// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2016 Facebook * Copyright (C) 2013-2014 Jens Axboe */ #include <linux/sched.h> #include <linux/random.h> #include <linux/sbitmap.h> #include <linux/seq_file.h> static int init_alloc_hint(struct sbitmap *sb, gfp_t flags) { unsigned depth = sb->depth; sb->alloc_hint = alloc_percpu_gfp(unsigned int, flags); if (!sb->alloc_hint) return -ENOMEM; if (depth && !sb->round_robin) { int i; for_each_possible_cpu(i) *per_cpu_ptr(sb->alloc_hint, i) = prandom_u32() % depth; } return 0; } static inline unsigned update_alloc_hint_before_get(struct sbitmap *sb, unsigned int depth) { unsigned hint; hint = this_cpu_read(*sb->alloc_hint); if (unlikely(hint >= depth)) { hint = depth ? prandom_u32() % depth : 0; this_cpu_write(*sb->alloc_hint, hint); } return hint; } static inline void update_alloc_hint_after_get(struct sbitmap *sb, unsigned int depth, unsigned int hint, unsigned int nr) { if (nr == -1) { /* If the map is full, a hint won't do us much good. */ this_cpu_write(*sb->alloc_hint, 0); } else if (nr == hint || unlikely(sb->round_robin)) { /* Only update the hint if we used it. */ hint = nr + 1; if (hint >= depth - 1) hint = 0; this_cpu_write(*sb->alloc_hint, hint); } } /* * See if we have deferred clears that we can batch move */ static inline bool sbitmap_deferred_clear(struct sbitmap_word *map) { unsigned long mask; if (!READ_ONCE(map->cleared)) return false; /* * First get a stable cleared mask, setting the old mask to 0. */ mask = xchg(&map->cleared, 0); /* * Now clear the masked bits in our free word */ atomic_long_andnot(mask, (atomic_long_t *)&map->word); BUILD_BUG_ON(sizeof(atomic_long_t) != sizeof(map->word)); return true; } int sbitmap_init_node(struct sbitmap *sb, unsigned int depth, int shift, gfp_t flags, int node, bool round_robin, bool alloc_hint) { unsigned int bits_per_word; if (shift < 0) shift = sbitmap_calculate_shift(depth); bits_per_word = 1U << shift; if (bits_per_word > BITS_PER_LONG) return -EINVAL; sb->shift = shift; sb->depth = depth; sb->map_nr = DIV_ROUND_UP(sb->depth, bits_per_word); sb->round_robin = round_robin; if (depth == 0) { sb->map = NULL; return 0; } if (alloc_hint) { if (init_alloc_hint(sb, flags)) return -ENOMEM; } else { sb->alloc_hint = NULL; } sb->map = kvzalloc_node(sb->map_nr * sizeof(*sb->map), flags, node); if (!sb->map) { free_percpu(sb->alloc_hint); return -ENOMEM; } return 0; } EXPORT_SYMBOL_GPL(sbitmap_init_node); void sbitmap_resize(struct sbitmap *sb, unsigned int depth) { unsigned int bits_per_word = 1U << sb->shift; unsigned int i; for (i = 0; i < sb->map_nr; i++) sbitmap_deferred_clear(&sb->map[i]); sb->depth = depth; sb->map_nr = DIV_ROUND_UP(sb->depth, bits_per_word); } EXPORT_SYMBOL_GPL(sbitmap_resize); static int __sbitmap_get_word(unsigned long *word, unsigned long depth, unsigned int hint, bool wrap) { int nr; /* don't wrap if starting from 0 */ wrap = wrap && hint; while (1) { nr = find_next_zero_bit(word, depth, hint); if (unlikely(nr >= depth)) { /* * We started with an offset, and we didn't reset the * offset to 0 in a failure case, so start from 0 to * exhaust the map. */ if (hint && wrap) { hint = 0; continue; } return -1; } if (!test_and_set_bit_lock(nr, word)) break; hint = nr + 1; if (hint >= depth - 1) hint = 0; } return nr; } static int sbitmap_find_bit_in_index(struct sbitmap *sb, int index, unsigned int alloc_hint) { struct sbitmap_word *map = &sb->map[index]; int nr; do { nr = __sbitmap_get_word(&map->word, __map_depth(sb, index), alloc_hint, !sb->round_robin); if (nr != -1) break; if (!sbitmap_deferred_clear(map)) break; } while (1); return nr; } static int __sbitmap_get(struct sbitmap *sb, unsigned int alloc_hint) { unsigned int i, index; int nr = -1; index = SB_NR_TO_INDEX(sb, alloc_hint); /* * Unless we're doing round robin tag allocation, just use the * alloc_hint to find the right word index. No point in looping * twice in find_next_zero_bit() for that case. */ if (sb->round_robin) alloc_hint = SB_NR_TO_BIT(sb, alloc_hint); else alloc_hint = 0; for (i = 0; i < sb->map_nr; i++) { nr = sbitmap_find_bit_in_index(sb, index, alloc_hint); if (nr != -1) { nr += index << sb->shift; break; } /* Jump to next index. */ alloc_hint = 0; if (++index >= sb->map_nr) index = 0; } return nr; } int sbitmap_get(struct sbitmap *sb) { int nr; unsigned int hint, depth; if (WARN_ON_ONCE(unlikely(!sb->alloc_hint))) return -1; depth = READ_ONCE(sb->depth); hint = update_alloc_hint_before_get(sb, depth); nr = __sbitmap_get(sb, hint); update_alloc_hint_after_get(sb, depth, hint, nr); return nr; } EXPORT_SYMBOL_GPL(sbitmap_get); static int __sbitmap_get_shallow(struct sbitmap *sb, unsigned int alloc_hint, unsigned long shallow_depth) { unsigned int i, index; int nr = -1; index = SB_NR_TO_INDEX(sb, alloc_hint); for (i = 0; i < sb->map_nr; i++) { again: nr = __sbitmap_get_word(&sb->map[index].word, min_t(unsigned int, __map_depth(sb, index), shallow_depth), SB_NR_TO_BIT(sb, alloc_hint), true); if (nr != -1) { nr += index << sb->shift; break; } if (sbitmap_deferred_clear(&sb->map[index])) goto again; /* Jump to next index. */ index++; alloc_hint = index << sb->shift; if (index >= sb->map_nr) { index = 0; alloc_hint = 0; } } return nr; } int sbitmap_get_shallow(struct sbitmap *sb, unsigned long shallow_depth) { int nr; unsigned int hint, depth; if (WARN_ON_ONCE(unlikely(!sb->alloc_hint))) return -1; depth = READ_ONCE(sb->depth); hint = update_alloc_hint_before_get(sb, depth); nr = __sbitmap_get_shallow(sb, hint, shallow_depth); update_alloc_hint_after_get(sb, depth, hint, nr); return nr; } EXPORT_SYMBOL_GPL(sbitmap_get_shallow); bool sbitmap_any_bit_set(const struct sbitmap *sb) { unsigned int i; for (i = 0; i < sb->map_nr; i++) { if (sb->map[i].word & ~sb->map[i].cleared) return true; } return false; } EXPORT_SYMBOL_GPL(sbitmap_any_bit_set); static unsigned int __sbitmap_weight(const struct sbitmap *sb, bool set) { unsigned int i, weight = 0; for (i = 0; i < sb->map_nr; i++) { const struct sbitmap_word *word = &sb->map[i]; unsigned int word_depth = __map_depth(sb, i); if (set) weight += bitmap_weight(&word->word, word_depth); else weight += bitmap_weight(&word->cleared, word_depth); } return weight; } static unsigned int sbitmap_cleared(const struct sbitmap *sb) { return __sbitmap_weight(sb, false); } unsigned int sbitmap_weight(const struct sbitmap *sb) { return __sbitmap_weight(sb, true) - sbitmap_cleared(sb); } EXPORT_SYMBOL_GPL(sbitmap_weight); void sbitmap_show(struct sbitmap *sb, struct seq_file *m) { seq_printf(m, "depth=%u\n", sb->depth); seq_printf(m, "busy=%u\n", sbitmap_weight(sb)); seq_printf(m, "cleared=%u\n", sbitmap_cleared(sb)); seq_printf(m, "bits_per_word=%u\n", 1U << sb->shift); seq_printf(m, "map_nr=%u\n", sb->map_nr); } EXPORT_SYMBOL_GPL(sbitmap_show); static inline void emit_byte(struct seq_file *m, unsigned int offset, u8 byte) { if ((offset & 0xf) == 0) { if (offset != 0) seq_putc(m, '\n'); seq_printf(m, "%08x:", offset); } if ((offset & 0x1) == 0) seq_putc(m, ' '); seq_printf(m, "%02x", byte); } void sbitmap_bitmap_show(struct sbitmap *sb, struct seq_file *m) { u8 byte = 0; unsigned int byte_bits = 0; unsigned int offset = 0; int i; for (i = 0; i < sb->map_nr; i++) { unsigned long word = READ_ONCE(sb->map[i].word); unsigned long cleared = READ_ONCE(sb->map[i].cleared); unsigned int word_bits = __map_depth(sb, i); word &= ~cleared; while (word_bits > 0) { unsigned int bits = min(8 - byte_bits, word_bits); byte |= (word & (BIT(bits) - 1)) << byte_bits; byte_bits += bits; if (byte_bits == 8) { emit_byte(m, offset, byte); byte = 0; byte_bits = 0; offset++; } word >>= bits; word_bits -= bits; } } if (byte_bits) { emit_byte(m, offset, byte); offset++; } if (offset) seq_putc(m, '\n'); } EXPORT_SYMBOL_GPL(sbitmap_bitmap_show); static unsigned int sbq_calc_wake_batch(struct sbitmap_queue *sbq, unsigned int depth) { unsigned int wake_batch; unsigned int shallow_depth; /* * For each batch, we wake up one queue. We need to make sure that our * batch size is small enough that the full depth of the bitmap, * potentially limited by a shallow depth, is enough to wake up all of * the queues. * * Each full word of the bitmap has bits_per_word bits, and there might * be a partial word. There are depth / bits_per_word full words and * depth % bits_per_word bits left over. In bitwise arithmetic: * * bits_per_word = 1 << shift * depth / bits_per_word = depth >> shift * depth % bits_per_word = depth & ((1 << shift) - 1) * * Each word can be limited to sbq->min_shallow_depth bits. */ shallow_depth = min(1U << sbq->sb.shift, sbq->min_shallow_depth); depth = ((depth >> sbq->sb.shift) * shallow_depth + min(depth & ((1U << sbq->sb.shift) - 1), shallow_depth)); wake_batch = clamp_t(unsigned int, depth / SBQ_WAIT_QUEUES, 1, SBQ_WAKE_BATCH); return wake_batch; } int sbitmap_queue_init_node(struct sbitmap_queue *sbq, unsigned int depth, int shift, bool round_robin, gfp_t flags, int node) { int ret; int i; ret = sbitmap_init_node(&sbq->sb, depth, shift, flags, node, round_robin, true); if (ret) return ret; sbq->min_shallow_depth = UINT_MAX; sbq->wake_batch = sbq_calc_wake_batch(sbq, depth); atomic_set(&sbq->wake_index, 0); atomic_set(&sbq->ws_active, 0); sbq->ws = kzalloc_node(SBQ_WAIT_QUEUES * sizeof(*sbq->ws), flags, node); if (!sbq->ws) { sbitmap_free(&sbq->sb); return -ENOMEM; } for (i = 0; i < SBQ_WAIT_QUEUES; i++) { init_waitqueue_head(&sbq->ws[i].wait); atomic_set(&sbq->ws[i].wait_cnt, sbq->wake_batch); } return 0; } EXPORT_SYMBOL_GPL(sbitmap_queue_init_node); static inline void __sbitmap_queue_update_wake_batch(struct sbitmap_queue *sbq, unsigned int wake_batch) { int i; if (sbq->wake_batch != wake_batch) { WRITE_ONCE(sbq->wake_batch, wake_batch); /* * Pairs with the memory barrier in sbitmap_queue_wake_up() * to ensure that the batch size is updated before the wait * counts. */ smp_mb(); for (i = 0; i < SBQ_WAIT_QUEUES; i++) atomic_set(&sbq->ws[i].wait_cnt, 1); } } static void sbitmap_queue_update_wake_batch(struct sbitmap_queue *sbq, unsigned int depth) { unsigned int wake_batch; wake_batch = sbq_calc_wake_batch(sbq, depth); __sbitmap_queue_update_wake_batch(sbq, wake_batch); } void sbitmap_queue_recalculate_wake_batch(struct sbitmap_queue *sbq, unsigned int users) { unsigned int wake_batch; unsigned int min_batch; unsigned int depth = (sbq->sb.depth + users - 1) / users; min_batch = sbq->sb.depth >= (4 * SBQ_WAIT_QUEUES) ? 4 : 1; wake_batch = clamp_val(depth / SBQ_WAIT_QUEUES, min_batch, SBQ_WAKE_BATCH); __sbitmap_queue_update_wake_batch(sbq, wake_batch); } EXPORT_SYMBOL_GPL(sbitmap_queue_recalculate_wake_batch); void sbitmap_queue_resize(struct sbitmap_queue *sbq, unsigned int depth) { sbitmap_queue_update_wake_batch(sbq, depth); sbitmap_resize(&sbq->sb, depth); } EXPORT_SYMBOL_GPL(sbitmap_queue_resize); int __sbitmap_queue_get(struct sbitmap_queue *sbq) { return sbitmap_get(&sbq->sb); } EXPORT_SYMBOL_GPL(__sbitmap_queue_get); unsigned long __sbitmap_queue_get_batch(struct sbitmap_queue *sbq, int nr_tags, unsigned int *offset) { struct sbitmap *sb = &sbq->sb; unsigned int hint, depth; unsigned long index, nr; int i; if (unlikely(sb->round_robin)) return 0; depth = READ_ONCE(sb->depth); hint = update_alloc_hint_before_get(sb, depth); index = SB_NR_TO_INDEX(sb, hint); for (i = 0; i < sb->map_nr; i++) { struct sbitmap_word *map = &sb->map[index]; unsigned long get_mask; unsigned int map_depth = __map_depth(sb, index); sbitmap_deferred_clear(map); if (map->word == (1UL << (map_depth - 1)) - 1) continue; nr = find_first_zero_bit(&map->word, map_depth); if (nr + nr_tags <= map_depth) { atomic_long_t *ptr = (atomic_long_t *) &map->word; int map_tags = min_t(int, nr_tags, map_depth); unsigned long val, ret; get_mask = ((1UL << map_tags) - 1) << nr; do { val = READ_ONCE(map->word); ret = atomic_long_cmpxchg(ptr, val, get_mask | val); } while (ret != val); get_mask = (get_mask & ~ret) >> nr; if (get_mask) { *offset = nr + (index << sb->shift); update_alloc_hint_after_get(sb, depth, hint, *offset + map_tags - 1); return get_mask; } } /* Jump to next index. */ if (++index >= sb->map_nr) index = 0; } return 0; } int sbitmap_queue_get_shallow(struct sbitmap_queue *sbq, unsigned int shallow_depth) { WARN_ON_ONCE(shallow_depth < sbq->min_shallow_depth); return sbitmap_get_shallow(&sbq->sb, shallow_depth); } EXPORT_SYMBOL_GPL(sbitmap_queue_get_shallow); void sbitmap_queue_min_shallow_depth(struct sbitmap_queue *sbq, unsigned int min_shallow_depth) { sbq->min_shallow_depth = min_shallow_depth; sbitmap_queue_update_wake_batch(sbq, sbq->sb.depth); } EXPORT_SYMBOL_GPL(sbitmap_queue_min_shallow_depth); static struct sbq_wait_state *sbq_wake_ptr(struct sbitmap_queue *sbq) { int i, wake_index; if (!atomic_read(&sbq->ws_active)) return NULL; wake_index = atomic_read(&sbq->wake_index); for (i = 0; i < SBQ_WAIT_QUEUES; i++) { struct sbq_wait_state *ws = &sbq->ws[wake_index]; if (waitqueue_active(&ws->wait)) { if (wake_index != atomic_read(&sbq->wake_index)) atomic_set(&sbq->wake_index, wake_index); return ws; } wake_index = sbq_index_inc(wake_index); } return NULL; } static bool __sbq_wake_up(struct sbitmap_queue *sbq) { struct sbq_wait_state *ws; unsigned int wake_batch; int wait_cnt; ws = sbq_wake_ptr(sbq); if (!ws) return false; wait_cnt = atomic_dec_return(&ws->wait_cnt); if (wait_cnt <= 0) { int ret; wake_batch = READ_ONCE(sbq->wake_batch); /* * Pairs with the memory barrier in sbitmap_queue_resize() to * ensure that we see the batch size update before the wait * count is reset. */ smp_mb__before_atomic(); /* * For concurrent callers of this, the one that failed the * atomic_cmpxhcg() race should call this function again * to wakeup a new batch on a different 'ws'. */ ret = atomic_cmpxchg(&ws->wait_cnt, wait_cnt, wake_batch); if (ret == wait_cnt) { sbq_index_atomic_inc(&sbq->wake_index); wake_up_nr(&ws->wait, wake_batch); return false; } return true; } return false; } void sbitmap_queue_wake_up(struct sbitmap_queue *sbq) { while (__sbq_wake_up(sbq)) ; } EXPORT_SYMBOL_GPL(sbitmap_queue_wake_up); static inline void sbitmap_update_cpu_hint(struct sbitmap *sb, int cpu, int tag) { if (likely(!sb->round_robin && tag < sb->depth)) data_race(*per_cpu_ptr(sb->alloc_hint, cpu) = tag); } void sbitmap_queue_clear_batch(struct sbitmap_queue *sbq, int offset, int *tags, int nr_tags) { struct sbitmap *sb = &sbq->sb; unsigned long *addr = NULL; unsigned long mask = 0; int i; smp_mb__before_atomic(); for (i = 0; i < nr_tags; i++) { const int tag = tags[i] - offset; unsigned long *this_addr; /* since we're clearing a batch, skip the deferred map */ this_addr = &sb->map[SB_NR_TO_INDEX(sb, tag)].word; if (!addr) { addr = this_addr; } else if (addr != this_addr) { atomic_long_andnot(mask, (atomic_long_t *) addr); mask = 0; addr = this_addr; } mask |= (1UL << SB_NR_TO_BIT(sb, tag)); } if (mask) atomic_long_andnot(mask, (atomic_long_t *) addr); smp_mb__after_atomic(); sbitmap_queue_wake_up(sbq); sbitmap_update_cpu_hint(&sbq->sb, raw_smp_processor_id(), tags[nr_tags - 1] - offset); } void sbitmap_queue_clear(struct sbitmap_queue *sbq, unsigned int nr, unsigned int cpu) { /* * Once the clear bit is set, the bit may be allocated out. * * Orders READ/WRITE on the associated instance(such as request * of blk_mq) by this bit for avoiding race with re-allocation, * and its pair is the memory barrier implied in __sbitmap_get_word. * * One invariant is that the clear bit has to be zero when the bit * is in use. */ smp_mb__before_atomic(); sbitmap_deferred_clear_bit(&sbq->sb, nr); /* * Pairs with the memory barrier in set_current_state() to ensure the * proper ordering of clear_bit_unlock()/waitqueue_active() in the waker * and test_and_set_bit_lock()/prepare_to_wait()/finish_wait() in the * waiter. See the comment on waitqueue_active(). */ smp_mb__after_atomic(); sbitmap_queue_wake_up(sbq); sbitmap_update_cpu_hint(&sbq->sb, cpu, nr); } EXPORT_SYMBOL_GPL(sbitmap_queue_clear); void sbitmap_queue_wake_all(struct sbitmap_queue *sbq) { int i, wake_index; /* * Pairs with the memory barrier in set_current_state() like in * sbitmap_queue_wake_up(). */ smp_mb(); wake_index = atomic_read(&sbq->wake_index); for (i = 0; i < SBQ_WAIT_QUEUES; i++) { struct sbq_wait_state *ws = &sbq->ws[wake_index]; if (waitqueue_active(&ws->wait)) wake_up(&ws->wait); wake_index = sbq_index_inc(wake_index); } } EXPORT_SYMBOL_GPL(sbitmap_queue_wake_all); void sbitmap_queue_show(struct sbitmap_queue *sbq, struct seq_file *m) { bool first; int i; sbitmap_show(&sbq->sb, m); seq_puts(m, "alloc_hint={"); first = true; for_each_possible_cpu(i) { if (!first) seq_puts(m, ", "); first = false; seq_printf(m, "%u", *per_cpu_ptr(sbq->sb.alloc_hint, i)); } seq_puts(m, "}\n"); seq_printf(m, "wake_batch=%u\n", sbq->wake_batch); seq_printf(m, "wake_index=%d\n", atomic_read(&sbq->wake_index)); seq_printf(m, "ws_active=%d\n", atomic_read(&sbq->ws_active)); seq_puts(m, "ws={\n"); for (i = 0; i < SBQ_WAIT_QUEUES; i++) { struct sbq_wait_state *ws = &sbq->ws[i]; seq_printf(m, "\t{.wait_cnt=%d, .wait=%s},\n", atomic_read(&ws->wait_cnt), waitqueue_active(&ws->wait) ? "active" : "inactive"); } seq_puts(m, "}\n"); seq_printf(m, "round_robin=%d\n", sbq->sb.round_robin); seq_printf(m, "min_shallow_depth=%u\n", sbq->min_shallow_depth); } EXPORT_SYMBOL_GPL(sbitmap_queue_show); void sbitmap_add_wait_queue(struct sbitmap_queue *sbq, struct sbq_wait_state *ws, struct sbq_wait *sbq_wait) { if (!sbq_wait->sbq) { sbq_wait->sbq = sbq; atomic_inc(&sbq->ws_active); add_wait_queue(&ws->wait, &sbq_wait->wait); } } EXPORT_SYMBOL_GPL(sbitmap_add_wait_queue); void sbitmap_del_wait_queue(struct sbq_wait *sbq_wait) { list_del_init(&sbq_wait->wait.entry); if (sbq_wait->sbq) { atomic_dec(&sbq_wait->sbq->ws_active); sbq_wait->sbq = NULL; } } EXPORT_SYMBOL_GPL(sbitmap_del_wait_queue); void sbitmap_prepare_to_wait(struct sbitmap_queue *sbq, struct sbq_wait_state *ws, struct sbq_wait *sbq_wait, int state) { if (!sbq_wait->sbq) { atomic_inc(&sbq->ws_active); sbq_wait->sbq = sbq; } prepare_to_wait_exclusive(&ws->wait, &sbq_wait->wait, state); } EXPORT_SYMBOL_GPL(sbitmap_prepare_to_wait); void sbitmap_finish_wait(struct sbitmap_queue *sbq, struct sbq_wait_state *ws, struct sbq_wait *sbq_wait) { finish_wait(&ws->wait, &sbq_wait->wait); if (sbq_wait->sbq) { atomic_dec(&sbq->ws_active); sbq_wait->sbq = NULL; } } EXPORT_SYMBOL_GPL(sbitmap_finish_wait);