// SPDX-License-Identifier: GPL-2.0-only /* * linux/kernel/signal.c * * Copyright (C) 1991, 1992 Linus Torvalds * * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson * * 2003-06-02 Jim Houston - Concurrent Computer Corp. * Changes to use preallocated sigqueue structures * to allow signals to be sent reliably. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define CREATE_TRACE_POINTS #include #include #include #include #include #include /* * SLAB caches for signal bits. */ static struct kmem_cache *sigqueue_cachep; int print_fatal_signals __read_mostly; static void __user *sig_handler(struct task_struct *t, int sig) { return t->sighand->action[sig - 1].sa.sa_handler; } static inline bool sig_handler_ignored(void __user *handler, int sig) { /* Is it explicitly or implicitly ignored? */ return handler == SIG_IGN || (handler == SIG_DFL && sig_kernel_ignore(sig)); } static bool sig_task_ignored(struct task_struct *t, int sig, bool force) { void __user *handler; handler = sig_handler(t, sig); /* SIGKILL and SIGSTOP may not be sent to the global init */ if (unlikely(is_global_init(t) && sig_kernel_only(sig))) return true; if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && handler == SIG_DFL && !(force && sig_kernel_only(sig))) return true; /* Only allow kernel generated signals to this kthread */ if (unlikely((t->flags & PF_KTHREAD) && (handler == SIG_KTHREAD_KERNEL) && !force)) return true; return sig_handler_ignored(handler, sig); } static bool sig_ignored(struct task_struct *t, int sig, bool force) { /* * Blocked signals are never ignored, since the * signal handler may change by the time it is * unblocked. */ if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) return false; /* * Tracers may want to know about even ignored signal unless it * is SIGKILL which can't be reported anyway but can be ignored * by SIGNAL_UNKILLABLE task. */ if (t->ptrace && sig != SIGKILL) return false; return sig_task_ignored(t, sig, force); } /* * Re-calculate pending state from the set of locally pending * signals, globally pending signals, and blocked signals. */ static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked) { unsigned long ready; long i; switch (_NSIG_WORDS) { default: for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) ready |= signal->sig[i] &~ blocked->sig[i]; break; case 4: ready = signal->sig[3] &~ blocked->sig[3]; ready |= signal->sig[2] &~ blocked->sig[2]; ready |= signal->sig[1] &~ blocked->sig[1]; ready |= signal->sig[0] &~ blocked->sig[0]; break; case 2: ready = signal->sig[1] &~ blocked->sig[1]; ready |= signal->sig[0] &~ blocked->sig[0]; break; case 1: ready = signal->sig[0] &~ blocked->sig[0]; } return ready != 0; } #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) static bool recalc_sigpending_tsk(struct task_struct *t) { if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) || PENDING(&t->pending, &t->blocked) || PENDING(&t->signal->shared_pending, &t->blocked) || cgroup_task_frozen(t)) { set_tsk_thread_flag(t, TIF_SIGPENDING); return true; } /* * We must never clear the flag in another thread, or in current * when it's possible the current syscall is returning -ERESTART*. * So we don't clear it here, and only callers who know they should do. */ return false; } /* * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. * This is superfluous when called on current, the wakeup is a harmless no-op. */ void recalc_sigpending_and_wake(struct task_struct *t) { if (recalc_sigpending_tsk(t)) signal_wake_up(t, 0); } void recalc_sigpending(void) { if (!recalc_sigpending_tsk(current) && !freezing(current)) clear_thread_flag(TIF_SIGPENDING); } EXPORT_SYMBOL(recalc_sigpending); void calculate_sigpending(void) { /* Have any signals or users of TIF_SIGPENDING been delayed * until after fork? */ spin_lock_irq(¤t->sighand->siglock); set_tsk_thread_flag(current, TIF_SIGPENDING); recalc_sigpending(); spin_unlock_irq(¤t->sighand->siglock); } /* Given the mask, find the first available signal that should be serviced. */ #define SYNCHRONOUS_MASK \ (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) int next_signal(struct sigpending *pending, sigset_t *mask) { unsigned long i, *s, *m, x; int sig = 0; s = pending->signal.sig; m = mask->sig; /* * Handle the first word specially: it contains the * synchronous signals that need to be dequeued first. */ x = *s &~ *m; if (x) { if (x & SYNCHRONOUS_MASK) x &= SYNCHRONOUS_MASK; sig = ffz(~x) + 1; return sig; } switch (_NSIG_WORDS) { default: for (i = 1; i < _NSIG_WORDS; ++i) { x = *++s &~ *++m; if (!x) continue; sig = ffz(~x) + i*_NSIG_BPW + 1; break; } break; case 2: x = s[1] &~ m[1]; if (!x) break; sig = ffz(~x) + _NSIG_BPW + 1; break; case 1: /* Nothing to do */ break; } return sig; } static inline void print_dropped_signal(int sig) { static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); if (!print_fatal_signals) return; if (!__ratelimit(&ratelimit_state)) return; pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", current->comm, current->pid, sig); } /** * task_set_jobctl_pending - set jobctl pending bits * @task: target task * @mask: pending bits to set * * Clear @mask from @task->jobctl. @mask must be subset of * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is * cleared. If @task is already being killed or exiting, this function * becomes noop. * * CONTEXT: * Must be called with @task->sighand->siglock held. * * RETURNS: * %true if @mask is set, %false if made noop because @task was dying. */ bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask) { BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) return false; if (mask & JOBCTL_STOP_SIGMASK) task->jobctl &= ~JOBCTL_STOP_SIGMASK; task->jobctl |= mask; return true; } /** * task_clear_jobctl_trapping - clear jobctl trapping bit * @task: target task * * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. * Clear it and wake up the ptracer. Note that we don't need any further * locking. @task->siglock guarantees that @task->parent points to the * ptracer. * * CONTEXT: * Must be called with @task->sighand->siglock held. */ void task_clear_jobctl_trapping(struct task_struct *task) { if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { task->jobctl &= ~JOBCTL_TRAPPING; smp_mb(); /* advised by wake_up_bit() */ wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); } } /** * task_clear_jobctl_pending - clear jobctl pending bits * @task: target task * @mask: pending bits to clear * * Clear @mask from @task->jobctl. @mask must be subset of * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other * STOP bits are cleared together. * * If clearing of @mask leaves no stop or trap pending, this function calls * task_clear_jobctl_trapping(). * * CONTEXT: * Must be called with @task->sighand->siglock held. */ void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask) { BUG_ON(mask & ~JOBCTL_PENDING_MASK); if (mask & JOBCTL_STOP_PENDING) mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; task->jobctl &= ~mask; if (!(task->jobctl & JOBCTL_PENDING_MASK)) task_clear_jobctl_trapping(task); } /** * task_participate_group_stop - participate in a group stop * @task: task participating in a group stop * * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. * Group stop states are cleared and the group stop count is consumed if * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group * stop, the appropriate `SIGNAL_*` flags are set. * * CONTEXT: * Must be called with @task->sighand->siglock held. * * RETURNS: * %true if group stop completion should be notified to the parent, %false * otherwise. */ static bool task_participate_group_stop(struct task_struct *task) { struct signal_struct *sig = task->signal; bool consume = task->jobctl & JOBCTL_STOP_CONSUME; WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); if (!consume) return false; if (!WARN_ON_ONCE(sig->group_stop_count == 0)) sig->group_stop_count--; /* * Tell the caller to notify completion iff we are entering into a * fresh group stop. Read comment in do_signal_stop() for details. */ if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED); return true; } return false; } void task_join_group_stop(struct task_struct *task) { unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK; struct signal_struct *sig = current->signal; if (sig->group_stop_count) { sig->group_stop_count++; mask |= JOBCTL_STOP_CONSUME; } else if (!(sig->flags & SIGNAL_STOP_STOPPED)) return; /* Have the new thread join an on-going signal group stop */ task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING); } /* * allocate a new signal queue record * - this may be called without locks if and only if t == current, otherwise an * appropriate lock must be held to stop the target task from exiting */ static struct sigqueue * __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags, int override_rlimit, const unsigned int sigqueue_flags) { struct sigqueue *q = NULL; struct user_struct *user; int sigpending; /* * Protect access to @t credentials. This can go away when all * callers hold rcu read lock. * * NOTE! A pending signal will hold on to the user refcount, * and we get/put the refcount only when the sigpending count * changes from/to zero. */ rcu_read_lock(); user = __task_cred(t)->user; sigpending = atomic_inc_return(&user->sigpending); if (sigpending == 1) get_uid(user); rcu_read_unlock(); if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) { /* * Preallocation does not hold sighand::siglock so it can't * use the cache. The lockless caching requires that only * one consumer and only one producer run at a time. */ q = READ_ONCE(t->sigqueue_cache); if (!q || sigqueue_flags) q = kmem_cache_alloc(sigqueue_cachep, gfp_flags); else WRITE_ONCE(t->sigqueue_cache, NULL); } else { print_dropped_signal(sig); } if (unlikely(q == NULL)) { if (atomic_dec_and_test(&user->sigpending)) free_uid(user); } else { INIT_LIST_HEAD(&q->list); q->flags = sigqueue_flags; q->user = user; } return q; } void exit_task_sigqueue_cache(struct task_struct *tsk) { /* Race free because @tsk is mopped up */ struct sigqueue *q = tsk->sigqueue_cache; if (q) { tsk->sigqueue_cache = NULL; /* * Hand it back to the cache as the task might * be self reaping which would leak the object. */ kmem_cache_free(sigqueue_cachep, q); } } static void sigqueue_cache_or_free(struct sigqueue *q) { /* * Cache one sigqueue per task. This pairs with the consumer side * in __sigqueue_alloc() and needs READ/WRITE_ONCE() to prevent the * compiler from store tearing and to tell KCSAN that the data race * is intentional when run without holding current->sighand->siglock, * which is fine as current obviously cannot run __sigqueue_free() * concurrently. */ if (!READ_ONCE(current->sigqueue_cache)) WRITE_ONCE(current->sigqueue_cache, q); else kmem_cache_free(sigqueue_cachep, q); } static void __sigqueue_free(struct sigqueue *q) { if (q->flags & SIGQUEUE_PREALLOC) return; if (atomic_dec_and_test(&q->user->sigpending)) free_uid(q->user); sigqueue_cache_or_free(q); } void flush_sigqueue(struct sigpending *queue) { struct sigqueue *q; sigemptyset(&queue->signal); while (!list_empty(&queue->list)) { q = list_entry(queue->list.next, struct sigqueue , list); list_del_init(&q->list); __sigqueue_free(q); } } /* * Flush all pending signals for this kthread. */ void flush_signals(struct task_struct *t) { unsigned long flags; spin_lock_irqsave(&t->sighand->siglock, flags); clear_tsk_thread_flag(t, TIF_SIGPENDING); flush_sigqueue(&t->pending); flush_sigqueue(&t->signal->shared_pending); spin_unlock_irqrestore(&t->sighand->siglock, flags); } EXPORT_SYMBOL(flush_signals); #ifdef CONFIG_POSIX_TIMERS static void __flush_itimer_signals(struct sigpending *pending) { sigset_t signal, retain; struct sigqueue *q, *n; signal = pending->signal; sigemptyset(&retain); list_for_each_entry_safe(q, n, &pending->list, list) { int sig = q->info.si_signo; if (likely(q->info.si_code != SI_TIMER)) { sigaddset(&retain, sig); } else { sigdelset(&signal, sig); list_del_init(&q->list); __sigqueue_free(q); } } sigorsets(&pending->signal, &signal, &retain); } void flush_itimer_signals(void) { struct task_struct *tsk = current; unsigned long flags; spin_lock_irqsave(&tsk->sighand->siglock, flags); __flush_itimer_signals(&tsk->pending); __flush_itimer_signals(&tsk->signal->shared_pending); spin_unlock_irqrestore(&tsk->sighand->siglock, flags); } #endif void ignore_signals(struct task_struct *t) { int i; for (i = 0; i < _NSIG; ++i) t->sighand->action[i].sa.sa_handler = SIG_IGN; flush_signals(t); } /* * Flush all handlers for a task. */ void flush_signal_handlers(struct task_struct *t, int force_default) { int i; struct k_sigaction *ka = &t->sighand->action[0]; for (i = _NSIG ; i != 0 ; i--) { if (force_default || ka->sa.sa_handler != SIG_IGN) ka->sa.sa_handler = SIG_DFL; ka->sa.sa_flags = 0; #ifdef __ARCH_HAS_SA_RESTORER ka->sa.sa_restorer = NULL; #endif sigemptyset(&ka->sa.sa_mask); ka++; } } bool unhandled_signal(struct task_struct *tsk, int sig) { void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; if (is_global_init(tsk)) return true; if (handler != SIG_IGN && handler != SIG_DFL) return false; /* if ptraced, let the tracer determine */ return !tsk->ptrace; } static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info, bool *resched_timer) { struct sigqueue *q, *first = NULL; /* * Collect the siginfo appropriate to this signal. Check if * there is another siginfo for the same signal. */ list_for_each_entry(q, &list->list, list) { if (q->info.si_signo == sig) { if (first) goto still_pending; first = q; } } sigdelset(&list->signal, sig); if (first) { still_pending: list_del_init(&first->list); copy_siginfo(info, &first->info); *resched_timer = (first->flags & SIGQUEUE_PREALLOC) && (info->si_code == SI_TIMER) && (info->si_sys_private); __sigqueue_free(first); } else { /* * Ok, it wasn't in the queue. This must be * a fast-pathed signal or we must have been * out of queue space. So zero out the info. */ clear_siginfo(info); info->si_signo = sig; info->si_errno = 0; info->si_code = SI_USER; info->si_pid = 0; info->si_uid = 0; } } static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, kernel_siginfo_t *info, bool *resched_timer) { int sig = next_signal(pending, mask); if (sig) collect_signal(sig, pending, info, resched_timer); return sig; } /* * Dequeue a signal and return the element to the caller, which is * expected to free it. * * All callers have to hold the siglock. */ int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info) { bool resched_timer = false; int signr; /* We only dequeue private signals from ourselves, we don't let * signalfd steal them */ signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer); if (!signr) { signr = __dequeue_signal(&tsk->signal->shared_pending, mask, info, &resched_timer); #ifdef CONFIG_POSIX_TIMERS /* * itimer signal ? * * itimers are process shared and we restart periodic * itimers in the signal delivery path to prevent DoS * attacks in the high resolution timer case. This is * compliant with the old way of self-restarting * itimers, as the SIGALRM is a legacy signal and only * queued once. Changing the restart behaviour to * restart the timer in the signal dequeue path is * reducing the timer noise on heavy loaded !highres * systems too. */ if (unlikely(signr == SIGALRM)) { struct hrtimer *tmr = &tsk->signal->real_timer; if (!hrtimer_is_queued(tmr) && tsk->signal->it_real_incr != 0) { hrtimer_forward(tmr, tmr->base->get_time(), tsk->signal->it_real_incr); hrtimer_restart(tmr); } } #endif } recalc_sigpending(); if (!signr) return 0; if (unlikely(sig_kernel_stop(signr))) { /* * Set a marker that we have dequeued a stop signal. Our * caller might release the siglock and then the pending * stop signal it is about to process is no longer in the * pending bitmasks, but must still be cleared by a SIGCONT * (and overruled by a SIGKILL). So those cases clear this * shared flag after we've set it. Note that this flag may * remain set after the signal we return is ignored or * handled. That doesn't matter because its only purpose * is to alert stop-signal processing code when another * processor has come along and cleared the flag. */ current->jobctl |= JOBCTL_STOP_DEQUEUED; } #ifdef CONFIG_POSIX_TIMERS if (resched_timer) { /* * Release the siglock to ensure proper locking order * of timer locks outside of siglocks. Note, we leave * irqs disabled here, since the posix-timers code is * about to disable them again anyway. */ spin_unlock(&tsk->sighand->siglock); posixtimer_rearm(info); spin_lock(&tsk->sighand->siglock); /* Don't expose the si_sys_private value to userspace */ info->si_sys_private = 0; } #endif return signr; } EXPORT_SYMBOL_GPL(dequeue_signal); static int dequeue_synchronous_signal(kernel_siginfo_t *info) { struct task_struct *tsk = current; struct sigpending *pending = &tsk->pending; struct sigqueue *q, *sync = NULL; /* * Might a synchronous signal be in the queue? */ if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK)) return 0; /* * Return the first synchronous signal in the queue. */ list_for_each_entry(q, &pending->list, list) { /* Synchronous signals have a positive si_code */ if ((q->info.si_code > SI_USER) && (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) { sync = q; goto next; } } return 0; next: /* * Check if there is another siginfo for the same signal. */ list_for_each_entry_continue(q, &pending->list, list) { if (q->info.si_signo == sync->info.si_signo) goto still_pending; } sigdelset(&pending->signal, sync->info.si_signo); recalc_sigpending(); still_pending: list_del_init(&sync->list); copy_siginfo(info, &sync->info); __sigqueue_free(sync); return info->si_signo; } /* * Tell a process that it has a new active signal.. * * NOTE! we rely on the previous spin_lock to * lock interrupts for us! We can only be called with * "siglock" held, and the local interrupt must * have been disabled when that got acquired! * * No need to set need_resched since signal event passing * goes through ->blocked */ void signal_wake_up_state(struct task_struct *t, unsigned int state) { set_tsk_thread_flag(t, TIF_SIGPENDING); /* * TASK_WAKEKILL also means wake it up in the stopped/traced/killable * case. We don't check t->state here because there is a race with it * executing another processor and just now entering stopped state. * By using wake_up_state, we ensure the process will wake up and * handle its death signal. */ if (!wake_up_state(t, state | TASK_INTERRUPTIBLE)) kick_process(t); } /* * Remove signals in mask from the pending set and queue. * Returns 1 if any signals were found. * * All callers must be holding the siglock. */ static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s) { struct sigqueue *q, *n; sigset_t m; sigandsets(&m, mask, &s->signal); if (sigisemptyset(&m)) return; sigandnsets(&s->signal, &s->signal, mask); list_for_each_entry_safe(q, n, &s->list, list) { if (sigismember(mask, q->info.si_signo)) { list_del_init(&q->list); __sigqueue_free(q); } } } static inline int is_si_special(const struct kernel_siginfo *info) { return info <= SEND_SIG_PRIV; } static inline bool si_fromuser(const struct kernel_siginfo *info) { return info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)); } /* * called with RCU read lock from check_kill_permission() */ static bool kill_ok_by_cred(struct task_struct *t) { const struct cred *cred = current_cred(); const struct cred *tcred = __task_cred(t); return uid_eq(cred->euid, tcred->suid) || uid_eq(cred->euid, tcred->uid) || uid_eq(cred->uid, tcred->suid) || uid_eq(cred->uid, tcred->uid) || ns_capable(tcred->user_ns, CAP_KILL); } /* * Bad permissions for sending the signal * - the caller must hold the RCU read lock */ static int check_kill_permission(int sig, struct kernel_siginfo *info, struct task_struct *t) { struct pid *sid; int error; if (!valid_signal(sig)) return -EINVAL; if (!si_fromuser(info)) return 0; error = audit_signal_info(sig, t); /* Let audit system see the signal */ if (error) return error; if (!same_thread_group(current, t) && !kill_ok_by_cred(t)) { switch (sig) { case SIGCONT: sid = task_session(t); /* * We don't return the error if sid == NULL. The * task was unhashed, the caller must notice this. */ if (!sid || sid == task_session(current)) break; fallthrough; default: return -EPERM; } } return security_task_kill(t, info, sig, NULL); } /** * ptrace_trap_notify - schedule trap to notify ptracer * @t: tracee wanting to notify tracer * * This function schedules sticky ptrace trap which is cleared on the next * TRAP_STOP to notify ptracer of an event. @t must have been seized by * ptracer. * * If @t is running, STOP trap will be taken. If trapped for STOP and * ptracer is listening for events, tracee is woken up so that it can * re-trap for the new event. If trapped otherwise, STOP trap will be * eventually taken without returning to userland after the existing traps * are finished by PTRACE_CONT. * * CONTEXT: * Must be called with @task->sighand->siglock held. */ static void ptrace_trap_notify(struct task_struct *t) { WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); assert_spin_locked(&t->sighand->siglock); task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); } /* * Handle magic process-wide effects of stop/continue signals. Unlike * the signal actions, these happen immediately at signal-generation * time regardless of blocking, ignoring, or handling. This does the * actual continuing for SIGCONT, but not the actual stopping for stop * signals. The process stop is done as a signal action for SIG_DFL. * * Returns true if the signal should be actually delivered, otherwise * it should be dropped. */ static bool prepare_signal(int sig, struct task_struct *p, bool force) { struct signal_struct *signal = p->signal; struct task_struct *t; sigset_t flush; if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) { if (!(signal->flags & SIGNAL_GROUP_EXIT)) return sig == SIGKILL; /* * The process is in the middle of dying, nothing to do. */ } else if (sig_kernel_stop(sig)) { /* * This is a stop signal. Remove SIGCONT from all queues. */ siginitset(&flush, sigmask(SIGCONT)); flush_sigqueue_mask(&flush, &signal->shared_pending); for_each_thread(p, t) flush_sigqueue_mask(&flush, &t->pending); } else if (sig == SIGCONT) { unsigned int why; /* * Remove all stop signals from all queues, wake all threads. */ siginitset(&flush, SIG_KERNEL_STOP_MASK); flush_sigqueue_mask(&flush, &signal->shared_pending); for_each_thread(p, t) { flush_sigqueue_mask(&flush, &t->pending); task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); if (likely(!(t->ptrace & PT_SEIZED))) wake_up_state(t, __TASK_STOPPED); else ptrace_trap_notify(t); } /* * Notify the parent with CLD_CONTINUED if we were stopped. * * If we were in the middle of a group stop, we pretend it * was already finished, and then continued. Since SIGCHLD * doesn't queue we report only CLD_STOPPED, as if the next * CLD_CONTINUED was dropped. */ why = 0; if (signal->flags & SIGNAL_STOP_STOPPED) why |= SIGNAL_CLD_CONTINUED; else if (signal->group_stop_count) why |= SIGNAL_CLD_STOPPED; if (why) { /* * The first thread which returns from do_signal_stop() * will take ->siglock, notice SIGNAL_CLD_MASK, and * notify its parent. See get_signal(). */ signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED); signal->group_stop_count = 0; signal->group_exit_code = 0; } } return !sig_ignored(p, sig, force); } /* * Test if P wants to take SIG. After we've checked all threads with this, * it's equivalent to finding no threads not blocking SIG. Any threads not * blocking SIG were ruled out because they are not running and already * have pending signals. Such threads will dequeue from the shared queue * as soon as they're available, so putting the signal on the shared queue * will be equivalent to sending it to one such thread. */ static inline bool wants_signal(int sig, struct task_struct *p) { if (sigismember(&p->blocked, sig)) return false; if (p->flags & PF_EXITING) return false; if (sig == SIGKILL) return true; if (task_is_stopped_or_traced(p)) return false; return task_curr(p) || !task_sigpending(p); } static void complete_signal(int sig, struct task_struct *p, enum pid_type type) { struct signal_struct *signal = p->signal; struct task_struct *t; /* * Now find a thread we can wake up to take the signal off the queue. * * If the main thread wants the signal, it gets first crack. * Probably the least surprising to the average bear. */ if (wants_signal(sig, p)) t = p; else if ((type == PIDTYPE_PID) || thread_group_empty(p)) /* * There is just one thread and it does not need to be woken. * It will dequeue unblocked signals before it runs again. */ return; else { /* * Otherwise try to find a suitable thread. */ t = signal->curr_target; while (!wants_signal(sig, t)) { t = next_thread(t); if (t == signal->curr_target) /* * No thread needs to be woken. * Any eligible threads will see * the signal in the queue soon. */ return; } signal->curr_target = t; } /* * Found a killable thread. If the signal will be fatal, * then start taking the whole group down immediately. */ if (sig_fatal(p, sig) && !(signal->flags & SIGNAL_GROUP_EXIT) && !sigismember(&t->real_blocked, sig) && (sig == SIGKILL || !p->ptrace)) { /* * This signal will be fatal to the whole group. */ if (!sig_kernel_coredump(sig)) { /* * Start a group exit and wake everybody up. * This way we don't have other threads * running and doing things after a slower * thread has the fatal signal pending. */ signal->flags = SIGNAL_GROUP_EXIT; signal->group_exit_code = sig; signal->group_stop_count = 0; t = p; do { task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); sigaddset(&t->pending.signal, SIGKILL); signal_wake_up(t, 1); } while_each_thread(p, t); return; } } /* * The signal is already in the shared-pending queue. * Tell the chosen thread to wake up and dequeue it. */ signal_wake_up(t, sig == SIGKILL); return; } static inline bool legacy_queue(struct sigpending *signals, int sig) { return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); } static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t, enum pid_type type, bool force) { struct sigpending *pending; struct sigqueue *q; int override_rlimit; int ret = 0, result; assert_spin_locked(&t->sighand->siglock); result = TRACE_SIGNAL_IGNORED; if (!prepare_signal(sig, t, force)) goto ret; pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; /* * Short-circuit ignored signals and support queuing * exactly one non-rt signal, so that we can get more * detailed information about the cause of the signal. */ result = TRACE_SIGNAL_ALREADY_PENDING; if (legacy_queue(pending, sig)) goto ret; result = TRACE_SIGNAL_DELIVERED; /* * Skip useless siginfo allocation for SIGKILL and kernel threads. */ if ((sig == SIGKILL) || (t->flags & PF_KTHREAD)) goto out_set; /* * Real-time signals must be queued if sent by sigqueue, or * some other real-time mechanism. It is implementation * defined whether kill() does so. We attempt to do so, on * the principle of least surprise, but since kill is not * allowed to fail with EAGAIN when low on memory we just * make sure at least one signal gets delivered and don't * pass on the info struct. */ if (sig < SIGRTMIN) override_rlimit = (is_si_special(info) || info->si_code >= 0); else override_rlimit = 0; q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0); if (q) { list_add_tail(&q->list, &pending->list); switch ((unsigned long) info) { case (unsigned long) SEND_SIG_NOINFO: clear_siginfo(&q->info); q->info.si_signo = sig; q->info.si_errno = 0; q->info.si_code = SI_USER; q->info.si_pid = task_tgid_nr_ns(current, task_active_pid_ns(t)); rcu_read_lock(); q->info.si_uid = from_kuid_munged(task_cred_xxx(t, user_ns), current_uid()); rcu_read_unlock(); break; case (unsigned long) SEND_SIG_PRIV: clear_siginfo(&q->info); q->info.si_signo = sig; q->info.si_errno = 0; q->info.si_code = SI_KERNEL; q->info.si_pid = 0; q->info.si_uid = 0; break; default: copy_siginfo(&q->info, info); break; } } else if (!is_si_special(info) && sig >= SIGRTMIN && info->si_code != SI_USER) { /* * Queue overflow, abort. We may abort if the * signal was rt and sent by user using something * other than kill(). */ result = TRACE_SIGNAL_OVERFLOW_FAIL; ret = -EAGAIN; goto ret; } else { /* * This is a silent loss of information. We still * send the signal, but the *info bits are lost. */ result = TRACE_SIGNAL_LOSE_INFO; } out_set: signalfd_notify(t, sig); sigaddset(&pending->signal, sig); /* Let multiprocess signals appear after on-going forks */ if (type > PIDTYPE_TGID) { struct multiprocess_signals *delayed; hlist_for_each_entry(delayed, &t->signal->multiprocess, node) { sigset_t *signal = &delayed->signal; /* Can't queue both a stop and a continue signal */ if (sig == SIGCONT) sigdelsetmask(signal, SIG_KERNEL_STOP_MASK); else if (sig_kernel_stop(sig)) sigdelset(signal, SIGCONT); sigaddset(signal, sig); } } complete_signal(sig, t, type); ret: trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result); return ret; } static inline bool has_si_pid_and_uid(struct kernel_siginfo *info) { bool ret = false; switch (siginfo_layout(info->si_signo, info->si_code)) { case SIL_KILL: case SIL_CHLD: case SIL_RT: ret = true; break; case SIL_TIMER: case SIL_POLL: case SIL_FAULT: case SIL_FAULT_TRAPNO: case SIL_FAULT_MCEERR: case SIL_FAULT_BNDERR: case SIL_FAULT_PKUERR: case SIL_PERF_EVENT: case SIL_SYS: ret = false; break; } return ret; } static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t, enum pid_type type) { /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */ bool force = false; if (info == SEND_SIG_NOINFO) { /* Force if sent from an ancestor pid namespace */ force = !task_pid_nr_ns(current, task_active_pid_ns(t)); } else if (info == SEND_SIG_PRIV) { /* Don't ignore kernel generated signals */ force = true; } else if (has_si_pid_and_uid(info)) { /* SIGKILL and SIGSTOP is special or has ids */ struct user_namespace *t_user_ns; rcu_read_lock(); t_user_ns = task_cred_xxx(t, user_ns); if (current_user_ns() != t_user_ns) { kuid_t uid = make_kuid(current_user_ns(), info->si_uid); info->si_uid = from_kuid_munged(t_user_ns, uid); } rcu_read_unlock(); /* A kernel generated signal? */ force = (info->si_code == SI_KERNEL); /* From an ancestor pid namespace? */ if (!task_pid_nr_ns(current, task_active_pid_ns(t))) { info->si_pid = 0; force = true; } } return __send_signal(sig, info, t, type, force); } static void print_fatal_signal(int signr) { struct pt_regs *regs = signal_pt_regs(); pr_info("potentially unexpected fatal signal %d.\n", signr); #if defined(__i386__) && !defined(__arch_um__) pr_info("code at %08lx: ", regs->ip); { int i; for (i = 0; i < 16; i++) { unsigned char insn; if (get_user(insn, (unsigned char *)(regs->ip + i))) break; pr_cont("%02x ", insn); } } pr_cont("\n"); #endif preempt_disable(); show_regs(regs); preempt_enable(); } static int __init setup_print_fatal_signals(char *str) { get_option (&str, &print_fatal_signals); return 1; } __setup("print-fatal-signals=", setup_print_fatal_signals); int __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) { return send_signal(sig, info, p, PIDTYPE_TGID); } int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p, enum pid_type type) { unsigned long flags; int ret = -ESRCH; if (lock_task_sighand(p, &flags)) { ret = send_signal(sig, info, p, type); unlock_task_sighand(p, &flags); } return ret; } /* * Force a signal that the process can't ignore: if necessary * we unblock the signal and change any SIG_IGN to SIG_DFL. * * Note: If we unblock the signal, we always reset it to SIG_DFL, * since we do not want to have a signal handler that was blocked * be invoked when user space had explicitly blocked it. * * We don't want to have recursive SIGSEGV's etc, for example, * that is why we also clear SIGNAL_UNKILLABLE. */ static int force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t) { unsigned long int flags; int ret, blocked, ignored; struct k_sigaction *action; int sig = info->si_signo; spin_lock_irqsave(&t->sighand->siglock, flags); action = &t->sighand->action[sig-1]; ignored = action->sa.sa_handler == SIG_IGN; blocked = sigismember(&t->blocked, sig); if (blocked || ignored) { action->sa.sa_handler = SIG_DFL; if (blocked) { sigdelset(&t->blocked, sig); recalc_sigpending_and_wake(t); } } /* * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect * debugging to leave init killable. */ if (action->sa.sa_handler == SIG_DFL && !t->ptrace) t->signal->flags &= ~SIGNAL_UNKILLABLE; ret = send_signal(sig, info, t, PIDTYPE_PID); spin_unlock_irqrestore(&t->sighand->siglock, flags); return ret; } int force_sig_info(struct kernel_siginfo *info) { return force_sig_info_to_task(info, current); } /* * Nuke all other threads in the group. */ int zap_other_threads(struct task_struct *p) { struct task_struct *t = p; int count = 0; p->signal->group_stop_count = 0; while_each_thread(p, t) { task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); count++; /* Don't bother with already dead threads */ if (t->exit_state) continue; sigaddset(&t->pending.signal, SIGKILL); signal_wake_up(t, 1); } return count; } struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, unsigned long *flags) { struct sighand_struct *sighand; rcu_read_lock(); for (;;) { sighand = rcu_dereference(tsk->sighand); if (unlikely(sighand == NULL)) break; /* * This sighand can be already freed and even reused, but * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which * initializes ->siglock: this slab can't go away, it has * the same object type, ->siglock can't be reinitialized. * * We need to ensure that tsk->sighand is still the same * after we take the lock, we can race with de_thread() or * __exit_signal(). In the latter case the next iteration * must see ->sighand == NULL. */ spin_lock_irqsave(&sighand->siglock, *flags); if (likely(sighand == rcu_access_pointer(tsk->sighand))) break; spin_unlock_irqrestore(&sighand->siglock, *flags); } rcu_read_unlock(); return sighand; } /* * send signal info to all the members of a group */ int group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p, enum pid_type type) { int ret; rcu_read_lock(); ret = check_kill_permission(sig, info, p); rcu_read_unlock(); if (!ret && sig) ret = do_send_sig_info(sig, info, p, type); return ret; } /* * __kill_pgrp_info() sends a signal to a process group: this is what the tty * control characters do (^C, ^Z etc) * - the caller must hold at least a readlock on tasklist_lock */ int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp) { struct task_struct *p = NULL; int retval, success; success = 0; retval = -ESRCH; do_each_pid_task(pgrp, PIDTYPE_PGID, p) { int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID); success |= !err; retval = err; } while_each_pid_task(pgrp, PIDTYPE_PGID, p); return success ? 0 : retval; } int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid) { int error = -ESRCH; struct task_struct *p; for (;;) { rcu_read_lock(); p = pid_task(pid, PIDTYPE_PID); if (p) error = group_send_sig_info(sig, info, p, PIDTYPE_TGID); rcu_read_unlock(); if (likely(!p || error != -ESRCH)) return error; /* * The task was unhashed in between, try again. If it * is dead, pid_task() will return NULL, if we race with * de_thread() it will find the new leader. */ } } static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid) { int error; rcu_read_lock(); error = kill_pid_info(sig, info, find_vpid(pid)); rcu_read_unlock(); return error; } static inline bool kill_as_cred_perm(const struct cred *cred, struct task_struct *target) { const struct cred *pcred = __task_cred(target); return uid_eq(cred->euid, pcred->suid) || uid_eq(cred->euid, pcred->uid) || uid_eq(cred->uid, pcred->suid) || uid_eq(cred->uid, pcred->uid); } /* * The usb asyncio usage of siginfo is wrong. The glibc support * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT. * AKA after the generic fields: * kernel_pid_t si_pid; * kernel_uid32_t si_uid; * sigval_t si_value; * * Unfortunately when usb generates SI_ASYNCIO it assumes the layout * after the generic fields is: * void __user *si_addr; * * This is a practical problem when there is a 64bit big endian kernel * and a 32bit userspace. As the 32bit address will encoded in the low * 32bits of the pointer. Those low 32bits will be stored at higher * address than appear in a 32 bit pointer. So userspace will not * see the address it was expecting for it's completions. * * There is nothing in the encoding that can allow * copy_siginfo_to_user32 to detect this confusion of formats, so * handle this by requiring the caller of kill_pid_usb_asyncio to * notice when this situration takes place and to store the 32bit * pointer in sival_int, instead of sival_addr of the sigval_t addr * parameter. */ int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, struct pid *pid, const struct cred *cred) { struct kernel_siginfo info; struct task_struct *p; unsigned long flags; int ret = -EINVAL; if (!valid_signal(sig)) return ret; clear_siginfo(&info); info.si_signo = sig; info.si_errno = errno; info.si_code = SI_ASYNCIO; *((sigval_t *)&info.si_pid) = addr; rcu_read_lock(); p = pid_task(pid, PIDTYPE_PID); if (!p) { ret = -ESRCH; goto out_unlock; } if (!kill_as_cred_perm(cred, p)) { ret = -EPERM; goto out_unlock; } ret = security_task_kill(p, &info, sig, cred); if (ret) goto out_unlock; if (sig) { if (lock_task_sighand(p, &flags)) { ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false); unlock_task_sighand(p, &flags); } else ret = -ESRCH; } out_unlock: rcu_read_unlock(); return ret; } EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio); /* * kill_something_info() interprets pid in interesting ways just like kill(2). * * POSIX specifies that kill(-1,sig) is unspecified, but what we have * is probably wrong. Should make it like BSD or SYSV. */ static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid) { int ret; if (pid > 0) return kill_proc_info(sig, info, pid); /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */ if (pid == INT_MIN) return -ESRCH; read_lock(&tasklist_lock); if (pid != -1) { ret = __kill_pgrp_info(sig, info, pid ? find_vpid(-pid) : task_pgrp(current)); } else { int retval = 0, count = 0; struct task_struct * p; for_each_process(p) { if (task_pid_vnr(p) > 1 && !same_thread_group(p, current)) { int err = group_send_sig_info(sig, info, p, PIDTYPE_MAX); ++count; if (err != -EPERM) retval = err; } } ret = count ? retval : -ESRCH; } read_unlock(&tasklist_lock); return ret; } /* * These are for backward compatibility with the rest of the kernel source. */ int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) { /* * Make sure legacy kernel users don't send in bad values * (normal paths check this in check_kill_permission). */ if (!valid_signal(sig)) return -EINVAL; return do_send_sig_info(sig, info, p, PIDTYPE_PID); } EXPORT_SYMBOL(send_sig_info); #define __si_special(priv) \ ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) int send_sig(int sig, struct task_struct *p, int priv) { return send_sig_info(sig, __si_special(priv), p); } EXPORT_SYMBOL(send_sig); void force_sig(int sig) { struct kernel_siginfo info; clear_siginfo(&info); info.si_signo = sig; info.si_errno = 0; info.si_code = SI_KERNEL; info.si_pid = 0; info.si_uid = 0; force_sig_info(&info); } EXPORT_SYMBOL(force_sig); /* * When things go south during signal handling, we * will force a SIGSEGV. And if the signal that caused * the problem was already a SIGSEGV, we'll want to * make sure we don't even try to deliver the signal.. */ void force_sigsegv(int sig) { struct task_struct *p = current; if (sig == SIGSEGV) { unsigned long flags; spin_lock_irqsave(&p->sighand->siglock, flags); p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; spin_unlock_irqrestore(&p->sighand->siglock, flags); } force_sig(SIGSEGV); } int force_sig_fault_to_task(int sig, int code, void __user *addr ___ARCH_SI_TRAPNO(int trapno) ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) , struct task_struct *t) { struct kernel_siginfo info; clear_siginfo(&info); info.si_signo = sig; info.si_errno = 0; info.si_code = code; info.si_addr = addr; #ifdef __ARCH_SI_TRAPNO info.si_trapno = trapno; #endif #ifdef __ia64__ info.si_imm = imm; info.si_flags = flags; info.si_isr = isr; #endif return force_sig_info_to_task(&info, t); } int force_sig_fault(int sig, int code, void __user *addr ___ARCH_SI_TRAPNO(int trapno) ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)) { return force_sig_fault_to_task(sig, code, addr ___ARCH_SI_TRAPNO(trapno) ___ARCH_SI_IA64(imm, flags, isr), current); } int send_sig_fault(int sig, int code, void __user *addr ___ARCH_SI_TRAPNO(int trapno) ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) , struct task_struct *t) { struct kernel_siginfo info; clear_siginfo(&info); info.si_signo = sig; info.si_errno = 0; info.si_code = code; info.si_addr = addr; #ifdef __ARCH_SI_TRAPNO info.si_trapno = trapno; #endif #ifdef __ia64__ info.si_imm = imm; info.si_flags = flags; info.si_isr = isr; #endif return send_sig_info(info.si_signo, &info, t); } int force_sig_mceerr(int code, void __user *addr, short lsb) { struct kernel_siginfo info; WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); clear_siginfo(&info); info.si_signo = SIGBUS; info.si_errno = 0; info.si_code = code; info.si_addr = addr; info.si_addr_lsb = lsb; return force_sig_info(&info); } int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t) { struct kernel_siginfo info; WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); clear_siginfo(&info); info.si_signo = SIGBUS; info.si_errno = 0; info.si_code = code; info.si_addr = addr; info.si_addr_lsb = lsb; return send_sig_info(info.si_signo, &info, t); } EXPORT_SYMBOL(send_sig_mceerr); int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper) { struct kernel_siginfo info; clear_siginfo(&info); info.si_signo = SIGSEGV; info.si_errno = 0; info.si_code = SEGV_BNDERR; info.si_addr = addr; info.si_lower = lower; info.si_upper = upper; return force_sig_info(&info); } #ifdef SEGV_PKUERR int force_sig_pkuerr(void __user *addr, u32 pkey) { struct kernel_siginfo info; clear_siginfo(&info); info.si_signo = SIGSEGV; info.si_errno = 0; info.si_code = SEGV_PKUERR; info.si_addr = addr; info.si_pkey = pkey; return force_sig_info(&info); } #endif int force_sig_perf(void __user *addr, u32 type, u64 sig_data) { struct kernel_siginfo info; clear_siginfo(&info); info.si_signo = SIGTRAP; info.si_errno = 0; info.si_code = TRAP_PERF; info.si_addr = addr; info.si_perf_data = sig_data; info.si_perf_type = type; return force_sig_info(&info); } /* For the crazy architectures that include trap information in * the errno field, instead of an actual errno value. */ int force_sig_ptrace_errno_trap(int errno, void __user *addr) { struct kernel_siginfo info; clear_siginfo(&info); info.si_signo = SIGTRAP; info.si_errno = errno; info.si_code = TRAP_HWBKPT; info.si_addr = addr; return force_sig_info(&info); } int kill_pgrp(struct pid *pid, int sig, int priv) { int ret; read_lock(&tasklist_lock); ret = __kill_pgrp_info(sig, __si_special(priv), pid); read_unlock(&tasklist_lock); return ret; } EXPORT_SYMBOL(kill_pgrp); int kill_pid(struct pid *pid, int sig, int priv) { return kill_pid_info(sig, __si_special(priv), pid); } EXPORT_SYMBOL(kill_pid); /* * These functions support sending signals using preallocated sigqueue * structures. This is needed "because realtime applications cannot * afford to lose notifications of asynchronous events, like timer * expirations or I/O completions". In the case of POSIX Timers * we allocate the sigqueue structure from the timer_create. If this * allocation fails we are able to report the failure to the application * with an EAGAIN error. */ struct sigqueue *sigqueue_alloc(void) { return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC); } void sigqueue_free(struct sigqueue *q) { unsigned long flags; spinlock_t *lock = ¤t->sighand->siglock; BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); /* * We must hold ->siglock while testing q->list * to serialize with collect_signal() or with * __exit_signal()->flush_sigqueue(). */ spin_lock_irqsave(lock, flags); q->flags &= ~SIGQUEUE_PREALLOC; /* * If it is queued it will be freed when dequeued, * like the "regular" sigqueue. */ if (!list_empty(&q->list)) q = NULL; spin_unlock_irqrestore(lock, flags); if (q) __sigqueue_free(q); } int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type) { int sig = q->info.si_signo; struct sigpending *pending; struct task_struct *t; unsigned long flags; int ret, result; BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); ret = -1; rcu_read_lock(); t = pid_task(pid, type); if (!t || !likely(lock_task_sighand(t, &flags))) goto ret; ret = 1; /* the signal is ignored */ result = TRACE_SIGNAL_IGNORED; if (!prepare_signal(sig, t, false)) goto out; ret = 0; if (unlikely(!list_empty(&q->list))) { /* * If an SI_TIMER entry is already queue just increment * the overrun count. */ BUG_ON(q->info.si_code != SI_TIMER); q->info.si_overrun++; result = TRACE_SIGNAL_ALREADY_PENDING; goto out; } q->info.si_overrun = 0; signalfd_notify(t, sig); pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; list_add_tail(&q->list, &pending->list); sigaddset(&pending->signal, sig); complete_signal(sig, t, type); result = TRACE_SIGNAL_DELIVERED; out: trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result); unlock_task_sighand(t, &flags); ret: rcu_read_unlock(); return ret; } static void do_notify_pidfd(struct task_struct *task) { struct pid *pid; WARN_ON(task->exit_state == 0); pid = task_pid(task); wake_up_all(&pid->wait_pidfd); } /* * Let a parent know about the death of a child. * For a stopped/continued status change, use do_notify_parent_cldstop instead. * * Returns true if our parent ignored us and so we've switched to * self-reaping. */ bool do_notify_parent(struct task_struct *tsk, int sig) { struct kernel_siginfo info; unsigned long flags; struct sighand_struct *psig; bool autoreap = false; u64 utime, stime; BUG_ON(sig == -1); /* do_notify_parent_cldstop should have been called instead. */ BUG_ON(task_is_stopped_or_traced(tsk)); BUG_ON(!tsk->ptrace && (tsk->group_leader != tsk || !thread_group_empty(tsk))); /* Wake up all pidfd waiters */ do_notify_pidfd(tsk); if (sig != SIGCHLD) { /* * This is only possible if parent == real_parent. * Check if it has changed security domain. */ if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id)) sig = SIGCHLD; } clear_siginfo(&info); info.si_signo = sig; info.si_errno = 0; /* * We are under tasklist_lock here so our parent is tied to * us and cannot change. * * task_active_pid_ns will always return the same pid namespace * until a task passes through release_task. * * write_lock() currently calls preempt_disable() which is the * same as rcu_read_lock(), but according to Oleg, this is not * correct to rely on this */ rcu_read_lock(); info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), task_uid(tsk)); rcu_read_unlock(); task_cputime(tsk, &utime, &stime); info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime); info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime); info.si_status = tsk->exit_code & 0x7f; if (tsk->exit_code & 0x80) info.si_code = CLD_DUMPED; else if (tsk->exit_code & 0x7f) info.si_code = CLD_KILLED; else { info.si_code = CLD_EXITED; info.si_status = tsk->exit_code >> 8; } psig = tsk->parent->sighand; spin_lock_irqsave(&psig->siglock, flags); if (!tsk->ptrace && sig == SIGCHLD && (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { /* * We are exiting and our parent doesn't care. POSIX.1 * defines special semantics for setting SIGCHLD to SIG_IGN * or setting the SA_NOCLDWAIT flag: we should be reaped * automatically and not left for our parent's wait4 call. * Rather than having the parent do it as a magic kind of * signal handler, we just set this to tell do_exit that we * can be cleaned up without becoming a zombie. Note that * we still call __wake_up_parent in this case, because a * blocked sys_wait4 might now return -ECHILD. * * Whether we send SIGCHLD or not for SA_NOCLDWAIT * is implementation-defined: we do (if you don't want * it, just use SIG_IGN instead). */ autoreap = true; if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) sig = 0; } /* * Send with __send_signal as si_pid and si_uid are in the * parent's namespaces. */ if (valid_signal(sig) && sig) __send_signal(sig, &info, tsk->parent, PIDTYPE_TGID, false); __wake_up_parent(tsk, tsk->parent); spin_unlock_irqrestore(&psig->siglock, flags); return autoreap; } /** * do_notify_parent_cldstop - notify parent of stopped/continued state change * @tsk: task reporting the state change * @for_ptracer: the notification is for ptracer * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report * * Notify @tsk's parent that the stopped/continued state has changed. If * @for_ptracer is %false, @tsk's group leader notifies to its real parent. * If %true, @tsk reports to @tsk->parent which should be the ptracer. * * CONTEXT: * Must be called with tasklist_lock at least read locked. */ static void do_notify_parent_cldstop(struct task_struct *tsk, bool for_ptracer, int why) { struct kernel_siginfo info; unsigned long flags; struct task_struct *parent; struct sighand_struct *sighand; u64 utime, stime; if (for_ptracer) { parent = tsk->parent; } else { tsk = tsk->group_leader; parent = tsk->real_parent; } clear_siginfo(&info); info.si_signo = SIGCHLD; info.si_errno = 0; /* * see comment in do_notify_parent() about the following 4 lines */ rcu_read_lock(); info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent)); info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); rcu_read_unlock(); task_cputime(tsk, &utime, &stime); info.si_utime = nsec_to_clock_t(utime); info.si_stime = nsec_to_clock_t(stime); info.si_code = why; switch (why) { case CLD_CONTINUED: info.si_status = SIGCONT; break; case CLD_STOPPED: info.si_status = tsk->signal->group_exit_code & 0x7f; break; case CLD_TRAPPED: info.si_status = tsk->exit_code & 0x7f; break; default: BUG(); } sighand = parent->sighand; spin_lock_irqsave(&sighand->siglock, flags); if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) __group_send_sig_info(SIGCHLD, &info, parent); /* * Even if SIGCHLD is not generated, we must wake up wait4 calls. */ __wake_up_parent(tsk, parent); spin_unlock_irqrestore(&sighand->siglock, flags); } static inline bool may_ptrace_stop(void) { if (!likely(current->ptrace)) return false; /* * Are we in the middle of do_coredump? * If so and our tracer is also part of the coredump stopping * is a deadlock situation, and pointless because our tracer * is dead so don't allow us to stop. * If SIGKILL was already sent before the caller unlocked * ->siglock we must see ->core_state != NULL. Otherwise it * is safe to enter schedule(). * * This is almost outdated, a task with the pending SIGKILL can't * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported * after SIGKILL was already dequeued. */ if (unlikely(current->mm->core_state) && unlikely(current->mm == current->parent->mm)) return false; return true; } /* * Return non-zero if there is a SIGKILL that should be waking us up. * Called with the siglock held. */ static bool sigkill_pending(struct task_struct *tsk) { return sigismember(&tsk->pending.signal, SIGKILL) || sigismember(&tsk->signal->shared_pending.signal, SIGKILL); } /* * This must be called with current->sighand->siglock held. * * This should be the path for all ptrace stops. * We always set current->last_siginfo while stopped here. * That makes it a way to test a stopped process for * being ptrace-stopped vs being job-control-stopped. * * If we actually decide not to stop at all because the tracer * is gone, we keep current->exit_code unless clear_code. */ static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info) __releases(¤t->sighand->siglock) __acquires(¤t->sighand->siglock) { bool gstop_done = false; if (arch_ptrace_stop_needed(exit_code, info)) { /* * The arch code has something special to do before a * ptrace stop. This is allowed to block, e.g. for faults * on user stack pages. We can't keep the siglock while * calling arch_ptrace_stop, so we must release it now. * To preserve proper semantics, we must do this before * any signal bookkeeping like checking group_stop_count. * Meanwhile, a SIGKILL could come in before we retake the * siglock. That must prevent us from sleeping in TASK_TRACED. * So after regaining the lock, we must check for SIGKILL. */ spin_unlock_irq(¤t->sighand->siglock); arch_ptrace_stop(exit_code, info); spin_lock_irq(¤t->sighand->siglock); if (sigkill_pending(current)) return; } set_special_state(TASK_TRACED); /* * We're committing to trapping. TRACED should be visible before * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). * Also, transition to TRACED and updates to ->jobctl should be * atomic with respect to siglock and should be done after the arch * hook as siglock is released and regrabbed across it. * * TRACER TRACEE * * ptrace_attach() * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED) * do_wait() * set_current_state() smp_wmb(); * ptrace_do_wait() * wait_task_stopped() * task_stopped_code() * [L] task_is_traced() [S] task_clear_jobctl_trapping(); */ smp_wmb(); current->last_siginfo = info; current->exit_code = exit_code; /* * If @why is CLD_STOPPED, we're trapping to participate in a group * stop. Do the bookkeeping. Note that if SIGCONT was delievered * across siglock relocks since INTERRUPT was scheduled, PENDING * could be clear now. We act as if SIGCONT is received after * TASK_TRACED is entered - ignore it. */ if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) gstop_done = task_participate_group_stop(current); /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); /* entering a trap, clear TRAPPING */ task_clear_jobctl_trapping(current); spin_unlock_irq(¤t->sighand->siglock); read_lock(&tasklist_lock); if (may_ptrace_stop()) { /* * Notify parents of the stop. * * While ptraced, there are two parents - the ptracer and * the real_parent of the group_leader. The ptracer should * know about every stop while the real parent is only * interested in the completion of group stop. The states * for the two don't interact with each other. Notify * separately unless they're gonna be duplicates. */ do_notify_parent_cldstop(current, true, why); if (gstop_done && ptrace_reparented(current)) do_notify_parent_cldstop(current, false, why); /* * Don't want to allow preemption here, because * sys_ptrace() needs this task to be inactive. * * XXX: implement read_unlock_no_resched(). */ preempt_disable(); read_unlock(&tasklist_lock); cgroup_enter_frozen(); preempt_enable_no_resched(); freezable_schedule(); cgroup_leave_frozen(true); } else { /* * By the time we got the lock, our tracer went away. * Don't drop the lock yet, another tracer may come. * * If @gstop_done, the ptracer went away between group stop * completion and here. During detach, it would have set * JOBCTL_STOP_PENDING on us and we'll re-enter * TASK_STOPPED in do_signal_stop() on return, so notifying * the real parent of the group stop completion is enough. */ if (gstop_done) do_notify_parent_cldstop(current, false, why); /* tasklist protects us from ptrace_freeze_traced() */ __set_current_state(TASK_RUNNING); if (clear_code) current->exit_code = 0; read_unlock(&tasklist_lock); } /* * We are back. Now reacquire the siglock before touching * last_siginfo, so that we are sure to have synchronized with * any signal-sending on another CPU that wants to examine it. */ spin_lock_irq(¤t->sighand->siglock); current->last_siginfo = NULL; /* LISTENING can be set only during STOP traps, clear it */ current->jobctl &= ~JOBCTL_LISTENING; /* * Queued signals ignored us while we were stopped for tracing. * So check for any that we should take before resuming user mode. * This sets TIF_SIGPENDING, but never clears it. */ recalc_sigpending_tsk(current); } static void ptrace_do_notify(int signr, int exit_code, int why) { kernel_siginfo_t info; clear_siginfo(&info); info.si_signo = signr; info.si_code = exit_code; info.si_pid = task_pid_vnr(current); info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); /* Let the debugger run. */ ptrace_stop(exit_code, why, 1, &info); } void ptrace_notify(int exit_code) { BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); if (unlikely(current->task_works)) task_work_run(); spin_lock_irq(¤t->sighand->siglock); ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED); spin_unlock_irq(¤t->sighand->siglock); } /** * do_signal_stop - handle group stop for SIGSTOP and other stop signals * @signr: signr causing group stop if initiating * * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr * and participate in it. If already set, participate in the existing * group stop. If participated in a group stop (and thus slept), %true is * returned with siglock released. * * If ptraced, this function doesn't handle stop itself. Instead, * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock * untouched. The caller must ensure that INTERRUPT trap handling takes * places afterwards. * * CONTEXT: * Must be called with @current->sighand->siglock held, which is released * on %true return. * * RETURNS: * %false if group stop is already cancelled or ptrace trap is scheduled. * %true if participated in group stop. */ static bool do_signal_stop(int signr) __releases(¤t->sighand->siglock) { struct signal_struct *sig = current->signal; if (!(current->jobctl & JOBCTL_STOP_PENDING)) { unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; struct task_struct *t; /* signr will be recorded in task->jobctl for retries */ WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || unlikely(signal_group_exit(sig))) return false; /* * There is no group stop already in progress. We must * initiate one now. * * While ptraced, a task may be resumed while group stop is * still in effect and then receive a stop signal and * initiate another group stop. This deviates from the * usual behavior as two consecutive stop signals can't * cause two group stops when !ptraced. That is why we * also check !task_is_stopped(t) below. * * The condition can be distinguished by testing whether * SIGNAL_STOP_STOPPED is already set. Don't generate * group_exit_code in such case. * * This is not necessary for SIGNAL_STOP_CONTINUED because * an intervening stop signal is required to cause two * continued events regardless of ptrace. */ if (!(sig->flags & SIGNAL_STOP_STOPPED)) sig->group_exit_code = signr; sig->group_stop_count = 0; if (task_set_jobctl_pending(current, signr | gstop)) sig->group_stop_count++; t = current; while_each_thread(current, t) { /* * Setting state to TASK_STOPPED for a group * stop is always done with the siglock held, * so this check has no races. */ if (!task_is_stopped(t) && task_set_jobctl_pending(t, signr | gstop)) { sig->group_stop_count++; if (likely(!(t->ptrace & PT_SEIZED))) signal_wake_up(t, 0); else ptrace_trap_notify(t); } } } if (likely(!current->ptrace)) { int notify = 0; /* * If there are no other threads in the group, or if there * is a group stop in progress and we are the last to stop, * report to the parent. */ if (task_participate_group_stop(current)) notify = CLD_STOPPED; set_special_state(TASK_STOPPED); spin_unlock_irq(¤t->sighand->siglock); /* * Notify the parent of the group stop completion. Because * we're not holding either the siglock or tasklist_lock * here, ptracer may attach inbetween; however, this is for * group stop and should always be delivered to the real * parent of the group leader. The new ptracer will get * its notification when this task transitions into * TASK_TRACED. */ if (notify) { read_lock(&tasklist_lock); do_notify_parent_cldstop(current, false, notify); read_unlock(&tasklist_lock); } /* Now we don't run again until woken by SIGCONT or SIGKILL */ cgroup_enter_frozen(); freezable_schedule(); return true; } else { /* * While ptraced, group stop is handled by STOP trap. * Schedule it and let the caller deal with it. */ task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); return false; } } /** * do_jobctl_trap - take care of ptrace jobctl traps * * When PT_SEIZED, it's used for both group stop and explicit * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with * accompanying siginfo. If stopped, lower eight bits of exit_code contain * the stop signal; otherwise, %SIGTRAP. * * When !PT_SEIZED, it's used only for group stop trap with stop signal * number as exit_code and no siginfo. * * CONTEXT: * Must be called with @current->sighand->siglock held, which may be * released and re-acquired before returning with intervening sleep. */ static void do_jobctl_trap(void) { struct signal_struct *signal = current->signal; int signr = current->jobctl & JOBCTL_STOP_SIGMASK; if (current->ptrace & PT_SEIZED) { if (!signal->group_stop_count && !(signal->flags & SIGNAL_STOP_STOPPED)) signr = SIGTRAP; WARN_ON_ONCE(!signr); ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), CLD_STOPPED); } else { WARN_ON_ONCE(!signr); ptrace_stop(signr, CLD_STOPPED, 0, NULL); current->exit_code = 0; } } /** * do_freezer_trap - handle the freezer jobctl trap * * Puts the task into frozen state, if only the task is not about to quit. * In this case it drops JOBCTL_TRAP_FREEZE. * * CONTEXT: * Must be called with @current->sighand->siglock held, * which is always released before returning. */ static void do_freezer_trap(void) __releases(¤t->sighand->siglock) { /* * If there are other trap bits pending except JOBCTL_TRAP_FREEZE, * let's make another loop to give it a chance to be handled. * In any case, we'll return back. */ if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) != JOBCTL_TRAP_FREEZE) { spin_unlock_irq(¤t->sighand->siglock); return; } /* * Now we're sure that there is no pending fatal signal and no * pending traps. Clear TIF_SIGPENDING to not get out of schedule() * immediately (if there is a non-fatal signal pending), and * put the task into sleep. */ __set_current_state(TASK_INTERRUPTIBLE); clear_thread_flag(TIF_SIGPENDING); spin_unlock_irq(¤t->sighand->siglock); cgroup_enter_frozen(); freezable_schedule(); } static int ptrace_signal(int signr, kernel_siginfo_t *info) { /* * We do not check sig_kernel_stop(signr) but set this marker * unconditionally because we do not know whether debugger will * change signr. This flag has no meaning unless we are going * to stop after return from ptrace_stop(). In this case it will * be checked in do_signal_stop(), we should only stop if it was * not cleared by SIGCONT while we were sleeping. See also the * comment in dequeue_signal(). */ current->jobctl |= JOBCTL_STOP_DEQUEUED; ptrace_stop(signr, CLD_TRAPPED, 0, info); /* We're back. Did the debugger cancel the sig? */ signr = current->exit_code; if (signr == 0) return signr; current->exit_code = 0; /* * Update the siginfo structure if the signal has * changed. If the debugger wanted something * specific in the siginfo structure then it should * have updated *info via PTRACE_SETSIGINFO. */ if (signr != info->si_signo) { clear_siginfo(info); info->si_signo = signr; info->si_errno = 0; info->si_code = SI_USER; rcu_read_lock(); info->si_pid = task_pid_vnr(current->parent); info->si_uid = from_kuid_munged(current_user_ns(), task_uid(current->parent)); rcu_read_unlock(); } /* If the (new) signal is now blocked, requeue it. */ if (sigismember(¤t->blocked, signr)) { send_signal(signr, info, current, PIDTYPE_PID); signr = 0; } return signr; } static void hide_si_addr_tag_bits(struct ksignal *ksig) { switch (siginfo_layout(ksig->sig, ksig->info.si_code)) { case SIL_FAULT: case SIL_FAULT_TRAPNO: case SIL_FAULT_MCEERR: case SIL_FAULT_BNDERR: case SIL_FAULT_PKUERR: case SIL_PERF_EVENT: ksig->info.si_addr = arch_untagged_si_addr( ksig->info.si_addr, ksig->sig, ksig->info.si_code); break; case SIL_KILL: case SIL_TIMER: case SIL_POLL: case SIL_CHLD: case SIL_RT: case SIL_SYS: break; } } bool get_signal(struct ksignal *ksig) { struct sighand_struct *sighand = current->sighand; struct signal_struct *signal = current->signal; int signr; if (unlikely(current->task_works)) task_work_run(); /* * For non-generic architectures, check for TIF_NOTIFY_SIGNAL so * that the arch handlers don't all have to do it. If we get here * without TIF_SIGPENDING, just exit after running signal work. */ if (!IS_ENABLED(CONFIG_GENERIC_ENTRY)) { if (test_thread_flag(TIF_NOTIFY_SIGNAL)) tracehook_notify_signal(); if (!task_sigpending(current)) return false; } if (unlikely(uprobe_deny_signal())) return false; /* * Do this once, we can't return to user-mode if freezing() == T. * do_signal_stop() and ptrace_stop() do freezable_schedule() and * thus do not need another check after return. */ try_to_freeze(); relock: spin_lock_irq(&sighand->siglock); /* * Every stopped thread goes here after wakeup. Check to see if * we should notify the parent, prepare_signal(SIGCONT) encodes * the CLD_ si_code into SIGNAL_CLD_MASK bits. */ if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { int why; if (signal->flags & SIGNAL_CLD_CONTINUED) why = CLD_CONTINUED; else why = CLD_STOPPED; signal->flags &= ~SIGNAL_CLD_MASK; spin_unlock_irq(&sighand->siglock); /* * Notify the parent that we're continuing. This event is * always per-process and doesn't make whole lot of sense * for ptracers, who shouldn't consume the state via * wait(2) either, but, for backward compatibility, notify * the ptracer of the group leader too unless it's gonna be * a duplicate. */ read_lock(&tasklist_lock); do_notify_parent_cldstop(current, false, why); if (ptrace_reparented(current->group_leader)) do_notify_parent_cldstop(current->group_leader, true, why); read_unlock(&tasklist_lock); goto relock; } /* Has this task already been marked for death? */ if (signal_group_exit(signal)) { ksig->info.si_signo = signr = SIGKILL; sigdelset(¤t->pending.signal, SIGKILL); trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO, &sighand->action[SIGKILL - 1]); recalc_sigpending(); goto fatal; } for (;;) { struct k_sigaction *ka; if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && do_signal_stop(0)) goto relock; if (unlikely(current->jobctl & (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) { if (current->jobctl & JOBCTL_TRAP_MASK) { do_jobctl_trap(); spin_unlock_irq(&sighand->siglock); } else if (current->jobctl & JOBCTL_TRAP_FREEZE) do_freezer_trap(); goto relock; } /* * If the task is leaving the frozen state, let's update * cgroup counters and reset the frozen bit. */ if (unlikely(cgroup_task_frozen(current))) { spin_unlock_irq(&sighand->siglock); cgroup_leave_frozen(false); goto relock; } /* * Signals generated by the execution of an instruction * need to be delivered before any other pending signals * so that the instruction pointer in the signal stack * frame points to the faulting instruction. */ signr = dequeue_synchronous_signal(&ksig->info); if (!signr) signr = dequeue_signal(current, ¤t->blocked, &ksig->info); if (!signr) break; /* will return 0 */ if (unlikely(current->ptrace) && signr != SIGKILL) { signr = ptrace_signal(signr, &ksig->info); if (!signr) continue; } ka = &sighand->action[signr-1]; /* Trace actually delivered signals. */ trace_signal_deliver(signr, &ksig->info, ka); if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ continue; if (ka->sa.sa_handler != SIG_DFL) { /* Run the handler. */ ksig->ka = *ka; if (ka->sa.sa_flags & SA_ONESHOT) ka->sa.sa_handler = SIG_DFL; break; /* will return non-zero "signr" value */ } /* * Now we are doing the default action for this signal. */ if (sig_kernel_ignore(signr)) /* Default is nothing. */ continue; /* * Global init gets no signals it doesn't want. * Container-init gets no signals it doesn't want from same * container. * * Note that if global/container-init sees a sig_kernel_only() * signal here, the signal must have been generated internally * or must have come from an ancestor namespace. In either * case, the signal cannot be dropped. */ if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && !sig_kernel_only(signr)) continue; if (sig_kernel_stop(signr)) { /* * The default action is to stop all threads in * the thread group. The job control signals * do nothing in an orphaned pgrp, but SIGSTOP * always works. Note that siglock needs to be * dropped during the call to is_orphaned_pgrp() * because of lock ordering with tasklist_lock. * This allows an intervening SIGCONT to be posted. * We need to check for that and bail out if necessary. */ if (signr != SIGSTOP) { spin_unlock_irq(&sighand->siglock); /* signals can be posted during this window */ if (is_current_pgrp_orphaned()) goto relock; spin_lock_irq(&sighand->siglock); } if (likely(do_signal_stop(ksig->info.si_signo))) { /* It released the siglock. */ goto relock; } /* * We didn't actually stop, due to a race * with SIGCONT or something like that. */ continue; } fatal: spin_unlock_irq(&sighand->siglock); if (unlikely(cgroup_task_frozen(current))) cgroup_leave_frozen(true); /* * Anything else is fatal, maybe with a core dump. */ current->flags |= PF_SIGNALED; if (sig_kernel_coredump(signr)) { if (print_fatal_signals) print_fatal_signal(ksig->info.si_signo); proc_coredump_connector(current); /* * If it was able to dump core, this kills all * other threads in the group and synchronizes with * their demise. If we lost the race with another * thread getting here, it set group_exit_code * first and our do_group_exit call below will use * that value and ignore the one we pass it. */ do_coredump(&ksig->info); } /* * PF_IO_WORKER threads will catch and exit on fatal signals * themselves. They have cleanup that must be performed, so * we cannot call do_exit() on their behalf. */ if (current->flags & PF_IO_WORKER) goto out; /* * Death signals, no core dump. */ do_group_exit(ksig->info.si_signo); /* NOTREACHED */ } spin_unlock_irq(&sighand->siglock); out: ksig->sig = signr; if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS)) hide_si_addr_tag_bits(ksig); return ksig->sig > 0; } /** * signal_delivered - * @ksig: kernel signal struct * @stepping: nonzero if debugger single-step or block-step in use * * This function should be called when a signal has successfully been * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask * is always blocked, and the signal itself is blocked unless %SA_NODEFER * is set in @ksig->ka.sa.sa_flags. Tracing is notified. */ static void signal_delivered(struct ksignal *ksig, int stepping) { sigset_t blocked; /* A signal was successfully delivered, and the saved sigmask was stored on the signal frame, and will be restored by sigreturn. So we can simply clear the restore sigmask flag. */ clear_restore_sigmask(); sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask); if (!(ksig->ka.sa.sa_flags & SA_NODEFER)) sigaddset(&blocked, ksig->sig); set_current_blocked(&blocked); tracehook_signal_handler(stepping); } void signal_setup_done(int failed, struct ksignal *ksig, int stepping) { if (failed) force_sigsegv(ksig->sig); else signal_delivered(ksig, stepping); } /* * It could be that complete_signal() picked us to notify about the * group-wide signal. Other threads should be notified now to take * the shared signals in @which since we will not. */ static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) { sigset_t retarget; struct task_struct *t; sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); if (sigisemptyset(&retarget)) return; t = tsk; while_each_thread(tsk, t) { if (t->flags & PF_EXITING) continue; if (!has_pending_signals(&retarget, &t->blocked)) continue; /* Remove the signals this thread can handle. */ sigandsets(&retarget, &retarget, &t->blocked); if (!task_sigpending(t)) signal_wake_up(t, 0); if (sigisemptyset(&retarget)) break; } } void exit_signals(struct task_struct *tsk) { int group_stop = 0; sigset_t unblocked; /* * @tsk is about to have PF_EXITING set - lock out users which * expect stable threadgroup. */ cgroup_threadgroup_change_begin(tsk); if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) { tsk->flags |= PF_EXITING; cgroup_threadgroup_change_end(tsk); return; } spin_lock_irq(&tsk->sighand->siglock); /* * From now this task is not visible for group-wide signals, * see wants_signal(), do_signal_stop(). */ tsk->flags |= PF_EXITING; cgroup_threadgroup_change_end(tsk); if (!task_sigpending(tsk)) goto out; unblocked = tsk->blocked; signotset(&unblocked); retarget_shared_pending(tsk, &unblocked); if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && task_participate_group_stop(tsk)) group_stop = CLD_STOPPED; out: spin_unlock_irq(&tsk->sighand->siglock); /* * If group stop has completed, deliver the notification. This * should always go to the real parent of the group leader. */ if (unlikely(group_stop)) { read_lock(&tasklist_lock); do_notify_parent_cldstop(tsk, false, group_stop); read_unlock(&tasklist_lock); } } /* * System call entry points. */ /** * sys_restart_syscall - restart a system call */ SYSCALL_DEFINE0(restart_syscall) { struct restart_block *restart = ¤t->restart_block; return restart->fn(restart); } long do_no_restart_syscall(struct restart_block *param) { return -EINTR; } static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) { if (task_sigpending(tsk) && !thread_group_empty(tsk)) { sigset_t newblocked; /* A set of now blocked but previously unblocked signals. */ sigandnsets(&newblocked, newset, ¤t->blocked); retarget_shared_pending(tsk, &newblocked); } tsk->blocked = *newset; recalc_sigpending(); } /** * set_current_blocked - change current->blocked mask * @newset: new mask * * It is wrong to change ->blocked directly, this helper should be used * to ensure the process can't miss a shared signal we are going to block. */ void set_current_blocked(sigset_t *newset) { sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); __set_current_blocked(newset); } void __set_current_blocked(const sigset_t *newset) { struct task_struct *tsk = current; /* * In case the signal mask hasn't changed, there is nothing we need * to do. The current->blocked shouldn't be modified by other task. */ if (sigequalsets(&tsk->blocked, newset)) return; spin_lock_irq(&tsk->sighand->siglock); __set_task_blocked(tsk, newset); spin_unlock_irq(&tsk->sighand->siglock); } /* * This is also useful for kernel threads that want to temporarily * (or permanently) block certain signals. * * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel * interface happily blocks "unblockable" signals like SIGKILL * and friends. */ int sigprocmask(int how, sigset_t *set, sigset_t *oldset) { struct task_struct *tsk = current; sigset_t newset; /* Lockless, only current can change ->blocked, never from irq */ if (oldset) *oldset = tsk->blocked; switch (how) { case SIG_BLOCK: sigorsets(&newset, &tsk->blocked, set); break; case SIG_UNBLOCK: sigandnsets(&newset, &tsk->blocked, set); break; case SIG_SETMASK: newset = *set; break; default: return -EINVAL; } __set_current_blocked(&newset); return 0; } EXPORT_SYMBOL(sigprocmask); /* * The api helps set app-provided sigmasks. * * This is useful for syscalls such as ppoll, pselect, io_pgetevents and * epoll_pwait where a new sigmask is passed from userland for the syscalls. * * Note that it does set_restore_sigmask() in advance, so it must be always * paired with restore_saved_sigmask_unless() before return from syscall. */ int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize) { sigset_t kmask; if (!umask) return 0; if (sigsetsize != sizeof(sigset_t)) return -EINVAL; if (copy_from_user(&kmask, umask, sizeof(sigset_t))) return -EFAULT; set_restore_sigmask(); current->saved_sigmask = current->blocked; set_current_blocked(&kmask); return 0; } #ifdef CONFIG_COMPAT int set_compat_user_sigmask(const compat_sigset_t __user *umask, size_t sigsetsize) { sigset_t kmask; if (!umask) return 0; if (sigsetsize != sizeof(compat_sigset_t)) return -EINVAL; if (get_compat_sigset(&kmask, umask)) return -EFAULT; set_restore_sigmask(); current->saved_sigmask = current->blocked; set_current_blocked(&kmask); return 0; } #endif /** * sys_rt_sigprocmask - change the list of currently blocked signals * @how: whether to add, remove, or set signals * @nset: stores pending signals * @oset: previous value of signal mask if non-null * @sigsetsize: size of sigset_t type */ SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, sigset_t __user *, oset, size_t, sigsetsize) { sigset_t old_set, new_set; int error; /* XXX: Don't preclude handling different sized sigset_t's. */ if (sigsetsize != sizeof(sigset_t)) return -EINVAL; old_set = current->blocked; if (nset) { if (copy_from_user(&new_set, nset, sizeof(sigset_t))) return -EFAULT; sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); error = sigprocmask(how, &new_set, NULL); if (error) return error; } if (oset) { if (copy_to_user(oset, &old_set, sizeof(sigset_t))) return -EFAULT; } return 0; } #ifdef CONFIG_COMPAT COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset, compat_sigset_t __user *, oset, compat_size_t, sigsetsize) { sigset_t old_set = current->blocked; /* XXX: Don't preclude handling different sized sigset_t's. */ if (sigsetsize != sizeof(sigset_t)) return -EINVAL; if (nset) { sigset_t new_set; int error; if (get_compat_sigset(&new_set, nset)) return -EFAULT; sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); error = sigprocmask(how, &new_set, NULL); if (error) return error; } return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0; } #endif static void do_sigpending(sigset_t *set) { spin_lock_irq(¤t->sighand->siglock); sigorsets(set, ¤t->pending.signal, ¤t->signal->shared_pending.signal); spin_unlock_irq(¤t->sighand->siglock); /* Outside the lock because only this thread touches it. */ sigandsets(set, ¤t->blocked, set); } /** * sys_rt_sigpending - examine a pending signal that has been raised * while blocked * @uset: stores pending signals * @sigsetsize: size of sigset_t type or larger */ SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize) { sigset_t set; if (sigsetsize > sizeof(*uset)) return -EINVAL; do_sigpending(&set); if (copy_to_user(uset, &set, sigsetsize)) return -EFAULT; return 0; } #ifdef CONFIG_COMPAT COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset, compat_size_t, sigsetsize) { sigset_t set; if (sigsetsize > sizeof(*uset)) return -EINVAL; do_sigpending(&set); return put_compat_sigset(uset, &set, sigsetsize); } #endif static const struct { unsigned char limit, layout; } sig_sicodes[] = { [SIGILL] = { NSIGILL, SIL_FAULT }, [SIGFPE] = { NSIGFPE, SIL_FAULT }, [SIGSEGV] = { NSIGSEGV, SIL_FAULT }, [SIGBUS] = { NSIGBUS, SIL_FAULT }, [SIGTRAP] = { NSIGTRAP, SIL_FAULT }, #if defined(SIGEMT) [SIGEMT] = { NSIGEMT, SIL_FAULT }, #endif [SIGCHLD] = { NSIGCHLD, SIL_CHLD }, [SIGPOLL] = { NSIGPOLL, SIL_POLL }, [SIGSYS] = { NSIGSYS, SIL_SYS }, }; static bool known_siginfo_layout(unsigned sig, int si_code) { if (si_code == SI_KERNEL) return true; else if ((si_code > SI_USER)) { if (sig_specific_sicodes(sig)) { if (si_code <= sig_sicodes[sig].limit) return true; } else if (si_code <= NSIGPOLL) return true; } else if (si_code >= SI_DETHREAD) return true; else if (si_code == SI_ASYNCNL) return true; return false; } enum siginfo_layout siginfo_layout(unsigned sig, int si_code) { enum siginfo_layout layout = SIL_KILL; if ((si_code > SI_USER) && (si_code < SI_KERNEL)) { if ((sig < ARRAY_SIZE(sig_sicodes)) && (si_code <= sig_sicodes[sig].limit)) { layout = sig_sicodes[sig].layout; /* Handle the exceptions */ if ((sig == SIGBUS) && (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO)) layout = SIL_FAULT_MCEERR; else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR)) layout = SIL_FAULT_BNDERR; #ifdef SEGV_PKUERR else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR)) layout = SIL_FAULT_PKUERR; #endif else if ((sig == SIGTRAP) && (si_code == TRAP_PERF)) layout = SIL_PERF_EVENT; #ifdef __ARCH_SI_TRAPNO else if (layout == SIL_FAULT) layout = SIL_FAULT_TRAPNO; #endif } else if (si_code <= NSIGPOLL) layout = SIL_POLL; } else { if (si_code == SI_TIMER) layout = SIL_TIMER; else if (si_code == SI_SIGIO) layout = SIL_POLL; else if (si_code < 0) layout = SIL_RT; } return layout; } static inline char __user *si_expansion(const siginfo_t __user *info) { return ((char __user *)info) + sizeof(struct kernel_siginfo); } int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from) { char __user *expansion = si_expansion(to); if (copy_to_user(to, from , sizeof(struct kernel_siginfo))) return -EFAULT; if (clear_user(expansion, SI_EXPANSION_SIZE)) return -EFAULT; return 0; } static int post_copy_siginfo_from_user(kernel_siginfo_t *info, const siginfo_t __user *from) { if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) { char __user *expansion = si_expansion(from); char buf[SI_EXPANSION_SIZE]; int i; /* * An unknown si_code might need more than * sizeof(struct kernel_siginfo) bytes. Verify all of the * extra bytes are 0. This guarantees copy_siginfo_to_user * will return this data to userspace exactly. */ if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE)) return -EFAULT; for (i = 0; i < SI_EXPANSION_SIZE; i++) { if (buf[i] != 0) return -E2BIG; } } return 0; } static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to, const siginfo_t __user *from) { if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) return -EFAULT; to->si_signo = signo; return post_copy_siginfo_from_user(to, from); } int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from) { if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) return -EFAULT; return post_copy_siginfo_from_user(to, from); } #ifdef CONFIG_COMPAT /** * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo * @to: compat siginfo destination * @from: kernel siginfo source * * Note: This function does not work properly for the SIGCHLD on x32, but * fortunately it doesn't have to. The only valid callers for this function are * copy_siginfo_to_user32, which is overriden for x32 and the coredump code. * The latter does not care because SIGCHLD will never cause a coredump. */ void copy_siginfo_to_external32(struct compat_siginfo *to, const struct kernel_siginfo *from) { memset(to, 0, sizeof(*to)); to->si_signo = from->si_signo; to->si_errno = from->si_errno; to->si_code = from->si_code; switch(siginfo_layout(from->si_signo, from->si_code)) { case SIL_KILL: to->si_pid = from->si_pid; to->si_uid = from->si_uid; break; case SIL_TIMER: to->si_tid = from->si_tid; to->si_overrun = from->si_overrun; to->si_int = from->si_int; break; case SIL_POLL: to->si_band = from->si_band; to->si_fd = from->si_fd; break; case SIL_FAULT: to->si_addr = ptr_to_compat(from->si_addr); break; case SIL_FAULT_TRAPNO: to->si_addr = ptr_to_compat(from->si_addr); to->si_trapno = from->si_trapno; break; case SIL_FAULT_MCEERR: to->si_addr = ptr_to_compat(from->si_addr); to->si_addr_lsb = from->si_addr_lsb; break; case SIL_FAULT_BNDERR: to->si_addr = ptr_to_compat(from->si_addr); to->si_lower = ptr_to_compat(from->si_lower); to->si_upper = ptr_to_compat(from->si_upper); break; case SIL_FAULT_PKUERR: to->si_addr = ptr_to_compat(from->si_addr); to->si_pkey = from->si_pkey; break; case SIL_PERF_EVENT: to->si_addr = ptr_to_compat(from->si_addr); to->si_perf_data = from->si_perf_data; to->si_perf_type = from->si_perf_type; break; case SIL_CHLD: to->si_pid = from->si_pid; to->si_uid = from->si_uid; to->si_status = from->si_status; to->si_utime = from->si_utime; to->si_stime = from->si_stime; break; case SIL_RT: to->si_pid = from->si_pid; to->si_uid = from->si_uid; to->si_int = from->si_int; break; case SIL_SYS: to->si_call_addr = ptr_to_compat(from->si_call_addr); to->si_syscall = from->si_syscall; to->si_arch = from->si_arch; break; } } int __copy_siginfo_to_user32(struct compat_siginfo __user *to, const struct kernel_siginfo *from) { struct compat_siginfo new; copy_siginfo_to_external32(&new, from); if (copy_to_user(to, &new, sizeof(struct compat_siginfo))) return -EFAULT; return 0; } static int post_copy_siginfo_from_user32(kernel_siginfo_t *to, const struct compat_siginfo *from) { clear_siginfo(to); to->si_signo = from->si_signo; to->si_errno = from->si_errno; to->si_code = from->si_code; switch(siginfo_layout(from->si_signo, from->si_code)) { case SIL_KILL: to->si_pid = from->si_pid; to->si_uid = from->si_uid; break; case SIL_TIMER: to->si_tid = from->si_tid; to->si_overrun = from->si_overrun; to->si_int = from->si_int; break; case SIL_POLL: to->si_band = from->si_band; to->si_fd = from->si_fd; break; case SIL_FAULT: to->si_addr = compat_ptr(from->si_addr); break; case SIL_FAULT_TRAPNO: to->si_addr = compat_ptr(from->si_addr); to->si_trapno = from->si_trapno; break; case SIL_FAULT_MCEERR: to->si_addr = compat_ptr(from->si_addr); to->si_addr_lsb = from->si_addr_lsb; break; case SIL_FAULT_BNDERR: to->si_addr = compat_ptr(from->si_addr); to->si_lower = compat_ptr(from->si_lower); to->si_upper = compat_ptr(from->si_upper); break; case SIL_FAULT_PKUERR: to->si_addr = compat_ptr(from->si_addr); to->si_pkey = from->si_pkey; break; case SIL_PERF_EVENT: to->si_addr = compat_ptr(from->si_addr); to->si_perf_data = from->si_perf_data; to->si_perf_type = from->si_perf_type; break; case SIL_CHLD: to->si_pid = from->si_pid; to->si_uid = from->si_uid; to->si_status = from->si_status; #ifdef CONFIG_X86_X32_ABI if (in_x32_syscall()) { to->si_utime = from->_sifields._sigchld_x32._utime; to->si_stime = from->_sifields._sigchld_x32._stime; } else #endif { to->si_utime = from->si_utime; to->si_stime = from->si_stime; } break; case SIL_RT: to->si_pid = from->si_pid; to->si_uid = from->si_uid; to->si_int = from->si_int; break; case SIL_SYS: to->si_call_addr = compat_ptr(from->si_call_addr); to->si_syscall = from->si_syscall; to->si_arch = from->si_arch; break; } return 0; } static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to, const struct compat_siginfo __user *ufrom) { struct compat_siginfo from; if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) return -EFAULT; from.si_signo = signo; return post_copy_siginfo_from_user32(to, &from); } int copy_siginfo_from_user32(struct kernel_siginfo *to, const struct compat_siginfo __user *ufrom) { struct compat_siginfo from; if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) return -EFAULT; return post_copy_siginfo_from_user32(to, &from); } #endif /* CONFIG_COMPAT */ /** * do_sigtimedwait - wait for queued signals specified in @which * @which: queued signals to wait for * @info: if non-null, the signal's siginfo is returned here * @ts: upper bound on process time suspension */ static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info, const struct timespec64 *ts) { ktime_t *to = NULL, timeout = KTIME_MAX; struct task_struct *tsk = current; sigset_t mask = *which; int sig, ret = 0; if (ts) { if (!timespec64_valid(ts)) return -EINVAL; timeout = timespec64_to_ktime(*ts); to = &timeout; } /* * Invert the set of allowed signals to get those we want to block. */ sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); signotset(&mask); spin_lock_irq(&tsk->sighand->siglock); sig = dequeue_signal(tsk, &mask, info); if (!sig && timeout) { /* * None ready, temporarily unblock those we're interested * while we are sleeping in so that we'll be awakened when * they arrive. Unblocking is always fine, we can avoid * set_current_blocked(). */ tsk->real_blocked = tsk->blocked; sigandsets(&tsk->blocked, &tsk->blocked, &mask); recalc_sigpending(); spin_unlock_irq(&tsk->sighand->siglock); __set_current_state(TASK_INTERRUPTIBLE); ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns, HRTIMER_MODE_REL); spin_lock_irq(&tsk->sighand->siglock); __set_task_blocked(tsk, &tsk->real_blocked); sigemptyset(&tsk->real_blocked); sig = dequeue_signal(tsk, &mask, info); } spin_unlock_irq(&tsk->sighand->siglock); if (sig) return sig; return ret ? -EINTR : -EAGAIN; } /** * sys_rt_sigtimedwait - synchronously wait for queued signals specified * in @uthese * @uthese: queued signals to wait for * @uinfo: if non-null, the signal's siginfo is returned here * @uts: upper bound on process time suspension * @sigsetsize: size of sigset_t type */ SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, siginfo_t __user *, uinfo, const struct __kernel_timespec __user *, uts, size_t, sigsetsize) { sigset_t these; struct timespec64 ts; kernel_siginfo_t info; int ret; /* XXX: Don't preclude handling different sized sigset_t's. */ if (sigsetsize != sizeof(sigset_t)) return -EINVAL; if (copy_from_user(&these, uthese, sizeof(these))) return -EFAULT; if (uts) { if (get_timespec64(&ts, uts)) return -EFAULT; } ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); if (ret > 0 && uinfo) { if (copy_siginfo_to_user(uinfo, &info)) ret = -EFAULT; } return ret; } #ifdef CONFIG_COMPAT_32BIT_TIME SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese, siginfo_t __user *, uinfo, const struct old_timespec32 __user *, uts, size_t, sigsetsize) { sigset_t these; struct timespec64 ts; kernel_siginfo_t info; int ret; if (sigsetsize != sizeof(sigset_t)) return -EINVAL; if (copy_from_user(&these, uthese, sizeof(these))) return -EFAULT; if (uts) { if (get_old_timespec32(&ts, uts)) return -EFAULT; } ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); if (ret > 0 && uinfo) { if (copy_siginfo_to_user(uinfo, &info)) ret = -EFAULT; } return ret; } #endif #ifdef CONFIG_COMPAT COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese, struct compat_siginfo __user *, uinfo, struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize) { sigset_t s; struct timespec64 t; kernel_siginfo_t info; long ret; if (sigsetsize != sizeof(sigset_t)) return -EINVAL; if (get_compat_sigset(&s, uthese)) return -EFAULT; if (uts) { if (get_timespec64(&t, uts)) return -EFAULT; } ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); if (ret > 0 && uinfo) { if (copy_siginfo_to_user32(uinfo, &info)) ret = -EFAULT; } return ret; } #ifdef CONFIG_COMPAT_32BIT_TIME COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese, struct compat_siginfo __user *, uinfo, struct old_timespec32 __user *, uts, compat_size_t, sigsetsize) { sigset_t s; struct timespec64 t; kernel_siginfo_t info; long ret; if (sigsetsize != sizeof(sigset_t)) return -EINVAL; if (get_compat_sigset(&s, uthese)) return -EFAULT; if (uts) { if (get_old_timespec32(&t, uts)) return -EFAULT; } ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); if (ret > 0 && uinfo) { if (copy_siginfo_to_user32(uinfo, &info)) ret = -EFAULT; } return ret; } #endif #endif static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info) { clear_siginfo(info); info->si_signo = sig; info->si_errno = 0; info->si_code = SI_USER; info->si_pid = task_tgid_vnr(current); info->si_uid = from_kuid_munged(current_user_ns(), current_uid()); } /** * sys_kill - send a signal to a process * @pid: the PID of the process * @sig: signal to be sent */ SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) { struct kernel_siginfo info; prepare_kill_siginfo(sig, &info); return kill_something_info(sig, &info, pid); } /* * Verify that the signaler and signalee either are in the same pid namespace * or that the signaler's pid namespace is an ancestor of the signalee's pid * namespace. */ static bool access_pidfd_pidns(struct pid *pid) { struct pid_namespace *active = task_active_pid_ns(current); struct pid_namespace *p = ns_of_pid(pid); for (;;) { if (!p) return false; if (p == active) break; p = p->parent; } return true; } static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, siginfo_t __user *info) { #ifdef CONFIG_COMPAT /* * Avoid hooking up compat syscalls and instead handle necessary * conversions here. Note, this is a stop-gap measure and should not be * considered a generic solution. */ if (in_compat_syscall()) return copy_siginfo_from_user32( kinfo, (struct compat_siginfo __user *)info); #endif return copy_siginfo_from_user(kinfo, info); } static struct pid *pidfd_to_pid(const struct file *file) { struct pid *pid; pid = pidfd_pid(file); if (!IS_ERR(pid)) return pid; return tgid_pidfd_to_pid(file); } /** * sys_pidfd_send_signal - Signal a process through a pidfd * @pidfd: file descriptor of the process * @sig: signal to send * @info: signal info * @flags: future flags * * The syscall currently only signals via PIDTYPE_PID which covers * kill(, . It does not signal threads or process * groups. * In order to extend the syscall to threads and process groups the @flags * argument should be used. In essence, the @flags argument will determine * what is signaled and not the file descriptor itself. Put in other words, * grouping is a property of the flags argument not a property of the file * descriptor. * * Return: 0 on success, negative errno on failure */ SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig, siginfo_t __user *, info, unsigned int, flags) { int ret; struct fd f; struct pid *pid; kernel_siginfo_t kinfo; /* Enforce flags be set to 0 until we add an extension. */ if (flags) return -EINVAL; f = fdget(pidfd); if (!f.file) return -EBADF; /* Is this a pidfd? */ pid = pidfd_to_pid(f.file); if (IS_ERR(pid)) { ret = PTR_ERR(pid); goto err; } ret = -EINVAL; if (!access_pidfd_pidns(pid)) goto err; if (info) { ret = copy_siginfo_from_user_any(&kinfo, info); if (unlikely(ret)) goto err; ret = -EINVAL; if (unlikely(sig != kinfo.si_signo)) goto err; /* Only allow sending arbitrary signals to yourself. */ ret = -EPERM; if ((task_pid(current) != pid) && (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL)) goto err; } else { prepare_kill_siginfo(sig, &kinfo); } ret = kill_pid_info(sig, &kinfo, pid); err: fdput(f); return ret; } static int do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info) { struct task_struct *p; int error = -ESRCH; rcu_read_lock(); p = find_task_by_vpid(pid); if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { error = check_kill_permission(sig, info, p); /* * The null signal is a permissions and process existence * probe. No signal is actually delivered. */ if (!error && sig) { error = do_send_sig_info(sig, info, p, PIDTYPE_PID); /* * If lock_task_sighand() failed we pretend the task * dies after receiving the signal. The window is tiny, * and the signal is private anyway. */ if (unlikely(error == -ESRCH)) error = 0; } } rcu_read_unlock(); return error; } static int do_tkill(pid_t tgid, pid_t pid, int sig) { struct kernel_siginfo info; clear_siginfo(&info); info.si_signo = sig; info.si_errno = 0; info.si_code = SI_TKILL; info.si_pid = task_tgid_vnr(current); info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); return do_send_specific(tgid, pid, sig, &info); } /** * sys_tgkill - send signal to one specific thread * @tgid: the thread group ID of the thread * @pid: the PID of the thread * @sig: signal to be sent * * This syscall also checks the @tgid and returns -ESRCH even if the PID * exists but it's not belonging to the target process anymore. This * method solves the problem of threads exiting and PIDs getting reused. */ SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) { /* This is only valid for single tasks */ if (pid <= 0 || tgid <= 0) return -EINVAL; return do_tkill(tgid, pid, sig); } /** * sys_tkill - send signal to one specific task * @pid: the PID of the task * @sig: signal to be sent * * Send a signal to only one task, even if it's a CLONE_THREAD task. */ SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) { /* This is only valid for single tasks */ if (pid <= 0) return -EINVAL; return do_tkill(0, pid, sig); } static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info) { /* Not even root can pretend to send signals from the kernel. * Nor can they impersonate a kill()/tgkill(), which adds source info. */ if ((info->si_code >= 0 || info->si_code == SI_TKILL) && (task_pid_vnr(current) != pid)) return -EPERM; /* POSIX.1b doesn't mention process groups. */ return kill_proc_info(sig, info, pid); } /** * sys_rt_sigqueueinfo - send signal information to a signal * @pid: the PID of the thread * @sig: signal to be sent * @uinfo: signal info to be sent */ SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, siginfo_t __user *, uinfo) { kernel_siginfo_t info; int ret = __copy_siginfo_from_user(sig, &info, uinfo); if (unlikely(ret)) return ret; return do_rt_sigqueueinfo(pid, sig, &info); } #ifdef CONFIG_COMPAT COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo, compat_pid_t, pid, int, sig, struct compat_siginfo __user *, uinfo) { kernel_siginfo_t info; int ret = __copy_siginfo_from_user32(sig, &info, uinfo); if (unlikely(ret)) return ret; return do_rt_sigqueueinfo(pid, sig, &info); } #endif static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info) { /* This is only valid for single tasks */ if (pid <= 0 || tgid <= 0) return -EINVAL; /* Not even root can pretend to send signals from the kernel. * Nor can they impersonate a kill()/tgkill(), which adds source info. */ if ((info->si_code >= 0 || info->si_code == SI_TKILL) && (task_pid_vnr(current) != pid)) return -EPERM; return do_send_specific(tgid, pid, sig, info); } SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, siginfo_t __user *, uinfo) { kernel_siginfo_t info; int ret = __copy_siginfo_from_user(sig, &info, uinfo); if (unlikely(ret)) return ret; return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); } #ifdef CONFIG_COMPAT COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo, compat_pid_t, tgid, compat_pid_t, pid, int, sig, struct compat_siginfo __user *, uinfo) { kernel_siginfo_t info; int ret = __copy_siginfo_from_user32(sig, &info, uinfo); if (unlikely(ret)) return ret; return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); } #endif /* * For kthreads only, must not be used if cloned with CLONE_SIGHAND */ void kernel_sigaction(int sig, __sighandler_t action) { spin_lock_irq(¤t->sighand->siglock); current->sighand->action[sig - 1].sa.sa_handler = action; if (action == SIG_IGN) { sigset_t mask; sigemptyset(&mask); sigaddset(&mask, sig); flush_sigqueue_mask(&mask, ¤t->signal->shared_pending); flush_sigqueue_mask(&mask, ¤t->pending); recalc_sigpending(); } spin_unlock_irq(¤t->sighand->siglock); } EXPORT_SYMBOL(kernel_sigaction); void __weak sigaction_compat_abi(struct k_sigaction *act, struct k_sigaction *oact) { } int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) { struct task_struct *p = current, *t; struct k_sigaction *k; sigset_t mask; if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) return -EINVAL; k = &p->sighand->action[sig-1]; spin_lock_irq(&p->sighand->siglock); if (oact) *oact = *k; /* * Make sure that we never accidentally claim to support SA_UNSUPPORTED, * e.g. by having an architecture use the bit in their uapi. */ BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED); /* * Clear unknown flag bits in order to allow userspace to detect missing * support for flag bits and to allow the kernel to use non-uapi bits * internally. */ if (act) act->sa.sa_flags &= UAPI_SA_FLAGS; if (oact) oact->sa.sa_flags &= UAPI_SA_FLAGS; sigaction_compat_abi(act, oact); if (act) { sigdelsetmask(&act->sa.sa_mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); *k = *act; /* * POSIX 3.3.1.3: * "Setting a signal action to SIG_IGN for a signal that is * pending shall cause the pending signal to be discarded, * whether or not it is blocked." * * "Setting a signal action to SIG_DFL for a signal that is * pending and whose default action is to ignore the signal * (for example, SIGCHLD), shall cause the pending signal to * be discarded, whether or not it is blocked" */ if (sig_handler_ignored(sig_handler(p, sig), sig)) { sigemptyset(&mask); sigaddset(&mask, sig); flush_sigqueue_mask(&mask, &p->signal->shared_pending); for_each_thread(p, t) flush_sigqueue_mask(&mask, &t->pending); } } spin_unlock_irq(&p->sighand->siglock); return 0; } static int do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp, size_t min_ss_size) { struct task_struct *t = current; if (oss) { memset(oss, 0, sizeof(stack_t)); oss->ss_sp = (void __user *) t->sas_ss_sp; oss->ss_size = t->sas_ss_size; oss->ss_flags = sas_ss_flags(sp) | (current->sas_ss_flags & SS_FLAG_BITS); } if (ss) { void __user *ss_sp = ss->ss_sp; size_t ss_size = ss->ss_size; unsigned ss_flags = ss->ss_flags; int ss_mode; if (unlikely(on_sig_stack(sp))) return -EPERM; ss_mode = ss_flags & ~SS_FLAG_BITS; if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK && ss_mode != 0)) return -EINVAL; if (ss_mode == SS_DISABLE) { ss_size = 0; ss_sp = NULL; } else { if (unlikely(ss_size < min_ss_size)) return -ENOMEM; } t->sas_ss_sp = (unsigned long) ss_sp; t->sas_ss_size = ss_size; t->sas_ss_flags = ss_flags; } return 0; } SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss) { stack_t new, old; int err; if (uss && copy_from_user(&new, uss, sizeof(stack_t))) return -EFAULT; err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL, current_user_stack_pointer(), MINSIGSTKSZ); if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t))) err = -EFAULT; return err; } int restore_altstack(const stack_t __user *uss) { stack_t new; if (copy_from_user(&new, uss, sizeof(stack_t))) return -EFAULT; (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(), MINSIGSTKSZ); /* squash all but EFAULT for now */ return 0; } int __save_altstack(stack_t __user *uss, unsigned long sp) { struct task_struct *t = current; int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) | __put_user(t->sas_ss_flags, &uss->ss_flags) | __put_user(t->sas_ss_size, &uss->ss_size); if (err) return err; if (t->sas_ss_flags & SS_AUTODISARM) sas_ss_reset(t); return 0; } #ifdef CONFIG_COMPAT static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr, compat_stack_t __user *uoss_ptr) { stack_t uss, uoss; int ret; if (uss_ptr) { compat_stack_t uss32; if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t))) return -EFAULT; uss.ss_sp = compat_ptr(uss32.ss_sp); uss.ss_flags = uss32.ss_flags; uss.ss_size = uss32.ss_size; } ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss, compat_user_stack_pointer(), COMPAT_MINSIGSTKSZ); if (ret >= 0 && uoss_ptr) { compat_stack_t old; memset(&old, 0, sizeof(old)); old.ss_sp = ptr_to_compat(uoss.ss_sp); old.ss_flags = uoss.ss_flags; old.ss_size = uoss.ss_size; if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t))) ret = -EFAULT; } return ret; } COMPAT_SYSCALL_DEFINE2(sigaltstack, const compat_stack_t __user *, uss_ptr, compat_stack_t __user *, uoss_ptr) { return do_compat_sigaltstack(uss_ptr, uoss_ptr); } int compat_restore_altstack(const compat_stack_t __user *uss) { int err = do_compat_sigaltstack(uss, NULL); /* squash all but -EFAULT for now */ return err == -EFAULT ? err : 0; } int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp) { int err; struct task_struct *t = current; err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), &uss->ss_sp) | __put_user(t->sas_ss_flags, &uss->ss_flags) | __put_user(t->sas_ss_size, &uss->ss_size); if (err) return err; if (t->sas_ss_flags & SS_AUTODISARM) sas_ss_reset(t); return 0; } #endif #ifdef __ARCH_WANT_SYS_SIGPENDING /** * sys_sigpending - examine pending signals * @uset: where mask of pending signal is returned */ SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset) { sigset_t set; if (sizeof(old_sigset_t) > sizeof(*uset)) return -EINVAL; do_sigpending(&set); if (copy_to_user(uset, &set, sizeof(old_sigset_t))) return -EFAULT; return 0; } #ifdef CONFIG_COMPAT COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32) { sigset_t set; do_sigpending(&set); return put_user(set.sig[0], set32); } #endif #endif #ifdef __ARCH_WANT_SYS_SIGPROCMASK /** * sys_sigprocmask - examine and change blocked signals * @how: whether to add, remove, or set signals * @nset: signals to add or remove (if non-null) * @oset: previous value of signal mask if non-null * * Some platforms have their own version with special arguments; * others support only sys_rt_sigprocmask. */ SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, old_sigset_t __user *, oset) { old_sigset_t old_set, new_set; sigset_t new_blocked; old_set = current->blocked.sig[0]; if (nset) { if (copy_from_user(&new_set, nset, sizeof(*nset))) return -EFAULT; new_blocked = current->blocked; switch (how) { case SIG_BLOCK: sigaddsetmask(&new_blocked, new_set); break; case SIG_UNBLOCK: sigdelsetmask(&new_blocked, new_set); break; case SIG_SETMASK: new_blocked.sig[0] = new_set; break; default: return -EINVAL; } set_current_blocked(&new_blocked); } if (oset) { if (copy_to_user(oset, &old_set, sizeof(*oset))) return -EFAULT; } return 0; } #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ #ifndef CONFIG_ODD_RT_SIGACTION /** * sys_rt_sigaction - alter an action taken by a process * @sig: signal to be sent * @act: new sigaction * @oact: used to save the previous sigaction * @sigsetsize: size of sigset_t type */ SYSCALL_DEFINE4(rt_sigaction, int, sig, const struct sigaction __user *, act, struct sigaction __user *, oact, size_t, sigsetsize) { struct k_sigaction new_sa, old_sa; int ret; /* XXX: Don't preclude handling different sized sigset_t's. */ if (sigsetsize != sizeof(sigset_t)) return -EINVAL; if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) return -EFAULT; ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); if (ret) return ret; if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) return -EFAULT; return 0; } #ifdef CONFIG_COMPAT COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig, const struct compat_sigaction __user *, act, struct compat_sigaction __user *, oact, compat_size_t, sigsetsize) { struct k_sigaction new_ka, old_ka; #ifdef __ARCH_HAS_SA_RESTORER compat_uptr_t restorer; #endif int ret; /* XXX: Don't preclude handling different sized sigset_t's. */ if (sigsetsize != sizeof(compat_sigset_t)) return -EINVAL; if (act) { compat_uptr_t handler; ret = get_user(handler, &act->sa_handler); new_ka.sa.sa_handler = compat_ptr(handler); #ifdef __ARCH_HAS_SA_RESTORER ret |= get_user(restorer, &act->sa_restorer); new_ka.sa.sa_restorer = compat_ptr(restorer); #endif ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask); ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags); if (ret) return -EFAULT; } ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); if (!ret && oact) { ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), &oact->sa_handler); ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask, sizeof(oact->sa_mask)); ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags); #ifdef __ARCH_HAS_SA_RESTORER ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer), &oact->sa_restorer); #endif } return ret; } #endif #endif /* !CONFIG_ODD_RT_SIGACTION */ #ifdef CONFIG_OLD_SIGACTION SYSCALL_DEFINE3(sigaction, int, sig, const struct old_sigaction __user *, act, struct old_sigaction __user *, oact) { struct k_sigaction new_ka, old_ka; int ret; if (act) { old_sigset_t mask; if (!access_ok(act, sizeof(*act)) || __get_user(new_ka.sa.sa_handler, &act->sa_handler) || __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) || __get_user(new_ka.sa.sa_flags, &act->sa_flags) || __get_user(mask, &act->sa_mask)) return -EFAULT; #ifdef __ARCH_HAS_KA_RESTORER new_ka.ka_restorer = NULL; #endif siginitset(&new_ka.sa.sa_mask, mask); } ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); if (!ret && oact) { if (!access_ok(oact, sizeof(*oact)) || __put_user(old_ka.sa.sa_handler, &oact->sa_handler) || __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) || __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) return -EFAULT; } return ret; } #endif #ifdef CONFIG_COMPAT_OLD_SIGACTION COMPAT_SYSCALL_DEFINE3(sigaction, int, sig, const struct compat_old_sigaction __user *, act, struct compat_old_sigaction __user *, oact) { struct k_sigaction new_ka, old_ka; int ret; compat_old_sigset_t mask; compat_uptr_t handler, restorer; if (act) { if (!access_ok(act, sizeof(*act)) || __get_user(handler, &act->sa_handler) || __get_user(restorer, &act->sa_restorer) || __get_user(new_ka.sa.sa_flags, &act->sa_flags) || __get_user(mask, &act->sa_mask)) return -EFAULT; #ifdef __ARCH_HAS_KA_RESTORER new_ka.ka_restorer = NULL; #endif new_ka.sa.sa_handler = compat_ptr(handler); new_ka.sa.sa_restorer = compat_ptr(restorer); siginitset(&new_ka.sa.sa_mask, mask); } ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); if (!ret && oact) { if (!access_ok(oact, sizeof(*oact)) || __put_user(ptr_to_compat(old_ka.sa.sa_handler), &oact->sa_handler) || __put_user(ptr_to_compat(old_ka.sa.sa_restorer), &oact->sa_restorer) || __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) return -EFAULT; } return ret; } #endif #ifdef CONFIG_SGETMASK_SYSCALL /* * For backwards compatibility. Functionality superseded by sigprocmask. */ SYSCALL_DEFINE0(sgetmask) { /* SMP safe */ return current->blocked.sig[0]; } SYSCALL_DEFINE1(ssetmask, int, newmask) { int old = current->blocked.sig[0]; sigset_t newset; siginitset(&newset, newmask); set_current_blocked(&newset); return old; } #endif /* CONFIG_SGETMASK_SYSCALL */ #ifdef __ARCH_WANT_SYS_SIGNAL /* * For backwards compatibility. Functionality superseded by sigaction. */ SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) { struct k_sigaction new_sa, old_sa; int ret; new_sa.sa.sa_handler = handler; new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; sigemptyset(&new_sa.sa.sa_mask); ret = do_sigaction(sig, &new_sa, &old_sa); return ret ? ret : (unsigned long)old_sa.sa.sa_handler; } #endif /* __ARCH_WANT_SYS_SIGNAL */ #ifdef __ARCH_WANT_SYS_PAUSE SYSCALL_DEFINE0(pause) { while (!signal_pending(current)) { __set_current_state(TASK_INTERRUPTIBLE); schedule(); } return -ERESTARTNOHAND; } #endif static int sigsuspend(sigset_t *set) { current->saved_sigmask = current->blocked; set_current_blocked(set); while (!signal_pending(current)) { __set_current_state(TASK_INTERRUPTIBLE); schedule(); } set_restore_sigmask(); return -ERESTARTNOHAND; } /** * sys_rt_sigsuspend - replace the signal mask for a value with the * @unewset value until a signal is received * @unewset: new signal mask value * @sigsetsize: size of sigset_t type */ SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) { sigset_t newset; /* XXX: Don't preclude handling different sized sigset_t's. */ if (sigsetsize != sizeof(sigset_t)) return -EINVAL; if (copy_from_user(&newset, unewset, sizeof(newset))) return -EFAULT; return sigsuspend(&newset); } #ifdef CONFIG_COMPAT COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize) { sigset_t newset; /* XXX: Don't preclude handling different sized sigset_t's. */ if (sigsetsize != sizeof(sigset_t)) return -EINVAL; if (get_compat_sigset(&newset, unewset)) return -EFAULT; return sigsuspend(&newset); } #endif #ifdef CONFIG_OLD_SIGSUSPEND SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask) { sigset_t blocked; siginitset(&blocked, mask); return sigsuspend(&blocked); } #endif #ifdef CONFIG_OLD_SIGSUSPEND3 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask) { sigset_t blocked; siginitset(&blocked, mask); return sigsuspend(&blocked); } #endif __weak const char *arch_vma_name(struct vm_area_struct *vma) { return NULL; } static inline void siginfo_buildtime_checks(void) { BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE); /* Verify the offsets in the two siginfos match */ #define CHECK_OFFSET(field) \ BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field)) /* kill */ CHECK_OFFSET(si_pid); CHECK_OFFSET(si_uid); /* timer */ CHECK_OFFSET(si_tid); CHECK_OFFSET(si_overrun); CHECK_OFFSET(si_value); /* rt */ CHECK_OFFSET(si_pid); CHECK_OFFSET(si_uid); CHECK_OFFSET(si_value); /* sigchld */ CHECK_OFFSET(si_pid); CHECK_OFFSET(si_uid); CHECK_OFFSET(si_status); CHECK_OFFSET(si_utime); CHECK_OFFSET(si_stime); /* sigfault */ CHECK_OFFSET(si_addr); CHECK_OFFSET(si_trapno); CHECK_OFFSET(si_addr_lsb); CHECK_OFFSET(si_lower); CHECK_OFFSET(si_upper); CHECK_OFFSET(si_pkey); CHECK_OFFSET(si_perf_data); CHECK_OFFSET(si_perf_type); /* sigpoll */ CHECK_OFFSET(si_band); CHECK_OFFSET(si_fd); /* sigsys */ CHECK_OFFSET(si_call_addr); CHECK_OFFSET(si_syscall); CHECK_OFFSET(si_arch); #undef CHECK_OFFSET /* usb asyncio */ BUILD_BUG_ON(offsetof(struct siginfo, si_pid) != offsetof(struct siginfo, si_addr)); if (sizeof(int) == sizeof(void __user *)) { BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) != sizeof(void __user *)); } else { BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) + sizeof_field(struct siginfo, si_uid)) != sizeof(void __user *)); BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) != offsetof(struct siginfo, si_uid)); } #ifdef CONFIG_COMPAT BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) != offsetof(struct compat_siginfo, si_addr)); BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != sizeof(compat_uptr_t)); BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != sizeof_field(struct siginfo, si_pid)); #endif } void __init signals_init(void) { siginfo_buildtime_checks(); sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC); } #ifdef CONFIG_KGDB_KDB #include /* * kdb_send_sig - Allows kdb to send signals without exposing * signal internals. This function checks if the required locks are * available before calling the main signal code, to avoid kdb * deadlocks. */ void kdb_send_sig(struct task_struct *t, int sig) { static struct task_struct *kdb_prev_t; int new_t, ret; if (!spin_trylock(&t->sighand->siglock)) { kdb_printf("Can't do kill command now.\n" "The sigmask lock is held somewhere else in " "kernel, try again later\n"); return; } new_t = kdb_prev_t != t; kdb_prev_t = t; if (!task_is_running(t) && new_t) { spin_unlock(&t->sighand->siglock); kdb_printf("Process is not RUNNING, sending a signal from " "kdb risks deadlock\n" "on the run queue locks. " "The signal has _not_ been sent.\n" "Reissue the kill command if you want to risk " "the deadlock.\n"); return; } ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID); spin_unlock(&t->sighand->siglock); if (ret) kdb_printf("Fail to deliver Signal %d to process %d.\n", sig, t->pid); else kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); } #endif /* CONFIG_KGDB_KDB */