/* * kernel/time/sched_debug.c * * Print the CFS rbtree * * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include "sched.h" static DEFINE_SPINLOCK(sched_debug_lock); /* * This allows printing both to /proc/sched_debug and * to the console */ #define SEQ_printf(m, x...) \ do { \ if (m) \ seq_printf(m, x); \ else \ printk(x); \ } while (0) /* * Ease the printing of nsec fields: */ static long long nsec_high(unsigned long long nsec) { if ((long long)nsec < 0) { nsec = -nsec; do_div(nsec, 1000000); return -nsec; } do_div(nsec, 1000000); return nsec; } static unsigned long nsec_low(unsigned long long nsec) { if ((long long)nsec < 0) nsec = -nsec; return do_div(nsec, 1000000); } #define SPLIT_NS(x) nsec_high(x), nsec_low(x) #ifdef CONFIG_FAIR_GROUP_SCHED static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg) { struct sched_entity *se = tg->se[cpu]; if (!se) return; #define P(F) \ SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F) #define PN(F) \ SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F)) PN(se->exec_start); PN(se->vruntime); PN(se->sum_exec_runtime); #ifdef CONFIG_SCHEDSTATS PN(se->statistics.wait_start); PN(se->statistics.sleep_start); PN(se->statistics.block_start); PN(se->statistics.sleep_max); PN(se->statistics.block_max); PN(se->statistics.exec_max); PN(se->statistics.slice_max); PN(se->statistics.wait_max); PN(se->statistics.wait_sum); P(se->statistics.wait_count); #endif P(se->load.weight); #undef PN #undef P } #endif #ifdef CONFIG_CGROUP_SCHED static char group_path[PATH_MAX]; static char *task_group_path(struct task_group *tg) { if (autogroup_path(tg, group_path, PATH_MAX)) return group_path; /* * May be NULL if the underlying cgroup isn't fully-created yet */ if (!tg->css.cgroup) { group_path[0] = '\0'; return group_path; } cgroup_path(tg->css.cgroup, group_path, PATH_MAX); return group_path; } #endif static void print_task(struct seq_file *m, struct rq *rq, struct task_struct *p) { if (rq->curr == p) SEQ_printf(m, "R"); else SEQ_printf(m, " "); SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ", p->comm, p->pid, SPLIT_NS(p->se.vruntime), (long long)(p->nvcsw + p->nivcsw), p->prio); #ifdef CONFIG_SCHEDSTATS SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld", SPLIT_NS(p->se.vruntime), SPLIT_NS(p->se.sum_exec_runtime), SPLIT_NS(p->se.statistics.sum_sleep_runtime)); #else SEQ_printf(m, "%15Ld %15Ld %15Ld.%06ld %15Ld.%06ld %15Ld.%06ld", 0LL, 0LL, 0LL, 0L, 0LL, 0L, 0LL, 0L); #endif #ifdef CONFIG_CGROUP_SCHED SEQ_printf(m, " %s", task_group_path(task_group(p))); #endif SEQ_printf(m, "\n"); } static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu) { struct task_struct *g, *p; unsigned long flags; SEQ_printf(m, "\nrunnable tasks:\n" " task PID tree-key switches prio" " exec-runtime sum-exec sum-sleep\n" "------------------------------------------------------" "----------------------------------------------------\n"); read_lock_irqsave(&tasklist_lock, flags); do_each_thread(g, p) { if (!p->on_rq || task_cpu(p) != rq_cpu) continue; print_task(m, rq, p); } while_each_thread(g, p); read_unlock_irqrestore(&tasklist_lock, flags); } void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) { s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1, spread, rq0_min_vruntime, spread0; struct rq *rq = cpu_rq(cpu); struct sched_entity *last; unsigned long flags; #ifdef CONFIG_FAIR_GROUP_SCHED SEQ_printf(m, "\ncfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg)); #else SEQ_printf(m, "\ncfs_rq[%d]:\n", cpu); #endif SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock", SPLIT_NS(cfs_rq->exec_clock)); raw_spin_lock_irqsave(&rq->lock, flags); if (cfs_rq->rb_leftmost) MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime; last = __pick_last_entity(cfs_rq); if (last) max_vruntime = last->vruntime; min_vruntime = cfs_rq->min_vruntime; rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime; raw_spin_unlock_irqrestore(&rq->lock, flags); SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime", SPLIT_NS(MIN_vruntime)); SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime", SPLIT_NS(min_vruntime)); SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime", SPLIT_NS(max_vruntime)); spread = max_vruntime - MIN_vruntime; SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread", SPLIT_NS(spread)); spread0 = min_vruntime - rq0_min_vruntime; SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0", SPLIT_NS(spread0)); SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over", cfs_rq->nr_spread_over); SEQ_printf(m, " .%-30s: %ld\n", "nr_running", cfs_rq->nr_running); SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight); #ifdef CONFIG_FAIR_GROUP_SCHED #ifdef CONFIG_SMP SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "load_avg", SPLIT_NS(cfs_rq->load_avg)); SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "load_period", SPLIT_NS(cfs_rq->load_period)); SEQ_printf(m, " .%-30s: %ld\n", "load_contrib", cfs_rq->load_contribution); SEQ_printf(m, " .%-30s: %d\n", "load_tg", atomic_read(&cfs_rq->tg->load_weight)); #endif print_cfs_group_stats(m, cpu, cfs_rq->tg); #endif } void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq) { #ifdef CONFIG_RT_GROUP_SCHED SEQ_printf(m, "\nrt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg)); #else SEQ_printf(m, "\nrt_rq[%d]:\n", cpu); #endif #define P(x) \ SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x)) #define PN(x) \ SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x)) P(rt_nr_running); P(rt_throttled); PN(rt_time); PN(rt_runtime); #undef PN #undef P } extern __read_mostly int sched_clock_running; static void print_cpu(struct seq_file *m, int cpu) { struct rq *rq = cpu_rq(cpu); unsigned long flags; #ifdef CONFIG_X86 { unsigned int freq = cpu_khz ? : 1; SEQ_printf(m, "\ncpu#%d, %u.%03u MHz\n", cpu, freq / 1000, (freq % 1000)); } #else SEQ_printf(m, "\ncpu#%d\n", cpu); #endif #define P(x) \ SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x)) #define PN(x) \ SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x)) P(nr_running); SEQ_printf(m, " .%-30s: %lu\n", "load", rq->load.weight); P(nr_switches); P(nr_load_updates); P(nr_uninterruptible); PN(next_balance); P(curr->pid); PN(clock); P(cpu_load[0]); P(cpu_load[1]); P(cpu_load[2]); P(cpu_load[3]); P(cpu_load[4]); #undef P #undef PN #ifdef CONFIG_SCHEDSTATS #define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, rq->n); #define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n); P(yld_count); P(sched_switch); P(sched_count); P(sched_goidle); #ifdef CONFIG_SMP P64(avg_idle); #endif P(ttwu_count); P(ttwu_local); #undef P #undef P64 #endif spin_lock_irqsave(&sched_debug_lock, flags); print_cfs_stats(m, cpu); print_rt_stats(m, cpu); rcu_read_lock(); print_rq(m, rq, cpu); rcu_read_unlock(); spin_unlock_irqrestore(&sched_debug_lock, flags); } static const char *sched_tunable_scaling_names[] = { "none", "logaritmic", "linear" }; static int sched_debug_show(struct seq_file *m, void *v) { u64 ktime, sched_clk, cpu_clk; unsigned long flags; int cpu; local_irq_save(flags); ktime = ktime_to_ns(ktime_get()); sched_clk = sched_clock(); cpu_clk = local_clock(); local_irq_restore(flags); SEQ_printf(m, "Sched Debug Version: v0.10, %s %.*s\n", init_utsname()->release, (int)strcspn(init_utsname()->version, " "), init_utsname()->version); #define P(x) \ SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x)) #define PN(x) \ SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) PN(ktime); PN(sched_clk); PN(cpu_clk); P(jiffies); #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK P(sched_clock_stable); #endif #undef PN #undef P SEQ_printf(m, "\n"); SEQ_printf(m, "sysctl_sched\n"); #define P(x) \ SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x)) #define PN(x) \ SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) PN(sysctl_sched_latency); PN(sysctl_sched_min_granularity); PN(sysctl_sched_wakeup_granularity); P(sysctl_sched_child_runs_first); P(sysctl_sched_features); #undef PN #undef P SEQ_printf(m, " .%-40s: %d (%s)\n", "sysctl_sched_tunable_scaling", sysctl_sched_tunable_scaling, sched_tunable_scaling_names[sysctl_sched_tunable_scaling]); for_each_online_cpu(cpu) print_cpu(m, cpu); SEQ_printf(m, "\n"); return 0; } void sysrq_sched_debug_show(void) { sched_debug_show(NULL, NULL); } static int sched_debug_open(struct inode *inode, struct file *filp) { return single_open(filp, sched_debug_show, NULL); } static const struct file_operations sched_debug_fops = { .open = sched_debug_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static int __init init_sched_debug_procfs(void) { struct proc_dir_entry *pe; pe = proc_create("sched_debug", 0444, NULL, &sched_debug_fops); if (!pe) return -ENOMEM; return 0; } __initcall(init_sched_debug_procfs); void proc_sched_show_task(struct task_struct *p, struct seq_file *m) { unsigned long nr_switches; SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, p->pid, get_nr_threads(p)); SEQ_printf(m, "---------------------------------------------------------\n"); #define __P(F) \ SEQ_printf(m, "%-35s:%21Ld\n", #F, (long long)F) #define P(F) \ SEQ_printf(m, "%-35s:%21Ld\n", #F, (long long)p->F) #define __PN(F) \ SEQ_printf(m, "%-35s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F)) #define PN(F) \ SEQ_printf(m, "%-35s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F)) PN(se.exec_start); PN(se.vruntime); PN(se.sum_exec_runtime); nr_switches = p->nvcsw + p->nivcsw; #ifdef CONFIG_SCHEDSTATS PN(se.statistics.wait_start); PN(se.statistics.sleep_start); PN(se.statistics.block_start); PN(se.statistics.sleep_max); PN(se.statistics.block_max); PN(se.statistics.exec_max); PN(se.statistics.slice_max); PN(se.statistics.wait_max); PN(se.statistics.wait_sum); P(se.statistics.wait_count); PN(se.statistics.iowait_sum); P(se.statistics.iowait_count); P(se.nr_migrations); P(se.statistics.nr_migrations_cold); P(se.statistics.nr_failed_migrations_affine); P(se.statistics.nr_failed_migrations_running); P(se.statistics.nr_failed_migrations_hot); P(se.statistics.nr_forced_migrations); P(se.statistics.nr_wakeups); P(se.statistics.nr_wakeups_sync); P(se.statistics.nr_wakeups_migrate); P(se.statistics.nr_wakeups_local); P(se.statistics.nr_wakeups_remote); P(se.statistics.nr_wakeups_affine); P(se.statistics.nr_wakeups_affine_attempts); P(se.statistics.nr_wakeups_passive); P(se.statistics.nr_wakeups_idle); { u64 avg_atom, avg_per_cpu; avg_atom = p->se.sum_exec_runtime; if (nr_switches) do_div(avg_atom, nr_switches); else avg_atom = -1LL; avg_per_cpu = p->se.sum_exec_runtime; if (p->se.nr_migrations) { avg_per_cpu = div64_u64(avg_per_cpu, p->se.nr_migrations); } else { avg_per_cpu = -1LL; } __PN(avg_atom); __PN(avg_per_cpu); } #endif __P(nr_switches); SEQ_printf(m, "%-35s:%21Ld\n", "nr_voluntary_switches", (long long)p->nvcsw); SEQ_printf(m, "%-35s:%21Ld\n", "nr_involuntary_switches", (long long)p->nivcsw); P(se.load.weight); P(policy); P(prio); #undef PN #undef __PN #undef P #undef __P { unsigned int this_cpu = raw_smp_processor_id(); u64 t0, t1; t0 = cpu_clock(this_cpu); t1 = cpu_clock(this_cpu); SEQ_printf(m, "%-35s:%21Ld\n", "clock-delta", (long long)(t1-t0)); } } void proc_sched_set_task(struct task_struct *p) { #ifdef CONFIG_SCHEDSTATS memset(&p->se.statistics, 0, sizeof(p->se.statistics)); #endif }