to continue accounting softirq time to ksoftirqd thread * in that case, so as not to confuse scheduler with a special task * that do not consume any time, but still wants to run. */ if (hardirq_count()) __this_cpu_add(cpu_hardirq_time, delta); else if (in_serving_softirq() && curr != this_cpu_ksoftirqd()) __this_cpu_add(cpu_softirq_time, delta); irq_time_write_end(); local_irq_restore(flags); } EXPORT_SYMBOL_GPL(vtime_account); static int irqtime_account_hi_update(void) { u64 *cpustat = kcpustat_this_cpu->cpustat; unsigned long flags; u64 latest_ns; int ret = 0; local_irq_save(flags); latest_ns = this_cpu_read(cpu_hardirq_time); if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ]) ret = 1; local_irq_restore(flags); return ret; } static int irqtime_account_si_update(void) { u64 *cpustat = kcpustat_this_cpu->cpustat; unsigned long flags; u64 latest_ns; int ret = 0; local_irq_save(flags); latest_ns = this_cpu_read(cpu_softirq_time); if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ]) ret = 1; local_irq_restore(flags); return ret; } #else /* CONFIG_IRQ_TIME_ACCOUNTING */ #define sched_clock_irqtime (0) #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */ static inline void task_group_account_field(struct task_struct *p, int index, u64 tmp) { #ifdef CONFIG_CGROUP_CPUACCT struct kernel_cpustat *kcpustat; struct cpuacct *ca; #endif /* * Since all updates are sure to touch the root cgroup, we * get ourselves ahead and touch it first. If the root cgroup * is the only cgroup, then nothing else should be necessary. * */ __get_cpu_var(kernel_cpustat).cpustat[index] += tmp; #ifdef CONFIG_CGROUP_CPUACCT if (unlikely(!cpuacct_subsys.active)) return; rcu_read_lock(); ca = task_ca(p); while (ca && (ca != &root_cpuacct)) { kcpustat = this_cpu_ptr(ca->cpustat); kcpustat->cpustat[index] += tmp; ca = parent_ca(ca); } rcu_read_unlock(); #endif } /* * Account user cpu time to a process. * @p: the process that the cpu time gets accounted to * @cputime: the cpu time spent in user space since the last update * @cputime_scaled: cputime scaled by cpu frequency */ void account_user_time(struct task_struct *p, cputime_t cputime, cputime_t cputime_scaled) { int index; /* Add user time to process. */ p->utime += cputime; p->utimescaled += cputime_scaled; account_group_user_time(p, cputime); index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER; /* Add user time to cpustat. */ task_group_account_field(p, index, (__force u64) cputime); /* Account for user time used */ acct_update_integrals(p); } /* * Account guest cpu time to a process. * @p: the process that the cpu time gets accounted to * @cputime: the cpu time spent in virtual machine since the last update * @cputime_scaled: cputime scaled by cpu frequency */ static void account_guest_time(struct task_struct *p, cputime_t cputime, cputime_t cputime_scaled) { u64 *cpustat = kcpustat_this_cpu->cpustat; /* Add guest time to process. */ p->utime += cputime; p->utimescaled += cputime_scaled; account_group_user_time(p, cputime); p->gtime += cputime; /* Add guest time to cpustat. */ if (TASK_NICE(p) > 0) { cpustat[CPUTIME_NICE] += (__force u64) cputime; cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime; } else { cpustat[CPUTIME_USER] += (__force u64) cputime; cpustat[CPUTIME_GUEST] += (__force u64) cputime; } } /* * Account system cpu time to a process and desired cpustat field * @p: the process that the cpu time gets accounted to * @cputime: the cpu time spent in kernel space since the last update * @cputime_scaled: cputime scaled by cpu frequency * @target_cputime64: pointer to cpustat field that has to be updated */ static inline void __account_system_time(struct task_struct *p, cputime_t cputime, cputime_t cputime_scaled, int index) { /* Add system time to process. */ p->stime += cputime; p->stimescaled += cputime_scaled; account_group_system_time(p, cputime); /* Add system time to cpustat. */ task_group_account_field(p, index, (__force u64) cputime); /* Account for system time used */ acct_update_integrals(p); } /* * Account system cpu time to a process. * @p: the process that the cpu time gets accounted to * @hardirq_offset: the offset to subtract from hardirq_count() * @cputime: the cpu time spent in kernel space since the last update * @cputime_scaled: cputime scaled by cpu frequency */ void account_system_time(struct task_struct *p, int hardirq_offset, cputime_t cputime, cputime_t cputime_scaled) { int index; if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { account_guest_time(p, cputime, cputime_scaled); return; } if (hardirq_count() - hardirq_offset) index = CPUTIME_IRQ; else if (in_serving_softirq()) index = CPUTIME_SOFTIRQ; else index = CPUTIME_SYSTEM; __account_system_time(p, cputime, cputime_scaled, index); } /* * Account for involuntary wait time. * @cputime: the cpu time spent in involuntary wait */ void account_steal_time(cputime_t cputime) { u64 *cpustat = kcpustat_this_cpu->cpustat; cpustat[CPUTIME_STEAL] += (__force u64) cputime; } /* * Account for idle time. * @cputime: the cpu time spent in idle wait */ void account_idle_time(cputime_t cputime) { u64 *cpustat = kcpustat_this_cpu->cpustat; struct rq *rq = this_rq(); if (atomic_read(&rq->nr_iowait) > 0) cpustat[CPUTIME_IOWAIT] += (__force u64) cputime; else cpustat[CPUTIME_IDLE] += (__force u64) cputime; } static __always_inline bool steal_account_process_tick(void) { #ifdef CONFIG_PARAVIRT if (static_key_false(¶virt_steal_enabled)) { u64 steal, st = 0; steal = paravirt_steal_clock(smp_processor_id()); steal -= this_rq()->prev_steal_time; st = steal_ticks(steal); this_rq()->prev_steal_time += st * TICK_NSEC; account_steal_time(st); return st; } #endif return false; } #ifndef CONFIG_VIRT_CPU_ACCOUNTING #ifdef CONFIG_IRQ_TIME_ACCOUNTING /* * Account a tick to a process and cpustat * @p: the process that the cpu time gets accounted to * @user_tick: is the tick from userspace * @rq: the pointer to rq * * Tick demultiplexing follows the order * - pending hardirq update * - pending softirq update * - user_time * - idle_time * - system time * - check for guest_time * - else account as system_time * * Check for hardirq is done both for system and user time as there is * no timer going off while we are on hardirq and hence we may never get an * opportunity to update it solely in system time. * p->stime and friends are only updated on system time and not on irq * softirq as those do not count in task exec_runtime any more. */ static void irqtime_account_process_tick(struct task_struct *p, int user_tick, struct rq *rq) { cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); u64 *cpustat = kcpustat_this_cpu->cpustat; if (steal_account_process_tick()) return; if (irqtime_account_hi_update()) { cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy; } else if (irqtime_account_si_update()) { cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy; } else if (this_cpu_ksoftirqd() == p) { /* * ksoftirqd time do not get accounted in cpu_softirq_time. * So, we have to handle it separately here. * Also, p->stime needs to be updated for ksoftirqd. */ __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled, CPUTIME_SOFTIRQ); } else if (user_tick) { account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); } else if (p == rq->idle) { account_idle_time(cputime_one_jiffy); } else if (p->flags & PF_VCPU) { /* System time or guest time */ account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled); } else { __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled, CPUTIME_SYSTEM); } } static void irqtime_account_idle_ticks(int ticks) { int i; struct rq *rq = this_rq(); for (i = 0; i < ticks; i++) irqtime_account_process_tick(current, 0, rq); } #else /* CONFIG_IRQ_TIME_ACCOUNTING */ static void irqtime_account_idle_ticks(int ticks) {} static void irqtime_account_process_tick(struct task_struct *p, int user_tick, struct rq *rq) {} #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ /* * Account a single tick of cpu time. * @p: the process that the cpu time gets accounted to * @user_tick: indicates if the tick is a user or a system tick */ void account_process_tick(struct task_struct *p, int user_tick) { cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); struct rq *rq = this_rq(); if (sched_clock_irqtime) { irqtime_account_process_tick(p, user_tick, rq); return; } if (steal_account_process_tick()) return; if (user_tick) account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET)) account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy, one_jiffy_scaled); else account_idle_time(cputime_one_jiffy); } /* * Account multiple ticks of steal time. * @p: the process from which the cpu time has been stolen * @ticks: number of stolen ticks */ void account_steal_ticks(unsigned long ticks) { account_steal_time(jiffies_to_cputime(ticks)); } /* * Account multiple ticks of idle time. * @ticks: number of stolen ticks */ void account_idle_ticks(unsigned long ticks) { if (sched_clock_irqtime) { irqtime_account_idle_ticks(ticks); return; } account_idle_time(jiffies_to_cputime(ticks)); } #endif /* * Use precise platform statistics if available: */ #ifdef CONFIG_VIRT_CPU_ACCOUNTING void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) { *ut = p->utime; *st = p->stime; } void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) { struct task_cputime cputime; thread_group_cputime(p, &cputime); *ut = cputime.utime; *st = cputime.stime; } #else #ifndef nsecs_to_cputime # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs) #endif static cputime_t scale_utime(cputime_t utime, cputime_t rtime, cputime_t total) { u64 temp = (__force u64) rtime; temp *= (__force u64) utime; if (sizeof(cputime_t) == 4) temp = div_u64(temp, (__force u32) total); else temp = div64_u64(temp, (__force u64) total); return (__force cputime_t) temp; } void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) { cputime_t rtime, utime = p->utime, total = utime + p->stime; /* * Use CFS's precise accounting: */ rtime = nsecs_to_cputime(p->se.sum_exec_runtime); if (total) utime = scale_utime(utime, rtime, total); else utime = rtime; /* * Compare with previous values, to keep monotonicity: */ p->prev_utime = max(p->prev_utime, utime); p->prev_stime = max(p->prev_stime, rtime - p->prev_utime); *ut = p->prev_utime; *st = p->prev_stime; } /* * Must be called with siglock held. */ void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) { struct signal_struct *sig = p->signal; struct task_cputime cputime; cputime_t rtime, utime, total; thread_group_cputime(p, &cputime); total = cputime.utime + cputime.stime; rtime = nsecs_to_cputime(cputime.sum_exec_runtime); if (total) utime = scale_utime(cputime.utime, rtime, total); else utime = rtime; sig->prev_utime = max(sig->prev_utime, utime); sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime); *ut = sig->prev_utime; *st = sig->prev_stime; } #endif