// SPDX-License-Identifier: GPL-2.0-only /* * Generic hugetlb support. * (C) Nadia Yvette Chambers, April 2004 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "internal.h" #include "hugetlb_vmemmap.h" int hugetlb_max_hstate __read_mostly; unsigned int default_hstate_idx; struct hstate hstates[HUGE_MAX_HSTATE]; #ifdef CONFIG_CMA static struct cma *hugetlb_cma[MAX_NUMNODES]; static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata; static bool hugetlb_cma_folio(struct folio *folio, unsigned int order) { return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page, 1 << order); } #else static bool hugetlb_cma_folio(struct folio *folio, unsigned int order) { return false; } #endif static unsigned long hugetlb_cma_size __initdata; __initdata LIST_HEAD(huge_boot_pages); /* for command line parsing */ static struct hstate * __initdata parsed_hstate; static unsigned long __initdata default_hstate_max_huge_pages; static bool __initdata parsed_valid_hugepagesz = true; static bool __initdata parsed_default_hugepagesz; static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata; /* * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, * free_huge_pages, and surplus_huge_pages. */ DEFINE_SPINLOCK(hugetlb_lock); /* * Serializes faults on the same logical page. This is used to * prevent spurious OOMs when the hugepage pool is fully utilized. */ static int num_fault_mutexes; struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; /* Forward declaration */ static int hugetlb_acct_memory(struct hstate *h, long delta); static void hugetlb_vma_lock_free(struct vm_area_struct *vma); static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma); static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma); static void hugetlb_unshare_pmds(struct vm_area_struct *vma, unsigned long start, unsigned long end); static inline bool subpool_is_free(struct hugepage_subpool *spool) { if (spool->count) return false; if (spool->max_hpages != -1) return spool->used_hpages == 0; if (spool->min_hpages != -1) return spool->rsv_hpages == spool->min_hpages; return true; } static inline void unlock_or_release_subpool(struct hugepage_subpool *spool, unsigned long irq_flags) { spin_unlock_irqrestore(&spool->lock, irq_flags); /* If no pages are used, and no other handles to the subpool * remain, give up any reservations based on minimum size and * free the subpool */ if (subpool_is_free(spool)) { if (spool->min_hpages != -1) hugetlb_acct_memory(spool->hstate, -spool->min_hpages); kfree(spool); } } struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, long min_hpages) { struct hugepage_subpool *spool; spool = kzalloc(sizeof(*spool), GFP_KERNEL); if (!spool) return NULL; spin_lock_init(&spool->lock); spool->count = 1; spool->max_hpages = max_hpages; spool->hstate = h; spool->min_hpages = min_hpages; if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { kfree(spool); return NULL; } spool->rsv_hpages = min_hpages; return spool; } void hugepage_put_subpool(struct hugepage_subpool *spool) { unsigned long flags; spin_lock_irqsave(&spool->lock, flags); BUG_ON(!spool->count); spool->count--; unlock_or_release_subpool(spool, flags); } /* * Subpool accounting for allocating and reserving pages. * Return -ENOMEM if there are not enough resources to satisfy the * request. Otherwise, return the number of pages by which the * global pools must be adjusted (upward). The returned value may * only be different than the passed value (delta) in the case where * a subpool minimum size must be maintained. */ static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, long delta) { long ret = delta; if (!spool) return ret; spin_lock_irq(&spool->lock); if (spool->max_hpages != -1) { /* maximum size accounting */ if ((spool->used_hpages + delta) <= spool->max_hpages) spool->used_hpages += delta; else { ret = -ENOMEM; goto unlock_ret; } } /* minimum size accounting */ if (spool->min_hpages != -1 && spool->rsv_hpages) { if (delta > spool->rsv_hpages) { /* * Asking for more reserves than those already taken on * behalf of subpool. Return difference. */ ret = delta - spool->rsv_hpages; spool->rsv_hpages = 0; } else { ret = 0; /* reserves already accounted for */ spool->rsv_hpages -= delta; } } unlock_ret: spin_unlock_irq(&spool->lock); return ret; } /* * Subpool accounting for freeing and unreserving pages. * Return the number of global page reservations that must be dropped. * The return value may only be different than the passed value (delta) * in the case where a subpool minimum size must be maintained. */ static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, long delta) { long ret = delta; unsigned long flags; if (!spool) return delta; spin_lock_irqsave(&spool->lock, flags); if (spool->max_hpages != -1) /* maximum size accounting */ spool->used_hpages -= delta; /* minimum size accounting */ if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { if (spool->rsv_hpages + delta <= spool->min_hpages) ret = 0; else ret = spool->rsv_hpages + delta - spool->min_hpages; spool->rsv_hpages += delta; if (spool->rsv_hpages > spool->min_hpages) spool->rsv_hpages = spool->min_hpages; } /* * If hugetlbfs_put_super couldn't free spool due to an outstanding * quota reference, free it now. */ unlock_or_release_subpool(spool, flags); return ret; } static inline struct hugepage_subpool *subpool_inode(struct inode *inode) { return HUGETLBFS_SB(inode->i_sb)->spool; } static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) { return subpool_inode(file_inode(vma->vm_file)); } /* * hugetlb vma_lock helper routines */ void hugetlb_vma_lock_read(struct vm_area_struct *vma) { if (__vma_shareable_lock(vma)) { struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; down_read(&vma_lock->rw_sema); } } void hugetlb_vma_unlock_read(struct vm_area_struct *vma) { if (__vma_shareable_lock(vma)) { struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; up_read(&vma_lock->rw_sema); } } void hugetlb_vma_lock_write(struct vm_area_struct *vma) { if (__vma_shareable_lock(vma)) { struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; down_write(&vma_lock->rw_sema); } } void hugetlb_vma_unlock_write(struct vm_area_struct *vma) { if (__vma_shareable_lock(vma)) { struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; up_write(&vma_lock->rw_sema); } } int hugetlb_vma_trylock_write(struct vm_area_struct *vma) { struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; if (!__vma_shareable_lock(vma)) return 1; return down_write_trylock(&vma_lock->rw_sema); } void hugetlb_vma_assert_locked(struct vm_area_struct *vma) { if (__vma_shareable_lock(vma)) { struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; lockdep_assert_held(&vma_lock->rw_sema); } } void hugetlb_vma_lock_release(struct kref *kref) { struct hugetlb_vma_lock *vma_lock = container_of(kref, struct hugetlb_vma_lock, refs); kfree(vma_lock); } static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock) { struct vm_area_struct *vma = vma_lock->vma; /* * vma_lock structure may or not be released as a result of put, * it certainly will no longer be attached to vma so clear pointer. * Semaphore synchronizes access to vma_lock->vma field. */ vma_lock->vma = NULL; vma->vm_private_data = NULL; up_write(&vma_lock->rw_sema); kref_put(&vma_lock->refs, hugetlb_vma_lock_release); } static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma) { if (__vma_shareable_lock(vma)) { struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; __hugetlb_vma_unlock_write_put(vma_lock); } } static void hugetlb_vma_lock_free(struct vm_area_struct *vma) { /* * Only present in sharable vmas. */ if (!vma || !__vma_shareable_lock(vma)) return; if (vma->vm_private_data) { struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; down_write(&vma_lock->rw_sema); __hugetlb_vma_unlock_write_put(vma_lock); } } static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma) { struct hugetlb_vma_lock *vma_lock; /* Only establish in (flags) sharable vmas */ if (!vma || !(vma->vm_flags & VM_MAYSHARE)) return; /* Should never get here with non-NULL vm_private_data */ if (vma->vm_private_data) return; vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL); if (!vma_lock) { /* * If we can not allocate structure, then vma can not * participate in pmd sharing. This is only a possible * performance enhancement and memory saving issue. * However, the lock is also used to synchronize page * faults with truncation. If the lock is not present, * unlikely races could leave pages in a file past i_size * until the file is removed. Warn in the unlikely case of * allocation failure. */ pr_warn_once("HugeTLB: unable to allocate vma specific lock\n"); return; } kref_init(&vma_lock->refs); init_rwsem(&vma_lock->rw_sema); vma_lock->vma = vma; vma->vm_private_data = vma_lock; } /* Helper that removes a struct file_region from the resv_map cache and returns * it for use. */ static struct file_region * get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) { struct file_region *nrg; VM_BUG_ON(resv->region_cache_count <= 0); resv->region_cache_count--; nrg = list_first_entry(&resv->region_cache, struct file_region, link); list_del(&nrg->link); nrg->from = from; nrg->to = to; return nrg; } static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, struct file_region *rg) { #ifdef CONFIG_CGROUP_HUGETLB nrg->reservation_counter = rg->reservation_counter; nrg->css = rg->css; if (rg->css) css_get(rg->css); #endif } /* Helper that records hugetlb_cgroup uncharge info. */ static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, struct hstate *h, struct resv_map *resv, struct file_region *nrg) { #ifdef CONFIG_CGROUP_HUGETLB if (h_cg) { nrg->reservation_counter = &h_cg->rsvd_hugepage[hstate_index(h)]; nrg->css = &h_cg->css; /* * The caller will hold exactly one h_cg->css reference for the * whole contiguous reservation region. But this area might be * scattered when there are already some file_regions reside in * it. As a result, many file_regions may share only one css * reference. In order to ensure that one file_region must hold * exactly one h_cg->css reference, we should do css_get for * each file_region and leave the reference held by caller * untouched. */ css_get(&h_cg->css); if (!resv->pages_per_hpage) resv->pages_per_hpage = pages_per_huge_page(h); /* pages_per_hpage should be the same for all entries in * a resv_map. */ VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); } else { nrg->reservation_counter = NULL; nrg->css = NULL; } #endif } static void put_uncharge_info(struct file_region *rg) { #ifdef CONFIG_CGROUP_HUGETLB if (rg->css) css_put(rg->css); #endif } static bool has_same_uncharge_info(struct file_region *rg, struct file_region *org) { #ifdef CONFIG_CGROUP_HUGETLB return rg->reservation_counter == org->reservation_counter && rg->css == org->css; #else return true; #endif } static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) { struct file_region *nrg, *prg; prg = list_prev_entry(rg, link); if (&prg->link != &resv->regions && prg->to == rg->from && has_same_uncharge_info(prg, rg)) { prg->to = rg->to; list_del(&rg->link); put_uncharge_info(rg); kfree(rg); rg = prg; } nrg = list_next_entry(rg, link); if (&nrg->link != &resv->regions && nrg->from == rg->to && has_same_uncharge_info(nrg, rg)) { nrg->from = rg->from; list_del(&rg->link); put_uncharge_info(rg); kfree(rg); } } static inline long hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from, long to, struct hstate *h, struct hugetlb_cgroup *cg, long *regions_needed) { struct file_region *nrg; if (!regions_needed) { nrg = get_file_region_entry_from_cache(map, from, to); record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg); list_add(&nrg->link, rg); coalesce_file_region(map, nrg); } else *regions_needed += 1; return to - from; } /* * Must be called with resv->lock held. * * Calling this with regions_needed != NULL will count the number of pages * to be added but will not modify the linked list. And regions_needed will * indicate the number of file_regions needed in the cache to carry out to add * the regions for this range. */ static long add_reservation_in_range(struct resv_map *resv, long f, long t, struct hugetlb_cgroup *h_cg, struct hstate *h, long *regions_needed) { long add = 0; struct list_head *head = &resv->regions; long last_accounted_offset = f; struct file_region *iter, *trg = NULL; struct list_head *rg = NULL; if (regions_needed) *regions_needed = 0; /* In this loop, we essentially handle an entry for the range * [last_accounted_offset, iter->from), at every iteration, with some * bounds checking. */ list_for_each_entry_safe(iter, trg, head, link) { /* Skip irrelevant regions that start before our range. */ if (iter->from < f) { /* If this region ends after the last accounted offset, * then we need to update last_accounted_offset. */ if (iter->to > last_accounted_offset) last_accounted_offset = iter->to; continue; } /* When we find a region that starts beyond our range, we've * finished. */ if (iter->from >= t) { rg = iter->link.prev; break; } /* Add an entry for last_accounted_offset -> iter->from, and * update last_accounted_offset. */ if (iter->from > last_accounted_offset) add += hugetlb_resv_map_add(resv, iter->link.prev, last_accounted_offset, iter->from, h, h_cg, regions_needed); last_accounted_offset = iter->to; } /* Handle the case where our range extends beyond * last_accounted_offset. */ if (!rg) rg = head->prev; if (last_accounted_offset < t) add += hugetlb_resv_map_add(resv, rg, last_accounted_offset, t, h, h_cg, regions_needed); return add; } /* Must be called with resv->lock acquired. Will drop lock to allocate entries. */ static int allocate_file_region_entries(struct resv_map *resv, int regions_needed) __must_hold(&resv->lock) { LIST_HEAD(allocated_regions); int to_allocate = 0, i = 0; struct file_region *trg = NULL, *rg = NULL; VM_BUG_ON(regions_needed < 0); /* * Check for sufficient descriptors in the cache to accommodate * the number of in progress add operations plus regions_needed. * * This is a while loop because when we drop the lock, some other call * to region_add or region_del may have consumed some region_entries, * so we keep looping here until we finally have enough entries for * (adds_in_progress + regions_needed). */ while (resv->region_cache_count < (resv->adds_in_progress + regions_needed)) { to_allocate = resv->adds_in_progress + regions_needed - resv->region_cache_count; /* At this point, we should have enough entries in the cache * for all the existing adds_in_progress. We should only be * needing to allocate for regions_needed. */ VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); spin_unlock(&resv->lock); for (i = 0; i < to_allocate; i++) { trg = kmalloc(sizeof(*trg), GFP_KERNEL); if (!trg) goto out_of_memory; list_add(&trg->link, &allocated_regions); } spin_lock(&resv->lock); list_splice(&allocated_regions, &resv->region_cache); resv->region_cache_count += to_allocate; } return 0; out_of_memory: list_for_each_entry_safe(rg, trg, &allocated_regions, link) { list_del(&rg->link); kfree(rg); } return -ENOMEM; } /* * Add the huge page range represented by [f, t) to the reserve * map. Regions will be taken from the cache to fill in this range. * Sufficient regions should exist in the cache due to the previous * call to region_chg with the same range, but in some cases the cache will not * have sufficient entries due to races with other code doing region_add or * region_del. The extra needed entries will be allocated. * * regions_needed is the out value provided by a previous call to region_chg. * * Return the number of new huge pages added to the map. This number is greater * than or equal to zero. If file_region entries needed to be allocated for * this operation and we were not able to allocate, it returns -ENOMEM. * region_add of regions of length 1 never allocate file_regions and cannot * fail; region_chg will always allocate at least 1 entry and a region_add for * 1 page will only require at most 1 entry. */ static long region_add(struct resv_map *resv, long f, long t, long in_regions_needed, struct hstate *h, struct hugetlb_cgroup *h_cg) { long add = 0, actual_regions_needed = 0; spin_lock(&resv->lock); retry: /* Count how many regions are actually needed to execute this add. */ add_reservation_in_range(resv, f, t, NULL, NULL, &actual_regions_needed); /* * Check for sufficient descriptors in the cache to accommodate * this add operation. Note that actual_regions_needed may be greater * than in_regions_needed, as the resv_map may have been modified since * the region_chg call. In this case, we need to make sure that we * allocate extra entries, such that we have enough for all the * existing adds_in_progress, plus the excess needed for this * operation. */ if (actual_regions_needed > in_regions_needed && resv->region_cache_count < resv->adds_in_progress + (actual_regions_needed - in_regions_needed)) { /* region_add operation of range 1 should never need to * allocate file_region entries. */ VM_BUG_ON(t - f <= 1); if (allocate_file_region_entries( resv, actual_regions_needed - in_regions_needed)) { return -ENOMEM; } goto retry; } add = add_reservation_in_range(resv, f, t, h_cg, h, NULL); resv->adds_in_progress -= in_regions_needed; spin_unlock(&resv->lock); return add; } /* * Examine the existing reserve map and determine how many * huge pages in the specified range [f, t) are NOT currently * represented. This routine is called before a subsequent * call to region_add that will actually modify the reserve * map to add the specified range [f, t). region_chg does * not change the number of huge pages represented by the * map. A number of new file_region structures is added to the cache as a * placeholder, for the subsequent region_add call to use. At least 1 * file_region structure is added. * * out_regions_needed is the number of regions added to the * resv->adds_in_progress. This value needs to be provided to a follow up call * to region_add or region_abort for proper accounting. * * Returns the number of huge pages that need to be added to the existing * reservation map for the range [f, t). This number is greater or equal to * zero. -ENOMEM is returned if a new file_region structure or cache entry * is needed and can not be allocated. */ static long region_chg(struct resv_map *resv, long f, long t, long *out_regions_needed) { long chg = 0; spin_lock(&resv->lock); /* Count how many hugepages in this range are NOT represented. */ chg = add_reservation_in_range(resv, f, t, NULL, NULL, out_regions_needed); if (*out_regions_needed == 0) *out_regions_needed = 1; if (allocate_file_region_entries(resv, *out_regions_needed)) return -ENOMEM; resv->adds_in_progress += *out_regions_needed; spin_unlock(&resv->lock); return chg; } /* * Abort the in progress add operation. The adds_in_progress field * of the resv_map keeps track of the operations in progress between * calls to region_chg and region_add. Operations are sometimes * aborted after the call to region_chg. In such cases, region_abort * is called to decrement the adds_in_progress counter. regions_needed * is the value returned by the region_chg call, it is used to decrement * the adds_in_progress counter. * * NOTE: The range arguments [f, t) are not needed or used in this * routine. They are kept to make reading the calling code easier as * arguments will match the associated region_chg call. */ static void region_abort(struct resv_map *resv, long f, long t, long regions_needed) { spin_lock(&resv->lock); VM_BUG_ON(!resv->region_cache_count); resv->adds_in_progress -= regions_needed; spin_unlock(&resv->lock); } /* * Delete the specified range [f, t) from the reserve map. If the * t parameter is LONG_MAX, this indicates that ALL regions after f * should be deleted. Locate the regions which intersect [f, t) * and either trim, delete or split the existing regions. * * Returns the number of huge pages deleted from the reserve map. * In the normal case, the return value is zero or more. In the * case where a region must be split, a new region descriptor must * be allocated. If the allocation fails, -ENOMEM will be returned. * NOTE: If the parameter t == LONG_MAX, then we will never split * a region and possibly return -ENOMEM. Callers specifying * t == LONG_MAX do not need to check for -ENOMEM error. */ static long region_del(struct resv_map *resv, long f, long t) { struct list_head *head = &resv->regions; struct file_region *rg, *trg; struct file_region *nrg = NULL; long del = 0; retry: spin_lock(&resv->lock); list_for_each_entry_safe(rg, trg, head, link) { /* * Skip regions before the range to be deleted. file_region * ranges are normally of the form [from, to). However, there * may be a "placeholder" entry in the map which is of the form * (from, to) with from == to. Check for placeholder entries * at the beginning of the range to be deleted. */ if (rg->to <= f && (rg->to != rg->from || rg->to != f)) continue; if (rg->from >= t) break; if (f > rg->from && t < rg->to) { /* Must split region */ /* * Check for an entry in the cache before dropping * lock and attempting allocation. */ if (!nrg && resv->region_cache_count > resv->adds_in_progress) { nrg = list_first_entry(&resv->region_cache, struct file_region, link); list_del(&nrg->link); resv->region_cache_count--; } if (!nrg) { spin_unlock(&resv->lock); nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); if (!nrg) return -ENOMEM; goto retry; } del += t - f; hugetlb_cgroup_uncharge_file_region( resv, rg, t - f, false); /* New entry for end of split region */ nrg->from = t; nrg->to = rg->to; copy_hugetlb_cgroup_uncharge_info(nrg, rg); INIT_LIST_HEAD(&nrg->link); /* Original entry is trimmed */ rg->to = f; list_add(&nrg->link, &rg->link); nrg = NULL; break; } if (f <= rg->from && t >= rg->to) { /* Remove entire region */ del += rg->to - rg->from; hugetlb_cgroup_uncharge_file_region(resv, rg, rg->to - rg->from, true); list_del(&rg->link); kfree(rg); continue; } if (f <= rg->from) { /* Trim beginning of region */ hugetlb_cgroup_uncharge_file_region(resv, rg, t - rg->from, false); del += t - rg->from; rg->from = t; } else { /* Trim end of region */ hugetlb_cgroup_uncharge_file_region(resv, rg, rg->to - f, false); del += rg->to - f; rg->to = f; } } spin_unlock(&resv->lock); kfree(nrg); return del; } /* * A rare out of memory error was encountered which prevented removal of * the reserve map region for a page. The huge page itself was free'ed * and removed from the page cache. This routine will adjust the subpool * usage count, and the global reserve count if needed. By incrementing * these counts, the reserve map entry which could not be deleted will * appear as a "reserved" entry instead of simply dangling with incorrect * counts. */ void hugetlb_fix_reserve_counts(struct inode *inode) { struct hugepage_subpool *spool = subpool_inode(inode); long rsv_adjust; bool reserved = false; rsv_adjust = hugepage_subpool_get_pages(spool, 1); if (rsv_adjust > 0) { struct hstate *h = hstate_inode(inode); if (!hugetlb_acct_memory(h, 1)) reserved = true; } else if (!rsv_adjust) { reserved = true; } if (!reserved) pr_warn("hugetlb: Huge Page Reserved count may go negative.\n"); } /* * Count and return the number of huge pages in the reserve map * that intersect with the range [f, t). */ static long region_count(struct resv_map *resv, long f, long t) { struct list_head *head = &resv->regions; struct file_region *rg; long chg = 0; spin_lock(&resv->lock); /* Locate each segment we overlap with, and count that overlap. */ list_for_each_entry(rg, head, link) { long seg_from; long seg_to; if (rg->to <= f) continue; if (rg->from >= t) break; seg_from = max(rg->from, f); seg_to = min(rg->to, t); chg += seg_to - seg_from; } spin_unlock(&resv->lock); return chg; } /* * Convert the address within this vma to the page offset within * the mapping, in pagecache page units; huge pages here. */ static pgoff_t vma_hugecache_offset(struct hstate *h, struct vm_area_struct *vma, unsigned long address) { return ((address - vma->vm_start) >> huge_page_shift(h)) + (vma->vm_pgoff >> huge_page_order(h)); } pgoff_t linear_hugepage_index(struct vm_area_struct *vma, unsigned long address) { return vma_hugecache_offset(hstate_vma(vma), vma, address); } EXPORT_SYMBOL_GPL(linear_hugepage_index); /* * Return the size of the pages allocated when backing a VMA. In the majority * cases this will be same size as used by the page table entries. */ unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) { if (vma->vm_ops && vma->vm_ops->pagesize) return vma->vm_ops->pagesize(vma); return PAGE_SIZE; } EXPORT_SYMBOL_GPL(vma_kernel_pagesize); /* * Return the page size being used by the MMU to back a VMA. In the majority * of cases, the page size used by the kernel matches the MMU size. On * architectures where it differs, an architecture-specific 'strong' * version of this symbol is required. */ __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) { return vma_kernel_pagesize(vma); } /* * Flags for MAP_PRIVATE reservations. These are stored in the bottom * bits of the reservation map pointer, which are always clear due to * alignment. */ #define HPAGE_RESV_OWNER (1UL << 0) #define HPAGE_RESV_UNMAPPED (1UL << 1) #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) /* * These helpers are used to track how many pages are reserved for * faults in a MAP_PRIVATE mapping. Only the process that called mmap() * is guaranteed to have their future faults succeed. * * With the exception of hugetlb_dup_vma_private() which is called at fork(), * the reserve counters are updated with the hugetlb_lock held. It is safe * to reset the VMA at fork() time as it is not in use yet and there is no * chance of the global counters getting corrupted as a result of the values. * * The private mapping reservation is represented in a subtly different * manner to a shared mapping. A shared mapping has a region map associated * with the underlying file, this region map represents the backing file * pages which have ever had a reservation assigned which this persists even * after the page is instantiated. A private mapping has a region map * associated with the original mmap which is attached to all VMAs which * reference it, this region map represents those offsets which have consumed * reservation ie. where pages have been instantiated. */ static unsigned long get_vma_private_data(struct vm_area_struct *vma) { return (unsigned long)vma->vm_private_data; } static void set_vma_private_data(struct vm_area_struct *vma, unsigned long value) { vma->vm_private_data = (void *)value; } static void resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, struct hugetlb_cgroup *h_cg, struct hstate *h) { #ifdef CONFIG_CGROUP_HUGETLB if (!h_cg || !h) { resv_map->reservation_counter = NULL; resv_map->pages_per_hpage = 0; resv_map->css = NULL; } else { resv_map->reservation_counter = &h_cg->rsvd_hugepage[hstate_index(h)]; resv_map->pages_per_hpage = pages_per_huge_page(h); resv_map->css = &h_cg->css; } #endif } struct resv_map *resv_map_alloc(void) { struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); if (!resv_map || !rg) { kfree(resv_map); kfree(rg); return NULL; } kref_init(&resv_map->refs); spin_lock_init(&resv_map->lock); INIT_LIST_HEAD(&resv_map->regions); resv_map->adds_in_progress = 0; /* * Initialize these to 0. On shared mappings, 0's here indicate these * fields don't do cgroup accounting. On private mappings, these will be * re-initialized to the proper values, to indicate that hugetlb cgroup * reservations are to be un-charged from here. */ resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); INIT_LIST_HEAD(&resv_map->region_cache); list_add(&rg->link, &resv_map->region_cache); resv_map->region_cache_count = 1; return resv_map; } void resv_map_release(struct kref *ref) { struct resv_map *resv_map = container_of(ref, struct resv_map, refs); struct list_head *head = &resv_map->region_cache; struct file_region *rg, *trg; /* Clear out any active regions before we release the map. */ region_del(resv_map, 0, LONG_MAX); /* ... and any entries left in the cache */ list_for_each_entry_safe(rg, trg, head, link) { list_del(&rg->link); kfree(rg); } VM_BUG_ON(resv_map->adds_in_progress); kfree(resv_map); } static inline struct resv_map *inode_resv_map(struct inode *inode) { /* * At inode evict time, i_mapping may not point to the original * address space within the inode. This original address space * contains the pointer to the resv_map. So, always use the * address space embedded within the inode. * The VERY common case is inode->mapping == &inode->i_data but, * this may not be true for device special inodes. */ return (struct resv_map *)(&inode->i_data)->private_data; } static struct resv_map *vma_resv_map(struct vm_area_struct *vma) { VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); if (vma->vm_flags & VM_MAYSHARE) { struct address_space *mapping = vma->vm_file->f_mapping; struct inode *inode = mapping->host; return inode_resv_map(inode); } else { return (struct resv_map *)(get_vma_private_data(vma) & ~HPAGE_RESV_MASK); } } static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) { VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); set_vma_private_data(vma, (get_vma_private_data(vma) & HPAGE_RESV_MASK) | (unsigned long)map); } static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) { VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); set_vma_private_data(vma, get_vma_private_data(vma) | flags); } static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) { VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); return (get_vma_private_data(vma) & flag) != 0; } void hugetlb_dup_vma_private(struct vm_area_struct *vma) { VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); /* * Clear vm_private_data * - For shared mappings this is a per-vma semaphore that may be * allocated in a subsequent call to hugetlb_vm_op_open. * Before clearing, make sure pointer is not associated with vma * as this will leak the structure. This is the case when called * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already * been called to allocate a new structure. * - For MAP_PRIVATE mappings, this is the reserve map which does * not apply to children. Faults generated by the children are * not guaranteed to succeed, even if read-only. */ if (vma->vm_flags & VM_MAYSHARE) { struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; if (vma_lock && vma_lock->vma != vma) vma->vm_private_data = NULL; } else vma->vm_private_data = NULL; } /* * Reset and decrement one ref on hugepage private reservation. * Called with mm->mmap_lock writer semaphore held. * This function should be only used by move_vma() and operate on * same sized vma. It should never come here with last ref on the * reservation. */ void clear_vma_resv_huge_pages(struct vm_area_struct *vma) { /* * Clear the old hugetlb private page reservation. * It has already been transferred to new_vma. * * During a mremap() operation of a hugetlb vma we call move_vma() * which copies vma into new_vma and unmaps vma. After the copy * operation both new_vma and vma share a reference to the resv_map * struct, and at that point vma is about to be unmapped. We don't * want to return the reservation to the pool at unmap of vma because * the reservation still lives on in new_vma, so simply decrement the * ref here and remove the resv_map reference from this vma. */ struct resv_map *reservations = vma_resv_map(vma); if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { resv_map_put_hugetlb_cgroup_uncharge_info(reservations); kref_put(&reservations->refs, resv_map_release); } hugetlb_dup_vma_private(vma); } /* Returns true if the VMA has associated reserve pages */ static bool vma_has_reserves(struct vm_area_struct *vma, long chg) { if (vma->vm_flags & VM_NORESERVE) { /* * This address is already reserved by other process(chg == 0), * so, we should decrement reserved count. Without decrementing, * reserve count remains after releasing inode, because this * allocated page will go into page cache and is regarded as * coming from reserved pool in releasing step. Currently, we * don't have any other solution to deal with this situation * properly, so add work-around here. */ if (vma->vm_flags & VM_MAYSHARE && chg == 0) return true; else return false; } /* Shared mappings always use reserves */ if (vma->vm_flags & VM_MAYSHARE) { /* * We know VM_NORESERVE is not set. Therefore, there SHOULD * be a region map for all pages. The only situation where * there is no region map is if a hole was punched via * fallocate. In this case, there really are no reserves to * use. This situation is indicated if chg != 0. */ if (chg) return false; else return true; } /* * Only the process that called mmap() has reserves for * private mappings. */ if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { /* * Like the shared case above, a hole punch or truncate * could have been performed on the private mapping. * Examine the value of chg to determine if reserves * actually exist or were previously consumed. * Very Subtle - The value of chg comes from a previous * call to vma_needs_reserves(). The reserve map for * private mappings has different (opposite) semantics * than that of shared mappings. vma_needs_reserves() * has already taken this difference in semantics into * account. Therefore, the meaning of chg is the same * as in the shared case above. Code could easily be * combined, but keeping it separate draws attention to * subtle differences. */ if (chg) return false; else return true; } return false; } static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio) { int nid = folio_nid(folio); lockdep_assert_held(&hugetlb_lock); VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); list_move(&folio->lru, &h->hugepage_freelists[nid]); h->free_huge_pages++; h->free_huge_pages_node[nid]++; folio_set_hugetlb_freed(folio); } static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h, int nid) { struct folio *folio; bool pin = !!(current->flags & PF_MEMALLOC_PIN); lockdep_assert_held(&hugetlb_lock); list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) { if (pin && !folio_is_longterm_pinnable(folio)) continue; if (folio_test_hwpoison(folio)) continue; list_move(&folio->lru, &h->hugepage_activelist); folio_ref_unfreeze(folio, 1); folio_clear_hugetlb_freed(folio); h->free_huge_pages--; h->free_huge_pages_node[nid]--; return folio; } return NULL; } static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask, int nid, nodemask_t *nmask) { unsigned int cpuset_mems_cookie; struct zonelist *zonelist; struct zone *zone; struct zoneref *z; int node = NUMA_NO_NODE; zonelist = node_zonelist(nid, gfp_mask); retry_cpuset: cpuset_mems_cookie = read_mems_allowed_begin(); for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { struct folio *folio; if (!cpuset_zone_allowed(zone, gfp_mask)) continue; /* * no need to ask again on the same node. Pool is node rather than * zone aware */ if (zone_to_nid(zone) == node) continue; node = zone_to_nid(zone); folio = dequeue_hugetlb_folio_node_exact(h, node); if (folio) return folio; } if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) goto retry_cpuset; return NULL; } static unsigned long available_huge_pages(struct hstate *h) { return h->free_huge_pages - h->resv_huge_pages; } static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h, struct vm_area_struct *vma, unsigned long address, int avoid_reserve, long chg) { struct folio *folio = NULL; struct mempolicy *mpol; gfp_t gfp_mask; nodemask_t *nodemask; int nid; /* * A child process with MAP_PRIVATE mappings created by their parent * have no page reserves. This check ensures that reservations are * not "stolen". The child may still get SIGKILLed */ if (!vma_has_reserves(vma, chg) && !available_huge_pages(h)) goto err; /* If reserves cannot be used, ensure enough pages are in the pool */ if (avoid_reserve && !available_huge_pages(h)) goto err; gfp_mask = htlb_alloc_mask(h); nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); if (mpol_is_preferred_many(mpol)) { folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, nid, nodemask); /* Fallback to all nodes if page==NULL */ nodemask = NULL; } if (!folio) folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, nid, nodemask); if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) { folio_set_hugetlb_restore_reserve(folio); h->resv_huge_pages--; } mpol_cond_put(mpol); return folio; err: return NULL; } /* * common helper functions for hstate_next_node_to_{alloc|free}. * We may have allocated or freed a huge page based on a different * nodes_allowed previously, so h->next_node_to_{alloc|free} might * be outside of *nodes_allowed. Ensure that we use an allowed * node for alloc or free. */ static int next_node_allowed(int nid, nodemask_t *nodes_allowed) { nid = next_node_in(nid, *nodes_allowed); VM_BUG_ON(nid >= MAX_NUMNODES); return nid; } static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) { if (!node_isset(nid, *nodes_allowed)) nid = next_node_allowed(nid, nodes_allowed); return nid; } /* * returns the previously saved node ["this node"] from which to * allocate a persistent huge page for the pool and advance the * next node from which to allocate, handling wrap at end of node * mask. */ static int hstate_next_node_to_alloc(struct hstate *h, nodemask_t *nodes_allowed) { int nid; VM_BUG_ON(!nodes_allowed); nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); return nid; } /* * helper for remove_pool_huge_page() - return the previously saved * node ["this node"] from which to free a huge page. Advance the * next node id whether or not we find a free huge page to free so * that the next attempt to free addresses the next node. */ static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) { int nid; VM_BUG_ON(!nodes_allowed); nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); return nid; } #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ for (nr_nodes = nodes_weight(*mask); \ nr_nodes > 0 && \ ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ nr_nodes--) #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ for (nr_nodes = nodes_weight(*mask); \ nr_nodes > 0 && \ ((node = hstate_next_node_to_free(hs, mask)) || 1); \ nr_nodes--) /* used to demote non-gigantic_huge pages as well */ static void __destroy_compound_gigantic_folio(struct folio *folio, unsigned int order, bool demote) { int i; int nr_pages = 1 << order; struct page *p; atomic_set(&folio->_entire_mapcount, 0); atomic_set(&folio->_nr_pages_mapped, 0); atomic_set(&folio->_pincount, 0); for (i = 1; i < nr_pages; i++) { p = folio_page(folio, i); p->mapping = NULL; clear_compound_head(p); if (!demote) set_page_refcounted(p); } folio_set_order(folio, 0); __folio_clear_head(folio); } static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio, unsigned int order) { __destroy_compound_gigantic_folio(folio, order, true); } #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE static void destroy_compound_gigantic_folio(struct folio *folio, unsigned int order) { __destroy_compound_gigantic_folio(folio, order, false); } static void free_gigantic_folio(struct folio *folio, unsigned int order) { /* * If the page isn't allocated using the cma allocator, * cma_release() returns false. */ #ifdef CONFIG_CMA int nid = folio_nid(folio); if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order)) return; #endif free_contig_range(folio_pfn(folio), 1 << order); } #ifdef CONFIG_CONTIG_ALLOC static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, int nid, nodemask_t *nodemask) { struct page *page; unsigned long nr_pages = pages_per_huge_page(h); if (nid == NUMA_NO_NODE) nid = numa_mem_id(); #ifdef CONFIG_CMA { int node; if (hugetlb_cma[nid]) { page = cma_alloc(hugetlb_cma[nid], nr_pages, huge_page_order(h), true); if (page) return page_folio(page); } if (!(gfp_mask & __GFP_THISNODE)) { for_each_node_mask(node, *nodemask) { if (node == nid || !hugetlb_cma[node]) continue; page = cma_alloc(hugetlb_cma[node], nr_pages, huge_page_order(h), true); if (page) return page_folio(page); } } } #endif page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask); return page ? page_folio(page) : NULL; } #else /* !CONFIG_CONTIG_ALLOC */ static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, int nid, nodemask_t *nodemask) { return NULL; } #endif /* CONFIG_CONTIG_ALLOC */ #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, int nid, nodemask_t *nodemask) { return NULL; } static inline void free_gigantic_folio(struct folio *folio, unsigned int order) { } static inline void destroy_compound_gigantic_folio(struct folio *folio, unsigned int order) { } #endif /* * Remove hugetlb folio from lists, and update dtor so that the folio appears * as just a compound page. * * A reference is held on the folio, except in the case of demote. * * Must be called with hugetlb lock held. */ static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio, bool adjust_surplus, bool demote) { int nid = folio_nid(folio); VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio); VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio); lockdep_assert_held(&hugetlb_lock); if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) return; list_del(&folio->lru); if (folio_test_hugetlb_freed(folio)) { h->free_huge_pages--; h->free_huge_pages_node[nid]--; } if (adjust_surplus) { h->surplus_huge_pages--; h->surplus_huge_pages_node[nid]--; } /* * Very subtle * * For non-gigantic pages set the destructor to the normal compound * page dtor. This is needed in case someone takes an additional * temporary ref to the page, and freeing is delayed until they drop * their reference. * * For gigantic pages set the destructor to the null dtor. This * destructor will never be called. Before freeing the gigantic * page destroy_compound_gigantic_folio will turn the folio into a * simple group of pages. After this the destructor does not * apply. * * This handles the case where more than one ref is held when and * after update_and_free_hugetlb_folio is called. * * In the case of demote we do not ref count the page as it will soon * be turned into a page of smaller size. */ if (!demote) folio_ref_unfreeze(folio, 1); if (hstate_is_gigantic(h)) folio_set_compound_dtor(folio, NULL_COMPOUND_DTOR); else folio_set_compound_dtor(folio, COMPOUND_PAGE_DTOR); h->nr_huge_pages--; h->nr_huge_pages_node[nid]--; } static void remove_hugetlb_folio(struct hstate *h, struct folio *folio, bool adjust_surplus) { __remove_hugetlb_folio(h, folio, adjust_surplus, false); } static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio, bool adjust_surplus) { __remove_hugetlb_folio(h, folio, adjust_surplus, true); } static void add_hugetlb_folio(struct hstate *h, struct folio *folio, bool adjust_surplus) { int zeroed; int nid = folio_nid(folio); VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio); lockdep_assert_held(&hugetlb_lock); INIT_LIST_HEAD(&folio->lru); h->nr_huge_pages++; h->nr_huge_pages_node[nid]++; if (adjust_surplus) { h->surplus_huge_pages++; h->surplus_huge_pages_node[nid]++; } folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR); folio_change_private(folio, NULL); /* * We have to set hugetlb_vmemmap_optimized again as above * folio_change_private(folio, NULL) cleared it. */ folio_set_hugetlb_vmemmap_optimized(folio); /* * This folio is about to be managed by the hugetlb allocator and * should have no users. Drop our reference, and check for others * just in case. */ zeroed = folio_put_testzero(folio); if (unlikely(!zeroed)) /* * It is VERY unlikely soneone else has taken a ref on * the page. In this case, we simply return as the * hugetlb destructor (free_huge_page) will be called * when this other ref is dropped. */ return; arch_clear_hugepage_flags(&folio->page); enqueue_hugetlb_folio(h, folio); } static void __update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio) { int i; struct page *subpage; if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) return; /* * If we don't know which subpages are hwpoisoned, we can't free * the hugepage, so it's leaked intentionally. */ if (folio_test_hugetlb_raw_hwp_unreliable(folio)) return; if (hugetlb_vmemmap_restore(h, &folio->page)) { spin_lock_irq(&hugetlb_lock); /* * If we cannot allocate vmemmap pages, just refuse to free the * page and put the page back on the hugetlb free list and treat * as a surplus page. */ add_hugetlb_folio(h, folio, true); spin_unlock_irq(&hugetlb_lock); return; } /* * Move PageHWPoison flag from head page to the raw error pages, * which makes any healthy subpages reusable. */ if (unlikely(folio_test_hwpoison(folio))) folio_clear_hugetlb_hwpoison(folio); for (i = 0; i < pages_per_huge_page(h); i++) { subpage = folio_page(folio, i); subpage->flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced | 1 << PG_dirty | 1 << PG_active | 1 << PG_private | 1 << PG_writeback); } /* * Non-gigantic pages demoted from CMA allocated gigantic pages * need to be given back to CMA in free_gigantic_folio. */ if (hstate_is_gigantic(h) || hugetlb_cma_folio(folio, huge_page_order(h))) { destroy_compound_gigantic_folio(folio, huge_page_order(h)); free_gigantic_folio(folio, huge_page_order(h)); } else { __free_pages(&folio->page, huge_page_order(h)); } } /* * As update_and_free_hugetlb_folio() can be called under any context, so we cannot * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate * the vmemmap pages. * * free_hpage_workfn() locklessly retrieves the linked list of pages to be * freed and frees them one-by-one. As the page->mapping pointer is going * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node * structure of a lockless linked list of huge pages to be freed. */ static LLIST_HEAD(hpage_freelist); static void free_hpage_workfn(struct work_struct *work) { struct llist_node *node; node = llist_del_all(&hpage_freelist); while (node) { struct page *page; struct hstate *h; page = container_of((struct address_space **)node, struct page, mapping); node = node->next; page->mapping = NULL; /* * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate() * is going to trigger because a previous call to * remove_hugetlb_folio() will call folio_set_compound_dtor * (folio, NULL_COMPOUND_DTOR), so do not use page_hstate() * directly. */ h = size_to_hstate(page_size(page)); __update_and_free_hugetlb_folio(h, page_folio(page)); cond_resched(); } } static DECLARE_WORK(free_hpage_work, free_hpage_workfn); static inline void flush_free_hpage_work(struct hstate *h) { if (hugetlb_vmemmap_optimizable(h)) flush_work(&free_hpage_work); } static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio, bool atomic) { if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) { __update_and_free_hugetlb_folio(h, folio); return; } /* * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages. * * Only call schedule_work() if hpage_freelist is previously * empty. Otherwise, schedule_work() had been called but the workfn * hasn't retrieved the list yet. */ if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist)) schedule_work(&free_hpage_work); } static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list) { struct page *page, *t_page; struct folio *folio; list_for_each_entry_safe(page, t_page, list, lru) { folio = page_folio(page); update_and_free_hugetlb_folio(h, folio, false); cond_resched(); } } struct hstate *size_to_hstate(unsigned long size) { struct hstate *h; for_each_hstate(h) { if (huge_page_size(h) == size) return h; } return NULL; } void free_huge_page(struct page *page) { /* * Can't pass hstate in here because it is called from the * compound page destructor. */ struct folio *folio = page_folio(page); struct hstate *h = folio_hstate(folio); int nid = folio_nid(folio); struct hugepage_subpool *spool = hugetlb_folio_subpool(folio); bool restore_reserve; unsigned long flags; VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); VM_BUG_ON_FOLIO(folio_mapcount(folio), folio); hugetlb_set_folio_subpool(folio, NULL); if (folio_test_anon(folio)) __ClearPageAnonExclusive(&folio->page); folio->mapping = NULL; restore_reserve = folio_test_hugetlb_restore_reserve(folio); folio_clear_hugetlb_restore_reserve(folio); /* * If HPageRestoreReserve was set on page, page allocation consumed a * reservation. If the page was associated with a subpool, there * would have been a page reserved in the subpool before allocation * via hugepage_subpool_get_pages(). Since we are 'restoring' the * reservation, do not call hugepage_subpool_put_pages() as this will * remove the reserved page from the subpool. */ if (!restore_reserve) { /* * A return code of zero implies that the subpool will be * under its minimum size if the reservation is not restored * after page is free. Therefore, force restore_reserve * operation. */ if (hugepage_subpool_put_pages(spool, 1) == 0) restore_reserve = true; } spin_lock_irqsave(&hugetlb_lock, flags); folio_clear_hugetlb_migratable(folio); hugetlb_cgroup_uncharge_folio(hstate_index(h), pages_per_huge_page(h), folio); hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), pages_per_huge_page(h), folio); if (restore_reserve) h->resv_huge_pages++; if (folio_test_hugetlb_temporary(folio)) { remove_hugetlb_folio(h, folio, false); spin_unlock_irqrestore(&hugetlb_lock, flags); update_and_free_hugetlb_folio(h, folio, true); } else if (h->surplus_huge_pages_node[nid]) { /* remove the page from active list */ remove_hugetlb_folio(h, folio, true); spin_unlock_irqrestore(&hugetlb_lock, flags); update_and_free_hugetlb_folio(h, folio, true); } else { arch_clear_hugepage_flags(page); enqueue_hugetlb_folio(h, folio); spin_unlock_irqrestore(&hugetlb_lock, flags); } } /* * Must be called with the hugetlb lock held */ static void __prep_account_new_huge_page(struct hstate *h, int nid) { lockdep_assert_held(&hugetlb_lock); h->nr_huge_pages++; h->nr_huge_pages_node[nid]++; } static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio) { hugetlb_vmemmap_optimize(h, &folio->page); INIT_LIST_HEAD(&folio->lru); folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR); hugetlb_set_folio_subpool(folio, NULL); set_hugetlb_cgroup(folio, NULL); set_hugetlb_cgroup_rsvd(folio, NULL); } static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid) { __prep_new_hugetlb_folio(h, folio); spin_lock_irq(&hugetlb_lock); __prep_account_new_huge_page(h, nid); spin_unlock_irq(&hugetlb_lock); } static bool __prep_compound_gigantic_folio(struct folio *folio, unsigned int order, bool demote) { int i, j; int nr_pages = 1 << order; struct page *p; __folio_clear_reserved(folio); __folio_set_head(folio); /* we rely on prep_new_hugetlb_folio to set the destructor */ folio_set_order(folio, order); for (i = 0; i < nr_pages; i++) { p = folio_page(folio, i); /* * For gigantic hugepages allocated through bootmem at * boot, it's safer to be consistent with the not-gigantic * hugepages and clear the PG_reserved bit from all tail pages * too. Otherwise drivers using get_user_pages() to access tail * pages may get the reference counting wrong if they see * PG_reserved set on a tail page (despite the head page not * having PG_reserved set). Enforcing this consistency between * head and tail pages allows drivers to optimize away a check * on the head page when they need know if put_page() is needed * after get_user_pages(). */ if (i != 0) /* head page cleared above */ __ClearPageReserved(p); /* * Subtle and very unlikely * * Gigantic 'page allocators' such as memblock or cma will * return a set of pages with each page ref counted. We need * to turn this set of pages into a compound page with tail * page ref counts set to zero. Code such as speculative page * cache adding could take a ref on a 'to be' tail page. * We need to respect any increased ref count, and only set * the ref count to zero if count is currently 1. If count * is not 1, we return an error. An error return indicates * the set of pages can not be converted to a gigantic page. * The caller who allocated the pages should then discard the * pages using the appropriate free interface. * * In the case of demote, the ref count will be zero. */ if (!demote) { if (!page_ref_freeze(p, 1)) { pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n"); goto out_error; } } else { VM_BUG_ON_PAGE(page_count(p), p); } if (i != 0) set_compound_head(p, &folio->page); } atomic_set(&folio->_entire_mapcount, -1); atomic_set(&folio->_nr_pages_mapped, 0); atomic_set(&folio->_pincount, 0); return true; out_error: /* undo page modifications made above */ for (j = 0; j < i; j++) { p = folio_page(folio, j); if (j != 0) clear_compound_head(p); set_page_refcounted(p); } /* need to clear PG_reserved on remaining tail pages */ for (; j < nr_pages; j++) { p = folio_page(folio, j); __ClearPageReserved(p); } folio_set_order(folio, 0); __folio_clear_head(folio); return false; } static bool prep_compound_gigantic_folio(struct folio *folio, unsigned int order) { return __prep_compound_gigantic_folio(folio, order, false); } static bool prep_compound_gigantic_folio_for_demote(struct folio *folio, unsigned int order) { return __prep_compound_gigantic_folio(folio, order, true); } /* * PageHuge() only returns true for hugetlbfs pages, but not for normal or * transparent huge pages. See the PageTransHuge() documentation for more * details. */ int PageHuge(struct page *page) { struct folio *folio; if (!PageCompound(page)) return 0; folio = page_folio(page); return folio->_folio_dtor == HUGETLB_PAGE_DTOR; } EXPORT_SYMBOL_GPL(PageHuge); /* * PageHeadHuge() only returns true for hugetlbfs head page, but not for * normal or transparent huge pages. */ int PageHeadHuge(struct page *page_head) { struct folio *folio = (struct folio *)page_head; if (!folio_test_large(folio)) return 0; return folio->_folio_dtor == HUGETLB_PAGE_DTOR; } EXPORT_SYMBOL_GPL(PageHeadHuge); /* * Find and lock address space (mapping) in write mode. * * Upon entry, the page is locked which means that page_mapping() is * stable. Due to locking order, we can only trylock_write. If we can * not get the lock, simply return NULL to caller. */ struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage) { struct address_space *mapping = page_mapping(hpage); if (!mapping) return mapping; if (i_mmap_trylock_write(mapping)) return mapping; return NULL; } pgoff_t hugetlb_basepage_index(struct page *page) { struct page *page_head = compound_head(page); pgoff_t index = page_index(page_head); unsigned long compound_idx; if (compound_order(page_head) > MAX_ORDER) compound_idx = page_to_pfn(page) - page_to_pfn(page_head); else compound_idx = page - page_head; return (index << compound_order(page_head)) + compound_idx; } static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h, gfp_t gfp_mask, int nid, nodemask_t *nmask, nodemask_t *node_alloc_noretry) { int order = huge_page_order(h); struct page *page; bool alloc_try_hard = true; bool retry = true; /* * By default we always try hard to allocate the page with * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in * a loop (to adjust global huge page counts) and previous allocation * failed, do not continue to try hard on the same node. Use the * node_alloc_noretry bitmap to manage this state information. */ if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) alloc_try_hard = false; gfp_mask |= __GFP_COMP|__GFP_NOWARN; if (alloc_try_hard) gfp_mask |= __GFP_RETRY_MAYFAIL; if (nid == NUMA_NO_NODE) nid = numa_mem_id(); retry: page = __alloc_pages(gfp_mask, order, nid, nmask); /* Freeze head page */ if (page && !page_ref_freeze(page, 1)) { __free_pages(page, order); if (retry) { /* retry once */ retry = false; goto retry; } /* WOW! twice in a row. */ pr_warn("HugeTLB head page unexpected inflated ref count\n"); page = NULL; } /* * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this * indicates an overall state change. Clear bit so that we resume * normal 'try hard' allocations. */ if (node_alloc_noretry && page && !alloc_try_hard) node_clear(nid, *node_alloc_noretry); /* * If we tried hard to get a page but failed, set bit so that * subsequent attempts will not try as hard until there is an * overall state change. */ if (node_alloc_noretry && !page && alloc_try_hard) node_set(nid, *node_alloc_noretry); if (!page) { __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); return NULL; } __count_vm_event(HTLB_BUDDY_PGALLOC); return page_folio(page); } /* * Common helper to allocate a fresh hugetlb page. All specific allocators * should use this function to get new hugetlb pages * * Note that returned page is 'frozen': ref count of head page and all tail * pages is zero. */ static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h, gfp_t gfp_mask, int nid, nodemask_t *nmask, nodemask_t *node_alloc_noretry) { struct folio *folio; bool retry = false; retry: if (hstate_is_gigantic(h)) folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask); else folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, nmask, node_alloc_noretry); if (!folio) return NULL; if (hstate_is_gigantic(h)) { if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) { /* * Rare failure to convert pages to compound page. * Free pages and try again - ONCE! */ free_gigantic_folio(folio, huge_page_order(h)); if (!retry) { retry = true; goto retry; } return NULL; } } prep_new_hugetlb_folio(h, folio, folio_nid(folio)); return folio; } /* * Allocates a fresh page to the hugetlb allocator pool in the node interleaved * manner. */ static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, nodemask_t *node_alloc_noretry) { struct folio *folio; int nr_nodes, node; gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node, nodes_allowed, node_alloc_noretry); if (folio) { free_huge_page(&folio->page); /* free it into the hugepage allocator */ return 1; } } return 0; } /* * Remove huge page from pool from next node to free. Attempt to keep * persistent huge pages more or less balanced over allowed nodes. * This routine only 'removes' the hugetlb page. The caller must make * an additional call to free the page to low level allocators. * Called with hugetlb_lock locked. */ static struct page *remove_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, bool acct_surplus) { int nr_nodes, node; struct page *page = NULL; struct folio *folio; lockdep_assert_held(&hugetlb_lock); for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { /* * If we're returning unused surplus pages, only examine * nodes with surplus pages. */ if ((!acct_surplus || h->surplus_huge_pages_node[node]) && !list_empty(&h->hugepage_freelists[node])) { page = list_entry(h->hugepage_freelists[node].next, struct page, lru); folio = page_folio(page); remove_hugetlb_folio(h, folio, acct_surplus); break; } } return page; } /* * Dissolve a given free hugepage into free buddy pages. This function does * nothing for in-use hugepages and non-hugepages. * This function returns values like below: * * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages * when the system is under memory pressure and the feature of * freeing unused vmemmap pages associated with each hugetlb page * is enabled. * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use * (allocated or reserved.) * 0: successfully dissolved free hugepages or the page is not a * hugepage (considered as already dissolved) */ int dissolve_free_huge_page(struct page *page) { int rc = -EBUSY; struct folio *folio = page_folio(page); retry: /* Not to disrupt normal path by vainly holding hugetlb_lock */ if (!folio_test_hugetlb(folio)) return 0; spin_lock_irq(&hugetlb_lock); if (!folio_test_hugetlb(folio)) { rc = 0; goto out; } if (!folio_ref_count(folio)) { struct hstate *h = folio_hstate(folio); if (!available_huge_pages(h)) goto out; /* * We should make sure that the page is already on the free list * when it is dissolved. */ if (unlikely(!folio_test_hugetlb_freed(folio))) { spin_unlock_irq(&hugetlb_lock); cond_resched(); /* * Theoretically, we should return -EBUSY when we * encounter this race. In fact, we have a chance * to successfully dissolve the page if we do a * retry. Because the race window is quite small. * If we seize this opportunity, it is an optimization * for increasing the success rate of dissolving page. */ goto retry; } remove_hugetlb_folio(h, folio, false); h->max_huge_pages--; spin_unlock_irq(&hugetlb_lock); /* * Normally update_and_free_hugtlb_folio will allocate required vmemmmap * before freeing the page. update_and_free_hugtlb_folio will fail to * free the page if it can not allocate required vmemmap. We * need to adjust max_huge_pages if the page is not freed. * Attempt to allocate vmemmmap here so that we can take * appropriate action on failure. */ rc = hugetlb_vmemmap_restore(h, &folio->page); if (!rc) { update_and_free_hugetlb_folio(h, folio, false); } else { spin_lock_irq(&hugetlb_lock); add_hugetlb_folio(h, folio, false); h->max_huge_pages++; spin_unlock_irq(&hugetlb_lock); } return rc; } out: spin_unlock_irq(&hugetlb_lock); return rc; } /* * Dissolve free hugepages in a given pfn range. Used by memory hotplug to * make specified memory blocks removable from the system. * Note that this will dissolve a free gigantic hugepage completely, if any * part of it lies within the given range. * Also note that if dissolve_free_huge_page() returns with an error, all * free hugepages that were dissolved before that error are lost. */ int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) { unsigned long pfn; struct page *page; int rc = 0; unsigned int order; struct hstate *h; if (!hugepages_supported()) return rc; order = huge_page_order(&default_hstate); for_each_hstate(h) order = min(order, huge_page_order(h)); for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) { page = pfn_to_page(pfn); rc = dissolve_free_huge_page(page); if (rc) break; } return rc; } /* * Allocates a fresh surplus page from the page allocator. */ static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h, gfp_t gfp_mask, int nid, nodemask_t *nmask) { struct folio *folio = NULL; if (hstate_is_gigantic(h)) return NULL; spin_lock_irq(&hugetlb_lock); if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) goto out_unlock; spin_unlock_irq(&hugetlb_lock); folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); if (!folio) return NULL; spin_lock_irq(&hugetlb_lock); /* * We could have raced with the pool size change. * Double check that and simply deallocate the new page * if we would end up overcommiting the surpluses. Abuse * temporary page to workaround the nasty free_huge_page * codeflow */ if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { folio_set_hugetlb_temporary(folio); spin_unlock_irq(&hugetlb_lock); free_huge_page(&folio->page); return NULL; } h->surplus_huge_pages++; h->surplus_huge_pages_node[folio_nid(folio)]++; out_unlock: spin_unlock_irq(&hugetlb_lock); return folio; } static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask, int nid, nodemask_t *nmask) { struct folio *folio; if (hstate_is_gigantic(h)) return NULL; folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); if (!folio) return NULL; /* fresh huge pages are frozen */ folio_ref_unfreeze(folio, 1); /* * We do not account these pages as surplus because they are only * temporary and will be released properly on the last reference */ folio_set_hugetlb_temporary(folio); return folio; } /* * Use the VMA's mpolicy to allocate a huge page from the buddy. */ static struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h, struct vm_area_struct *vma, unsigned long addr) { struct folio *folio = NULL; struct mempolicy *mpol; gfp_t gfp_mask = htlb_alloc_mask(h); int nid; nodemask_t *nodemask; nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); if (mpol_is_preferred_many(mpol)) { gfp_t gfp = gfp_mask | __GFP_NOWARN; gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask); /* Fallback to all nodes if page==NULL */ nodemask = NULL; } if (!folio) folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask); mpol_cond_put(mpol); return folio; } /* folio migration callback function */ struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid, nodemask_t *nmask, gfp_t gfp_mask) { spin_lock_irq(&hugetlb_lock); if (available_huge_pages(h)) { struct folio *folio; folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, preferred_nid, nmask); if (folio) { spin_unlock_irq(&hugetlb_lock); return folio; } } spin_unlock_irq(&hugetlb_lock); return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask); } /* mempolicy aware migration callback */ struct folio *alloc_hugetlb_folio_vma(struct hstate *h, struct vm_area_struct *vma, unsigned long address) { struct mempolicy *mpol; nodemask_t *nodemask; struct folio *folio; gfp_t gfp_mask; int node; gfp_mask = htlb_alloc_mask(h); node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask); mpol_cond_put(mpol); return folio; } /* * Increase the hugetlb pool such that it can accommodate a reservation * of size 'delta'. */ static int gather_surplus_pages(struct hstate *h, long delta) __must_hold(&hugetlb_lock) { LIST_HEAD(surplus_list); struct folio *folio; struct page *page, *tmp; int ret; long i; long needed, allocated; bool alloc_ok = true; lockdep_assert_held(&hugetlb_lock); needed = (h->resv_huge_pages + delta) - h->free_huge_pages; if (needed <= 0) { h->resv_huge_pages += delta; return 0; } allocated = 0; ret = -ENOMEM; retry: spin_unlock_irq(&hugetlb_lock); for (i = 0; i < needed; i++) { folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h), NUMA_NO_NODE, NULL); if (!folio) { alloc_ok = false; break; } list_add(&folio->lru, &surplus_list); cond_resched(); } allocated += i; /* * After retaking hugetlb_lock, we need to recalculate 'needed' * because either resv_huge_pages or free_huge_pages may have changed. */ spin_lock_irq(&hugetlb_lock); needed = (h->resv_huge_pages + delta) - (h->free_huge_pages + allocated); if (needed > 0) { if (alloc_ok) goto retry; /* * We were not able to allocate enough pages to * satisfy the entire reservation so we free what * we've allocated so far. */ goto free; } /* * The surplus_list now contains _at_least_ the number of extra pages * needed to accommodate the reservation. Add the appropriate number * of pages to the hugetlb pool and free the extras back to the buddy * allocator. Commit the entire reservation here to prevent another * process from stealing the pages as they are added to the pool but * before they are reserved. */ needed += allocated; h->resv_huge_pages += delta; ret = 0; /* Free the needed pages to the hugetlb pool */ list_for_each_entry_safe(page, tmp, &surplus_list, lru) { if ((--needed) < 0) break; /* Add the page to the hugetlb allocator */ enqueue_hugetlb_folio(h, page_folio(page)); } free: spin_unlock_irq(&hugetlb_lock); /* * Free unnecessary surplus pages to the buddy allocator. * Pages have no ref count, call free_huge_page directly. */ list_for_each_entry_safe(page, tmp, &surplus_list, lru) free_huge_page(page); spin_lock_irq(&hugetlb_lock); return ret; } /* * This routine has two main purposes: * 1) Decrement the reservation count (resv_huge_pages) by the value passed * in unused_resv_pages. This corresponds to the prior adjustments made * to the associated reservation map. * 2) Free any unused surplus pages that may have been allocated to satisfy * the reservation. As many as unused_resv_pages may be freed. */ static void return_unused_surplus_pages(struct hstate *h, unsigned long unused_resv_pages) { unsigned long nr_pages; struct page *page; LIST_HEAD(page_list); lockdep_assert_held(&hugetlb_lock); /* Uncommit the reservation */ h->resv_huge_pages -= unused_resv_pages; if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) goto out; /* * Part (or even all) of the reservation could have been backed * by pre-allocated pages. Only free surplus pages. */ nr_pages = min(unused_resv_pages, h->surplus_huge_pages); /* * We want to release as many surplus pages as possible, spread * evenly across all nodes with memory. Iterate across these nodes * until we can no longer free unreserved surplus pages. This occurs * when the nodes with surplus pages have no free pages. * remove_pool_huge_page() will balance the freed pages across the * on-line nodes with memory and will handle the hstate accounting. */ while (nr_pages--) { page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1); if (!page) goto out; list_add(&page->lru, &page_list); } out: spin_unlock_irq(&hugetlb_lock); update_and_free_pages_bulk(h, &page_list); spin_lock_irq(&hugetlb_lock); } /* * vma_needs_reservation, vma_commit_reservation and vma_end_reservation * are used by the huge page allocation routines to manage reservations. * * vma_needs_reservation is called to determine if the huge page at addr * within the vma has an associated reservation. If a reservation is * needed, the value 1 is returned. The caller is then responsible for * managing the global reservation and subpool usage counts. After * the huge page has been allocated, vma_commit_reservation is called * to add the page to the reservation map. If the page allocation fails, * the reservation must be ended instead of committed. vma_end_reservation * is called in such cases. * * In the normal case, vma_commit_reservation returns the same value * as the preceding vma_needs_reservation call. The only time this * is not the case is if a reserve map was changed between calls. It * is the responsibility of the caller to notice the difference and * take appropriate action. * * vma_add_reservation is used in error paths where a reservation must * be restored when a newly allocated huge page must be freed. It is * to be called after calling vma_needs_reservation to determine if a * reservation exists. * * vma_del_reservation is used in error paths where an entry in the reserve * map was created during huge page allocation and must be removed. It is to * be called after calling vma_needs_reservation to determine if a reservation * exists. */ enum vma_resv_mode { VMA_NEEDS_RESV, VMA_COMMIT_RESV, VMA_END_RESV, VMA_ADD_RESV, VMA_DEL_RESV, }; static long __vma_reservation_common(struct hstate *h, struct vm_area_struct *vma, unsigned long addr, enum vma_resv_mode mode) { struct resv_map *resv; pgoff_t idx; long ret; long dummy_out_regions_needed; resv = vma_resv_map(vma); if (!resv) return 1; idx = vma_hugecache_offset(h, vma, addr); switch (mode) { case VMA_NEEDS_RESV: ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); /* We assume that vma_reservation_* routines always operate on * 1 page, and that adding to resv map a 1 page entry can only * ever require 1 region. */ VM_BUG_ON(dummy_out_regions_needed != 1); break; case VMA_COMMIT_RESV: ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); /* region_add calls of range 1 should never fail. */ VM_BUG_ON(ret < 0); break; case VMA_END_RESV: region_abort(resv, idx, idx + 1, 1); ret = 0; break; case VMA_ADD_RESV: if (vma->vm_flags & VM_MAYSHARE) { ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); /* region_add calls of range 1 should never fail. */ VM_BUG_ON(ret < 0); } else { region_abort(resv, idx, idx + 1, 1); ret = region_del(resv, idx, idx + 1); } break; case VMA_DEL_RESV: if (vma->vm_flags & VM_MAYSHARE) { region_abort(resv, idx, idx + 1, 1); ret = region_del(resv, idx, idx + 1); } else { ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); /* region_add calls of range 1 should never fail. */ VM_BUG_ON(ret < 0); } break; default: BUG(); } if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV) return ret; /* * We know private mapping must have HPAGE_RESV_OWNER set. * * In most cases, reserves always exist for private mappings. * However, a file associated with mapping could have been * hole punched or truncated after reserves were consumed. * As subsequent fault on such a range will not use reserves. * Subtle - The reserve map for private mappings has the * opposite meaning than that of shared mappings. If NO * entry is in the reserve map, it means a reservation exists. * If an entry exists in the reserve map, it means the * reservation has already been consumed. As a result, the * return value of this routine is the opposite of the * value returned from reserve map manipulation routines above. */ if (ret > 0) return 0; if (ret == 0) return 1; return ret; } static long vma_needs_reservation(struct hstate *h, struct vm_area_struct *vma, unsigned long addr) { return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); } static long vma_commit_reservation(struct hstate *h, struct vm_area_struct *vma, unsigned long addr) { return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); } static void vma_end_reservation(struct hstate *h, struct vm_area_struct *vma, unsigned long addr) { (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); } static long vma_add_reservation(struct hstate *h, struct vm_area_struct *vma, unsigned long addr) { return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); } static long vma_del_reservation(struct hstate *h, struct vm_area_struct *vma, unsigned long addr) { return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV); } /* * This routine is called to restore reservation information on error paths. * It should ONLY be called for folios allocated via alloc_hugetlb_folio(), * and the hugetlb mutex should remain held when calling this routine. * * It handles two specific cases: * 1) A reservation was in place and the folio consumed the reservation. * hugetlb_restore_reserve is set in the folio. * 2) No reservation was in place for the page, so hugetlb_restore_reserve is * not set. However, alloc_hugetlb_folio always updates the reserve map. * * In case 1, free_huge_page later in the error path will increment the * global reserve count. But, free_huge_page does not have enough context * to adjust the reservation map. This case deals primarily with private * mappings. Adjust the reserve map here to be consistent with global * reserve count adjustments to be made by free_huge_page. Make sure the * reserve map indicates there is a reservation present. * * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio. */ void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, unsigned long address, struct folio *folio) { long rc = vma_needs_reservation(h, vma, address); if (folio_test_hugetlb_restore_reserve(folio)) { if (unlikely(rc < 0)) /* * Rare out of memory condition in reserve map * manipulation. Clear hugetlb_restore_reserve so * that global reserve count will not be incremented * by free_huge_page. This will make it appear * as though the reservation for this folio was * consumed. This may prevent the task from * faulting in the folio at a later time. This * is better than inconsistent global huge page * accounting of reserve counts. */ folio_clear_hugetlb_restore_reserve(folio); else if (rc) (void)vma_add_reservation(h, vma, address); else vma_end_reservation(h, vma, address); } else { if (!rc) { /* * This indicates there is an entry in the reserve map * not added by alloc_hugetlb_folio. We know it was added * before the alloc_hugetlb_folio call, otherwise * hugetlb_restore_reserve would be set on the folio. * Remove the entry so that a subsequent allocation * does not consume a reservation. */ rc = vma_del_reservation(h, vma, address); if (rc < 0) /* * VERY rare out of memory condition. Since * we can not delete the entry, set * hugetlb_restore_reserve so that the reserve * count will be incremented when the folio * is freed. This reserve will be consumed * on a subsequent allocation. */ folio_set_hugetlb_restore_reserve(folio); } else if (rc < 0) { /* * Rare out of memory condition from * vma_needs_reservation call. Memory allocation is * only attempted if a new entry is needed. Therefore, * this implies there is not an entry in the * reserve map. * * For shared mappings, no entry in the map indicates * no reservation. We are done. */ if (!(vma->vm_flags & VM_MAYSHARE)) /* * For private mappings, no entry indicates * a reservation is present. Since we can * not add an entry, set hugetlb_restore_reserve * on the folio so reserve count will be * incremented when freed. This reserve will * be consumed on a subsequent allocation. */ folio_set_hugetlb_restore_reserve(folio); } else /* * No reservation present, do nothing */ vma_end_reservation(h, vma, address); } } /* * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve * the old one * @h: struct hstate old page belongs to * @old_folio: Old folio to dissolve * @list: List to isolate the page in case we need to * Returns 0 on success, otherwise negated error. */ static int alloc_and_dissolve_hugetlb_folio(struct hstate *h, struct folio *old_folio, struct list_head *list) { gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; int nid = folio_nid(old_folio); struct folio *new_folio; int ret = 0; /* * Before dissolving the folio, we need to allocate a new one for the * pool to remain stable. Here, we allocate the folio and 'prep' it * by doing everything but actually updating counters and adding to * the pool. This simplifies and let us do most of the processing * under the lock. */ new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL); if (!new_folio) return -ENOMEM; __prep_new_hugetlb_folio(h, new_folio); retry: spin_lock_irq(&hugetlb_lock); if (!folio_test_hugetlb(old_folio)) { /* * Freed from under us. Drop new_folio too. */ goto free_new; } else if (folio_ref_count(old_folio)) { bool isolated; /* * Someone has grabbed the folio, try to isolate it here. * Fail with -EBUSY if not possible. */ spin_unlock_irq(&hugetlb_lock); isolated = isolate_hugetlb(old_folio, list); ret = isolated ? 0 : -EBUSY; spin_lock_irq(&hugetlb_lock); goto free_new; } else if (!folio_test_hugetlb_freed(old_folio)) { /* * Folio's refcount is 0 but it has not been enqueued in the * freelist yet. Race window is small, so we can succeed here if * we retry. */ spin_unlock_irq(&hugetlb_lock); cond_resched(); goto retry; } else { /* * Ok, old_folio is still a genuine free hugepage. Remove it from * the freelist and decrease the counters. These will be * incremented again when calling __prep_account_new_huge_page() * and enqueue_hugetlb_folio() for new_folio. The counters will * remain stable since this happens under the lock. */ remove_hugetlb_folio(h, old_folio, false); /* * Ref count on new_folio is already zero as it was dropped * earlier. It can be directly added to the pool free list. */ __prep_account_new_huge_page(h, nid); enqueue_hugetlb_folio(h, new_folio); /* * Folio has been replaced, we can safely free the old one. */ spin_unlock_irq(&hugetlb_lock); update_and_free_hugetlb_folio(h, old_folio, false); } return ret; free_new: spin_unlock_irq(&hugetlb_lock); /* Folio has a zero ref count, but needs a ref to be freed */ folio_ref_unfreeze(new_folio, 1); update_and_free_hugetlb_folio(h, new_folio, false); return ret; } int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list) { struct hstate *h; struct folio *folio = page_folio(page); int ret = -EBUSY; /* * The page might have been dissolved from under our feet, so make sure * to carefully check the state under the lock. * Return success when racing as if we dissolved the page ourselves. */ spin_lock_irq(&hugetlb_lock); if (folio_test_hugetlb(folio)) { h = folio_hstate(folio); } else { spin_unlock_irq(&hugetlb_lock); return 0; } spin_unlock_irq(&hugetlb_lock); /* * Fence off gigantic pages as there is a cyclic dependency between * alloc_contig_range and them. Return -ENOMEM as this has the effect * of bailing out right away without further retrying. */ if (hstate_is_gigantic(h)) return -ENOMEM; if (folio_ref_count(folio) && isolate_hugetlb(folio, list)) ret = 0; else if (!folio_ref_count(folio)) ret = alloc_and_dissolve_hugetlb_folio(h, folio, list); return ret; } struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma, unsigned long addr, int avoid_reserve) { struct hugepage_subpool *spool = subpool_vma(vma); struct hstate *h = hstate_vma(vma); struct folio *folio; long map_chg, map_commit; long gbl_chg; int ret, idx; struct hugetlb_cgroup *h_cg = NULL; bool deferred_reserve; idx = hstate_index(h); /* * Examine the region/reserve map to determine if the process * has a reservation for the page to be allocated. A return * code of zero indicates a reservation exists (no change). */ map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); if (map_chg < 0) return ERR_PTR(-ENOMEM); /* * Processes that did not create the mapping will have no * reserves as indicated by the region/reserve map. Check * that the allocation will not exceed the subpool limit. * Allocations for MAP_NORESERVE mappings also need to be * checked against any subpool limit. */ if (map_chg || avoid_reserve) { gbl_chg = hugepage_subpool_get_pages(spool, 1); if (gbl_chg < 0) { vma_end_reservation(h, vma, addr); return ERR_PTR(-ENOSPC); } /* * Even though there was no reservation in the region/reserve * map, there could be reservations associated with the * subpool that can be used. This would be indicated if the * return value of hugepage_subpool_get_pages() is zero. * However, if avoid_reserve is specified we still avoid even * the subpool reservations. */ if (avoid_reserve) gbl_chg = 1; } /* If this allocation is not consuming a reservation, charge it now. */ deferred_reserve = map_chg || avoid_reserve; if (deferred_reserve) { ret = hugetlb_cgroup_charge_cgroup_rsvd( idx, pages_per_huge_page(h), &h_cg); if (ret) goto out_subpool_put; } ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); if (ret) goto out_uncharge_cgroup_reservation; spin_lock_irq(&hugetlb_lock); /* * glb_chg is passed to indicate whether or not a page must be taken * from the global free pool (global change). gbl_chg == 0 indicates * a reservation exists for the allocation. */ folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg); if (!folio) { spin_unlock_irq(&hugetlb_lock); folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr); if (!folio) goto out_uncharge_cgroup; spin_lock_irq(&hugetlb_lock); if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { folio_set_hugetlb_restore_reserve(folio); h->resv_huge_pages--; } list_add(&folio->lru, &h->hugepage_activelist); folio_ref_unfreeze(folio, 1); /* Fall through */ } hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio); /* If allocation is not consuming a reservation, also store the * hugetlb_cgroup pointer on the page. */ if (deferred_reserve) { hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), h_cg, folio); } spin_unlock_irq(&hugetlb_lock); hugetlb_set_folio_subpool(folio, spool); map_commit = vma_commit_reservation(h, vma, addr); if (unlikely(map_chg > map_commit)) { /* * The page was added to the reservation map between * vma_needs_reservation and vma_commit_reservation. * This indicates a race with hugetlb_reserve_pages. * Adjust for the subpool count incremented above AND * in hugetlb_reserve_pages for the same page. Also, * the reservation count added in hugetlb_reserve_pages * no longer applies. */ long rsv_adjust; rsv_adjust = hugepage_subpool_put_pages(spool, 1); hugetlb_acct_memory(h, -rsv_adjust); if (deferred_reserve) hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), pages_per_huge_page(h), folio); } return folio; out_uncharge_cgroup: hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); out_uncharge_cgroup_reservation: if (deferred_reserve) hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), h_cg); out_subpool_put: if (map_chg || avoid_reserve) hugepage_subpool_put_pages(spool, 1); vma_end_reservation(h, vma, addr); return ERR_PTR(-ENOSPC); } int alloc_bootmem_huge_page(struct hstate *h, int nid) __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); int __alloc_bootmem_huge_page(struct hstate *h, int nid) { struct huge_bootmem_page *m = NULL; /* initialize for clang */ int nr_nodes, node; /* do node specific alloc */ if (nid != NUMA_NO_NODE) { m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h), 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid); if (!m) return 0; goto found; } /* allocate from next node when distributing huge pages */ for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { m = memblock_alloc_try_nid_raw( huge_page_size(h), huge_page_size(h), 0, MEMBLOCK_ALLOC_ACCESSIBLE, node); /* * Use the beginning of the huge page to store the * huge_bootmem_page struct (until gather_bootmem * puts them into the mem_map). */ if (!m) return 0; goto found; } found: /* Put them into a private list first because mem_map is not up yet */ INIT_LIST_HEAD(&m->list); list_add(&m->list, &huge_boot_pages); m->hstate = h; return 1; } /* * Put bootmem huge pages into the standard lists after mem_map is up. * Note: This only applies to gigantic (order > MAX_ORDER) pages. */ static void __init gather_bootmem_prealloc(void) { struct huge_bootmem_page *m; list_for_each_entry(m, &huge_boot_pages, list) { struct page *page = virt_to_page(m); struct folio *folio = page_folio(page); struct hstate *h = m->hstate; VM_BUG_ON(!hstate_is_gigantic(h)); WARN_ON(folio_ref_count(folio) != 1); if (prep_compound_gigantic_folio(folio, huge_page_order(h))) { WARN_ON(folio_test_reserved(folio)); prep_new_hugetlb_folio(h, folio, folio_nid(folio)); free_huge_page(page); /* add to the hugepage allocator */ } else { /* VERY unlikely inflated ref count on a tail page */ free_gigantic_folio(folio, huge_page_order(h)); } /* * We need to restore the 'stolen' pages to totalram_pages * in order to fix confusing memory reports from free(1) and * other side-effects, like CommitLimit going negative. */ adjust_managed_page_count(page, pages_per_huge_page(h)); cond_resched(); } } static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid) { unsigned long i; char buf[32]; for (i = 0; i < h->max_huge_pages_node[nid]; ++i) { if (hstate_is_gigantic(h)) { if (!alloc_bootmem_huge_page(h, nid)) break; } else { struct folio *folio; gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, &node_states[N_MEMORY], NULL); if (!folio) break; free_huge_page(&folio->page); /* free it into the hugepage allocator */ } cond_resched(); } if (i == h->max_huge_pages_node[nid]) return; string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n", h->max_huge_pages_node[nid], buf, nid, i); h->max_huge_pages -= (h->max_huge_pages_node[nid] - i); h->max_huge_pages_node[nid] = i; } static void __init hugetlb_hstate_alloc_pages(struct hstate *h) { unsigned long i; nodemask_t *node_alloc_noretry; bool node_specific_alloc = false; /* skip gigantic hugepages allocation if hugetlb_cma enabled */ if (hstate_is_gigantic(h) && hugetlb_cma_size) { pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); return; } /* do node specific alloc */ for_each_online_node(i) { if (h->max_huge_pages_node[i] > 0) { hugetlb_hstate_alloc_pages_onenode(h, i); node_specific_alloc = true; } } if (node_specific_alloc) return; /* below will do all node balanced alloc */ if (!hstate_is_gigantic(h)) { /* * Bit mask controlling how hard we retry per-node allocations. * Ignore errors as lower level routines can deal with * node_alloc_noretry == NULL. If this kmalloc fails at boot * time, we are likely in bigger trouble. */ node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry), GFP_KERNEL); } else { /* allocations done at boot time */ node_alloc_noretry = NULL; } /* bit mask controlling how hard we retry per-node allocations */ if (node_alloc_noretry) nodes_clear(*node_alloc_noretry); for (i = 0; i < h->max_huge_pages; ++i) { if (hstate_is_gigantic(h)) { if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE)) break; } else if (!alloc_pool_huge_page(h, &node_states[N_MEMORY], node_alloc_noretry)) break; cond_resched(); } if (i < h->max_huge_pages) { char buf[32]; string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", h->max_huge_pages, buf, i); h->max_huge_pages = i; } kfree(node_alloc_noretry); } static void __init hugetlb_init_hstates(void) { struct hstate *h, *h2; for_each_hstate(h) { /* oversize hugepages were init'ed in early boot */ if (!hstate_is_gigantic(h)) hugetlb_hstate_alloc_pages(h); /* * Set demote order for each hstate. Note that * h->demote_order is initially 0. * - We can not demote gigantic pages if runtime freeing * is not supported, so skip this. * - If CMA allocation is possible, we can not demote * HUGETLB_PAGE_ORDER or smaller size pages. */ if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) continue; if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER) continue; for_each_hstate(h2) { if (h2 == h) continue; if (h2->order < h->order && h2->order > h->demote_order) h->demote_order = h2->order; } } } static void __init report_hugepages(void) { struct hstate *h; for_each_hstate(h) { char buf[32]; string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n", buf, h->free_huge_pages); pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n", hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf); } } #ifdef CONFIG_HIGHMEM static void try_to_free_low(struct hstate *h, unsigned long count, nodemask_t *nodes_allowed) { int i; LIST_HEAD(page_list); lockdep_assert_held(&hugetlb_lock); if (hstate_is_gigantic(h)) return; /* * Collect pages to be freed on a list, and free after dropping lock */ for_each_node_mask(i, *nodes_allowed) { struct page *page, *next; struct list_head *freel = &h->hugepage_freelists[i]; list_for_each_entry_safe(page, next, freel, lru) { if (count >= h->nr_huge_pages) goto out; if (PageHighMem(page)) continue; remove_hugetlb_folio(h, page_folio(page), false); list_add(&page->lru, &page_list); } } out: spin_unlock_irq(&hugetlb_lock); update_and_free_pages_bulk(h, &page_list); spin_lock_irq(&hugetlb_lock); } #else static inline void try_to_free_low(struct hstate *h, unsigned long count, nodemask_t *nodes_allowed) { } #endif /* * Increment or decrement surplus_huge_pages. Keep node-specific counters * balanced by operating on them in a round-robin fashion. * Returns 1 if an adjustment was made. */ static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, int delta) { int nr_nodes, node; lockdep_assert_held(&hugetlb_lock); VM_BUG_ON(delta != -1 && delta != 1); if (delta < 0) { for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { if (h->surplus_huge_pages_node[node]) goto found; } } else { for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { if (h->surplus_huge_pages_node[node] < h->nr_huge_pages_node[node]) goto found; } } return 0; found: h->surplus_huge_pages += delta; h->surplus_huge_pages_node[node] += delta; return 1; } #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, nodemask_t *nodes_allowed) { unsigned long min_count, ret; struct page *page; LIST_HEAD(page_list); NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); /* * Bit mask controlling how hard we retry per-node allocations. * If we can not allocate the bit mask, do not attempt to allocate * the requested huge pages. */ if (node_alloc_noretry) nodes_clear(*node_alloc_noretry); else return -ENOMEM; /* * resize_lock mutex prevents concurrent adjustments to number of * pages in hstate via the proc/sysfs interfaces. */ mutex_lock(&h->resize_lock); flush_free_hpage_work(h); spin_lock_irq(&hugetlb_lock); /* * Check for a node specific request. * Changing node specific huge page count may require a corresponding * change to the global count. In any case, the passed node mask * (nodes_allowed) will restrict alloc/free to the specified node. */ if (nid != NUMA_NO_NODE) { unsigned long old_count = count; count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; /* * User may have specified a large count value which caused the * above calculation to overflow. In this case, they wanted * to allocate as many huge pages as possible. Set count to * largest possible value to align with their intention. */ if (count < old_count) count = ULONG_MAX; } /* * Gigantic pages runtime allocation depend on the capability for large * page range allocation. * If the system does not provide this feature, return an error when * the user tries to allocate gigantic pages but let the user free the * boottime allocated gigantic pages. */ if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { if (count > persistent_huge_pages(h)) { spin_unlock_irq(&hugetlb_lock); mutex_unlock(&h->resize_lock); NODEMASK_FREE(node_alloc_noretry); return -EINVAL; } /* Fall through to decrease pool */ } /* * Increase the pool size * First take pages out of surplus state. Then make up the * remaining difference by allocating fresh huge pages. * * We might race with alloc_surplus_hugetlb_folio() here and be unable * to convert a surplus huge page to a normal huge page. That is * not critical, though, it just means the overall size of the * pool might be one hugepage larger than it needs to be, but * within all the constraints specified by the sysctls. */ while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { if (!adjust_pool_surplus(h, nodes_allowed, -1)) break; } while (count > persistent_huge_pages(h)) { /* * If this allocation races such that we no longer need the * page, free_huge_page will handle it by freeing the page * and reducing the surplus. */ spin_unlock_irq(&hugetlb_lock); /* yield cpu to avoid soft lockup */ cond_resched(); ret = alloc_pool_huge_page(h, nodes_allowed, node_alloc_noretry); spin_lock_irq(&hugetlb_lock); if (!ret) goto out; /* Bail for signals. Probably ctrl-c from user */ if (signal_pending(current)) goto out; } /* * Decrease the pool size * First return free pages to the buddy allocator (being careful * to keep enough around to satisfy reservations). Then place * pages into surplus state as needed so the pool will shrink * to the desired size as pages become free. * * By placing pages into the surplus state independent of the * overcommit value, we are allowing the surplus pool size to * exceed overcommit. There are few sane options here. Since * alloc_surplus_hugetlb_folio() is checking the global counter, * though, we'll note that we're not allowed to exceed surplus * and won't grow the pool anywhere else. Not until one of the * sysctls are changed, or the surplus pages go out of use. */ min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; min_count = max(count, min_count); try_to_free_low(h, min_count, nodes_allowed); /* * Collect pages to be removed on list without dropping lock */ while (min_count < persistent_huge_pages(h)) { page = remove_pool_huge_page(h, nodes_allowed, 0); if (!page) break; list_add(&page->lru, &page_list); } /* free the pages after dropping lock */ spin_unlock_irq(&hugetlb_lock); update_and_free_pages_bulk(h, &page_list); flush_free_hpage_work(h); spin_lock_irq(&hugetlb_lock); while (count < persistent_huge_pages(h)) { if (!adjust_pool_surplus(h, nodes_allowed, 1)) break; } out: h->max_huge_pages = persistent_huge_pages(h); spin_unlock_irq(&hugetlb_lock); mutex_unlock(&h->resize_lock); NODEMASK_FREE(node_alloc_noretry); return 0; } static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio) { int i, nid = folio_nid(folio); struct hstate *target_hstate; struct page *subpage; struct folio *inner_folio; int rc = 0; target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order); remove_hugetlb_folio_for_demote(h, folio, false); spin_unlock_irq(&hugetlb_lock); rc = hugetlb_vmemmap_restore(h, &folio->page); if (rc) { /* Allocation of vmemmmap failed, we can not demote folio */ spin_lock_irq(&hugetlb_lock); folio_ref_unfreeze(folio, 1); add_hugetlb_folio(h, folio, false); return rc; } /* * Use destroy_compound_hugetlb_folio_for_demote for all huge page * sizes as it will not ref count folios. */ destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h)); /* * Taking target hstate mutex synchronizes with set_max_huge_pages. * Without the mutex, pages added to target hstate could be marked * as surplus. * * Note that we already hold h->resize_lock. To prevent deadlock, * use the convention of always taking larger size hstate mutex first. */ mutex_lock(&target_hstate->resize_lock); for (i = 0; i < pages_per_huge_page(h); i += pages_per_huge_page(target_hstate)) { subpage = folio_page(folio, i); inner_folio = page_folio(subpage); if (hstate_is_gigantic(target_hstate)) prep_compound_gigantic_folio_for_demote(inner_folio, target_hstate->order); else prep_compound_page(subpage, target_hstate->order); folio_change_private(inner_folio, NULL); prep_new_hugetlb_folio(target_hstate, inner_folio, nid); free_huge_page(subpage); } mutex_unlock(&target_hstate->resize_lock); spin_lock_irq(&hugetlb_lock); /* * Not absolutely necessary, but for consistency update max_huge_pages * based on pool changes for the demoted page. */ h->max_huge_pages--; target_hstate->max_huge_pages += pages_per_huge_page(h) / pages_per_huge_page(target_hstate); return rc; } static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed) __must_hold(&hugetlb_lock) { int nr_nodes, node; struct folio *folio; lockdep_assert_held(&hugetlb_lock); /* We should never get here if no demote order */ if (!h->demote_order) { pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n"); return -EINVAL; /* internal error */ } for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { list_for_each_entry(folio, &h->hugepage_freelists[node], lru) { if (folio_test_hwpoison(folio)) continue; return demote_free_hugetlb_folio(h, folio); } } /* * Only way to get here is if all pages on free lists are poisoned. * Return -EBUSY so that caller will not retry. */ return -EBUSY; } #define HSTATE_ATTR_RO(_name) \ static struct kobj_attribute _name##_attr = __ATTR_RO(_name) #define HSTATE_ATTR_WO(_name) \ static struct kobj_attribute _name##_attr = __ATTR_WO(_name) #define HSTATE_ATTR(_name) \ static struct kobj_attribute _name##_attr = __ATTR_RW(_name) static struct kobject *hugepages_kobj; static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) { int i; for (i = 0; i < HUGE_MAX_HSTATE; i++) if (hstate_kobjs[i] == kobj) { if (nidp) *nidp = NUMA_NO_NODE; return &hstates[i]; } return kobj_to_node_hstate(kobj, nidp); } static ssize_t nr_hugepages_show_common(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct hstate *h; unsigned long nr_huge_pages; int nid; h = kobj_to_hstate(kobj, &nid); if (nid == NUMA_NO_NODE) nr_huge_pages = h->nr_huge_pages; else nr_huge_pages = h->nr_huge_pages_node[nid]; return sysfs_emit(buf, "%lu\n", nr_huge_pages); } static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, struct hstate *h, int nid, unsigned long count, size_t len) { int err; nodemask_t nodes_allowed, *n_mask; if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) return -EINVAL; if (nid == NUMA_NO_NODE) { /* * global hstate attribute */ if (!(obey_mempolicy && init_nodemask_of_mempolicy(&nodes_allowed))) n_mask = &node_states[N_MEMORY]; else n_mask = &nodes_allowed; } else { /* * Node specific request. count adjustment happens in * set_max_huge_pages() after acquiring hugetlb_lock. */ init_nodemask_of_node(&nodes_allowed, nid); n_mask = &nodes_allowed; } err = set_max_huge_pages(h, count, nid, n_mask); return err ? err : len; } static ssize_t nr_hugepages_store_common(bool obey_mempolicy, struct kobject *kobj, const char *buf, size_t len) { struct hstate *h; unsigned long count; int nid; int err; err = kstrtoul(buf, 10, &count); if (err) return err; h = kobj_to_hstate(kobj, &nid); return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); } static ssize_t nr_hugepages_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return nr_hugepages_show_common(kobj, attr, buf); } static ssize_t nr_hugepages_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t len) { return nr_hugepages_store_common(false, kobj, buf, len); } HSTATE_ATTR(nr_hugepages); #ifdef CONFIG_NUMA /* * hstate attribute for optionally mempolicy-based constraint on persistent * huge page alloc/free. */ static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return nr_hugepages_show_common(kobj, attr, buf); } static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t len) { return nr_hugepages_store_common(true, kobj, buf, len); } HSTATE_ATTR(nr_hugepages_mempolicy); #endif static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct hstate *h = kobj_to_hstate(kobj, NULL); return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages); } static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { int err; unsigned long input; struct hstate *h = kobj_to_hstate(kobj, NULL); if (hstate_is_gigantic(h)) return -EINVAL; err = kstrtoul(buf, 10, &input); if (err) return err; spin_lock_irq(&hugetlb_lock); h->nr_overcommit_huge_pages = input; spin_unlock_irq(&hugetlb_lock); return count; } HSTATE_ATTR(nr_overcommit_hugepages); static ssize_t free_hugepages_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct hstate *h; unsigned long free_huge_pages; int nid; h = kobj_to_hstate(kobj, &nid); if (nid == NUMA_NO_NODE) free_huge_pages = h->free_huge_pages; else free_huge_pages = h->free_huge_pages_node[nid]; return sysfs_emit(buf, "%lu\n", free_huge_pages); } HSTATE_ATTR_RO(free_hugepages); static ssize_t resv_hugepages_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct hstate *h = kobj_to_hstate(kobj, NULL); return sysfs_emit(buf, "%lu\n", h->resv_huge_pages); } HSTATE_ATTR_RO(resv_hugepages); static ssize_t surplus_hugepages_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct hstate *h; unsigned long surplus_huge_pages; int nid; h = kobj_to_hstate(kobj, &nid); if (nid == NUMA_NO_NODE) surplus_huge_pages = h->surplus_huge_pages; else surplus_huge_pages = h->surplus_huge_pages_node[nid]; return sysfs_emit(buf, "%lu\n", surplus_huge_pages); } HSTATE_ATTR_RO(surplus_hugepages); static ssize_t demote_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t len) { unsigned long nr_demote; unsigned long nr_available; nodemask_t nodes_allowed, *n_mask; struct hstate *h; int err; int nid; err = kstrtoul(buf, 10, &nr_demote); if (err) return err; h = kobj_to_hstate(kobj, &nid); if (nid != NUMA_NO_NODE) { init_nodemask_of_node(&nodes_allowed, nid); n_mask = &nodes_allowed; } else { n_mask = &node_states[N_MEMORY]; } /* Synchronize with other sysfs operations modifying huge pages */ mutex_lock(&h->resize_lock); spin_lock_irq(&hugetlb_lock); while (nr_demote) { /* * Check for available pages to demote each time thorough the * loop as demote_pool_huge_page will drop hugetlb_lock. */ if (nid != NUMA_NO_NODE) nr_available = h->free_huge_pages_node[nid]; else nr_available = h->free_huge_pages; nr_available -= h->resv_huge_pages; if (!nr_available) break; err = demote_pool_huge_page(h, n_mask); if (err) break; nr_demote--; } spin_unlock_irq(&hugetlb_lock); mutex_unlock(&h->resize_lock); if (err) return err; return len; } HSTATE_ATTR_WO(demote); static ssize_t demote_size_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct hstate *h = kobj_to_hstate(kobj, NULL); unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K; return sysfs_emit(buf, "%lukB\n", demote_size); } static ssize_t demote_size_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { struct hstate *h, *demote_hstate; unsigned long demote_size; unsigned int demote_order; demote_size = (unsigned long)memparse(buf, NULL); demote_hstate = size_to_hstate(demote_size); if (!demote_hstate) return -EINVAL; demote_order = demote_hstate->order; if (demote_order < HUGETLB_PAGE_ORDER) return -EINVAL; /* demote order must be smaller than hstate order */ h = kobj_to_hstate(kobj, NULL); if (demote_order >= h->order) return -EINVAL; /* resize_lock synchronizes access to demote size and writes */ mutex_lock(&h->resize_lock); h->demote_order = demote_order; mutex_unlock(&h->resize_lock); return count; } HSTATE_ATTR(demote_size); static struct attribute *hstate_attrs[] = { &nr_hugepages_attr.attr, &nr_overcommit_hugepages_attr.attr, &free_hugepages_attr.attr, &resv_hugepages_attr.attr, &surplus_hugepages_attr.attr, #ifdef CONFIG_NUMA &nr_hugepages_mempolicy_attr.attr, #endif NULL, }; static const struct attribute_group hstate_attr_group = { .attrs = hstate_attrs, }; static struct attribute *hstate_demote_attrs[] = { &demote_size_attr.attr, &demote_attr.attr, NULL, }; static const struct attribute_group hstate_demote_attr_group = { .attrs = hstate_demote_attrs, }; static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, struct kobject **hstate_kobjs, const struct attribute_group *hstate_attr_group) { int retval; int hi = hstate_index(h); hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); if (!hstate_kobjs[hi]) return -ENOMEM; retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); if (retval) { kobject_put(hstate_kobjs[hi]); hstate_kobjs[hi] = NULL; return retval; } if (h->demote_order) { retval = sysfs_create_group(hstate_kobjs[hi], &hstate_demote_attr_group); if (retval) { pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name); sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group); kobject_put(hstate_kobjs[hi]); hstate_kobjs[hi] = NULL; return retval; } } return 0; } #ifdef CONFIG_NUMA static bool hugetlb_sysfs_initialized __ro_after_init; /* * node_hstate/s - associate per node hstate attributes, via their kobjects, * with node devices in node_devices[] using a parallel array. The array * index of a node device or _hstate == node id. * This is here to avoid any static dependency of the node device driver, in * the base kernel, on the hugetlb module. */ struct node_hstate { struct kobject *hugepages_kobj; struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; }; static struct node_hstate node_hstates[MAX_NUMNODES]; /* * A subset of global hstate attributes for node devices */ static struct attribute *per_node_hstate_attrs[] = { &nr_hugepages_attr.attr, &free_hugepages_attr.attr, &surplus_hugepages_attr.attr, NULL, }; static const struct attribute_group per_node_hstate_attr_group = { .attrs = per_node_hstate_attrs, }; /* * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. * Returns node id via non-NULL nidp. */ static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) { int nid; for (nid = 0; nid < nr_node_ids; nid++) { struct node_hstate *nhs = &node_hstates[nid]; int i; for (i = 0; i < HUGE_MAX_HSTATE; i++) if (nhs->hstate_kobjs[i] == kobj) { if (nidp) *nidp = nid; return &hstates[i]; } } BUG(); return NULL; } /* * Unregister hstate attributes from a single node device. * No-op if no hstate attributes attached. */ void hugetlb_unregister_node(struct node *node) { struct hstate *h; struct node_hstate *nhs = &node_hstates[node->dev.id]; if (!nhs->hugepages_kobj) return; /* no hstate attributes */ for_each_hstate(h) { int idx = hstate_index(h); struct kobject *hstate_kobj = nhs->hstate_kobjs[idx]; if (!hstate_kobj) continue; if (h->demote_order) sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group); sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group); kobject_put(hstate_kobj); nhs->hstate_kobjs[idx] = NULL; } kobject_put(nhs->hugepages_kobj); nhs->hugepages_kobj = NULL; } /* * Register hstate attributes for a single node device. * No-op if attributes already registered. */ void hugetlb_register_node(struct node *node) { struct hstate *h; struct node_hstate *nhs = &node_hstates[node->dev.id]; int err; if (!hugetlb_sysfs_initialized) return; if (nhs->hugepages_kobj) return; /* already allocated */ nhs->hugepages_kobj = kobject_create_and_add("hugepages", &node->dev.kobj); if (!nhs->hugepages_kobj) return; for_each_hstate(h) { err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, nhs->hstate_kobjs, &per_node_hstate_attr_group); if (err) { pr_err("HugeTLB: Unable to add hstate %s for node %d\n", h->name, node->dev.id); hugetlb_unregister_node(node); break; } } } /* * hugetlb init time: register hstate attributes for all registered node * devices of nodes that have memory. All on-line nodes should have * registered their associated device by this time. */ static void __init hugetlb_register_all_nodes(void) { int nid; for_each_online_node(nid) hugetlb_register_node(node_devices[nid]); } #else /* !CONFIG_NUMA */ static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) { BUG(); if (nidp) *nidp = -1; return NULL; } static void hugetlb_register_all_nodes(void) { } #endif #ifdef CONFIG_CMA static void __init hugetlb_cma_check(void); #else static inline __init void hugetlb_cma_check(void) { } #endif static void __init hugetlb_sysfs_init(void) { struct hstate *h; int err; hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); if (!hugepages_kobj) return; for_each_hstate(h) { err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, hstate_kobjs, &hstate_attr_group); if (err) pr_err("HugeTLB: Unable to add hstate %s", h->name); } #ifdef CONFIG_NUMA hugetlb_sysfs_initialized = true; #endif hugetlb_register_all_nodes(); } static int __init hugetlb_init(void) { int i; BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE < __NR_HPAGEFLAGS); if (!hugepages_supported()) { if (hugetlb_max_hstate || default_hstate_max_huge_pages) pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); return 0; } /* * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some * architectures depend on setup being done here. */ hugetlb_add_hstate(HUGETLB_PAGE_ORDER); if (!parsed_default_hugepagesz) { /* * If we did not parse a default huge page size, set * default_hstate_idx to HPAGE_SIZE hstate. And, if the * number of huge pages for this default size was implicitly * specified, set that here as well. * Note that the implicit setting will overwrite an explicit * setting. A warning will be printed in this case. */ default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); if (default_hstate_max_huge_pages) { if (default_hstate.max_huge_pages) { char buf[32]; string_get_size(huge_page_size(&default_hstate), 1, STRING_UNITS_2, buf, 32); pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", default_hstate.max_huge_pages, buf); pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", default_hstate_max_huge_pages); } default_hstate.max_huge_pages = default_hstate_max_huge_pages; for_each_online_node(i) default_hstate.max_huge_pages_node[i] = default_hugepages_in_node[i]; } } hugetlb_cma_check(); hugetlb_init_hstates(); gather_bootmem_prealloc(); report_hugepages(); hugetlb_sysfs_init(); hugetlb_cgroup_file_init(); #ifdef CONFIG_SMP num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); #else num_fault_mutexes = 1; #endif hugetlb_fault_mutex_table = kmalloc_array(num_fault_mutexes, sizeof(struct mutex), GFP_KERNEL); BUG_ON(!hugetlb_fault_mutex_table); for (i = 0; i < num_fault_mutexes; i++) mutex_init(&hugetlb_fault_mutex_table[i]); return 0; } subsys_initcall(hugetlb_init); /* Overwritten by architectures with more huge page sizes */ bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) { return size == HPAGE_SIZE; } void __init hugetlb_add_hstate(unsigned int order) { struct hstate *h; unsigned long i; if (size_to_hstate(PAGE_SIZE << order)) { return; } BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); BUG_ON(order == 0); h = &hstates[hugetlb_max_hstate++]; mutex_init(&h->resize_lock); h->order = order; h->mask = ~(huge_page_size(h) - 1); for (i = 0; i < MAX_NUMNODES; ++i) INIT_LIST_HEAD(&h->hugepage_freelists[i]); INIT_LIST_HEAD(&h->hugepage_activelist); h->next_nid_to_alloc = first_memory_node; h->next_nid_to_free = first_memory_node; snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", huge_page_size(h)/SZ_1K); parsed_hstate = h; } bool __init __weak hugetlb_node_alloc_supported(void) { return true; } static void __init hugepages_clear_pages_in_node(void) { if (!hugetlb_max_hstate) { default_hstate_max_huge_pages = 0; memset(default_hugepages_in_node, 0, sizeof(default_hugepages_in_node)); } else { parsed_hstate->max_huge_pages = 0; memset(parsed_hstate->max_huge_pages_node, 0, sizeof(parsed_hstate->max_huge_pages_node)); } } /* * hugepages command line processing * hugepages normally follows a valid hugepagsz or default_hugepagsz * specification. If not, ignore the hugepages value. hugepages can also * be the first huge page command line option in which case it implicitly * specifies the number of huge pages for the default size. */ static int __init hugepages_setup(char *s) { unsigned long *mhp; static unsigned long *last_mhp; int node = NUMA_NO_NODE; int count; unsigned long tmp; char *p = s; if (!parsed_valid_hugepagesz) { pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); parsed_valid_hugepagesz = true; return 1; } /* * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter * yet, so this hugepages= parameter goes to the "default hstate". * Otherwise, it goes with the previously parsed hugepagesz or * default_hugepagesz. */ else if (!hugetlb_max_hstate) mhp = &default_hstate_max_huge_pages; else mhp = &parsed_hstate->max_huge_pages; if (mhp == last_mhp) { pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); return 1; } while (*p) { count = 0; if (sscanf(p, "%lu%n", &tmp, &count) != 1) goto invalid; /* Parameter is node format */ if (p[count] == ':') { if (!hugetlb_node_alloc_supported()) { pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n"); return 1; } if (tmp >= MAX_NUMNODES || !node_online(tmp)) goto invalid; node = array_index_nospec(tmp, MAX_NUMNODES); p += count + 1; /* Parse hugepages */ if (sscanf(p, "%lu%n", &tmp, &count) != 1) goto invalid; if (!hugetlb_max_hstate) default_hugepages_in_node[node] = tmp; else parsed_hstate->max_huge_pages_node[node] = tmp; *mhp += tmp; /* Go to parse next node*/ if (p[count] == ',') p += count + 1; else break; } else { if (p != s) goto invalid; *mhp = tmp; break; } } /* * Global state is always initialized later in hugetlb_init. * But we need to allocate gigantic hstates here early to still * use the bootmem allocator. */ if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate)) hugetlb_hstate_alloc_pages(parsed_hstate); last_mhp = mhp; return 1; invalid: pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p); hugepages_clear_pages_in_node(); return 1; } __setup("hugepages=", hugepages_setup); /* * hugepagesz command line processing * A specific huge page size can only be specified once with hugepagesz. * hugepagesz is followed by hugepages on the command line. The global * variable 'parsed_valid_hugepagesz' is used to determine if prior * hugepagesz argument was valid. */ static int __init hugepagesz_setup(char *s) { unsigned long size; struct hstate *h; parsed_valid_hugepagesz = false; size = (unsigned long)memparse(s, NULL); if (!arch_hugetlb_valid_size(size)) { pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); return 1; } h = size_to_hstate(size); if (h) { /* * hstate for this size already exists. This is normally * an error, but is allowed if the existing hstate is the * default hstate. More specifically, it is only allowed if * the number of huge pages for the default hstate was not * previously specified. */ if (!parsed_default_hugepagesz || h != &default_hstate || default_hstate.max_huge_pages) { pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); return 1; } /* * No need to call hugetlb_add_hstate() as hstate already * exists. But, do set parsed_hstate so that a following * hugepages= parameter will be applied to this hstate. */ parsed_hstate = h; parsed_valid_hugepagesz = true; return 1; } hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); parsed_valid_hugepagesz = true; return 1; } __setup("hugepagesz=", hugepagesz_setup); /* * default_hugepagesz command line input * Only one instance of default_hugepagesz allowed on command line. */ static int __init default_hugepagesz_setup(char *s) { unsigned long size; int i; parsed_valid_hugepagesz = false; if (parsed_default_hugepagesz) { pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); return 1; } size = (unsigned long)memparse(s, NULL); if (!arch_hugetlb_valid_size(size)) { pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); return 1; } hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); parsed_valid_hugepagesz = true; parsed_default_hugepagesz = true; default_hstate_idx = hstate_index(size_to_hstate(size)); /* * The number of default huge pages (for this size) could have been * specified as the first hugetlb parameter: hugepages=X. If so, * then default_hstate_max_huge_pages is set. If the default huge * page size is gigantic (> MAX_ORDER), then the pages must be * allocated here from bootmem allocator. */ if (default_hstate_max_huge_pages) { default_hstate.max_huge_pages = default_hstate_max_huge_pages; for_each_online_node(i) default_hstate.max_huge_pages_node[i] = default_hugepages_in_node[i]; if (hstate_is_gigantic(&default_hstate)) hugetlb_hstate_alloc_pages(&default_hstate); default_hstate_max_huge_pages = 0; } return 1; } __setup("default_hugepagesz=", default_hugepagesz_setup); static nodemask_t *policy_mbind_nodemask(gfp_t gfp) { #ifdef CONFIG_NUMA struct mempolicy *mpol = get_task_policy(current); /* * Only enforce MPOL_BIND policy which overlaps with cpuset policy * (from policy_nodemask) specifically for hugetlb case */ if (mpol->mode == MPOL_BIND && (apply_policy_zone(mpol, gfp_zone(gfp)) && cpuset_nodemask_valid_mems_allowed(&mpol->nodes))) return &mpol->nodes; #endif return NULL; } static unsigned int allowed_mems_nr(struct hstate *h) { int node; unsigned int nr = 0; nodemask_t *mbind_nodemask; unsigned int *array = h->free_huge_pages_node; gfp_t gfp_mask = htlb_alloc_mask(h); mbind_nodemask = policy_mbind_nodemask(gfp_mask); for_each_node_mask(node, cpuset_current_mems_allowed) { if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) nr += array[node]; } return nr; } #ifdef CONFIG_SYSCTL static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write, void *buffer, size_t *length, loff_t *ppos, unsigned long *out) { struct ctl_table dup_table; /* * In order to avoid races with __do_proc_doulongvec_minmax(), we * can duplicate the @table and alter the duplicate of it. */ dup_table = *table; dup_table.data = out; return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos); } static int hugetlb_sysctl_handler_common(bool obey_mempolicy, struct ctl_table *table, int write, void *buffer, size_t *length, loff_t *ppos) { struct hstate *h = &default_hstate; unsigned long tmp = h->max_huge_pages; int ret; if (!hugepages_supported()) return -EOPNOTSUPP; ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, &tmp); if (ret) goto out; if (write) ret = __nr_hugepages_store_common(obey_mempolicy, h, NUMA_NO_NODE, tmp, *length); out: return ret; } int hugetlb_sysctl_handler(struct ctl_table *table, int write, void *buffer, size_t *length, loff_t *ppos) { return hugetlb_sysctl_handler_common(false, table, write, buffer, length, ppos); } #ifdef CONFIG_NUMA int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, void *buffer, size_t *length, loff_t *ppos) { return hugetlb_sysctl_handler_common(true, table, write, buffer, length, ppos); } #endif /* CONFIG_NUMA */ int hugetlb_overcommit_handler(struct ctl_table *table, int write, void *buffer, size_t *length, loff_t *ppos) { struct hstate *h = &default_hstate; unsigned long tmp; int ret; if (!hugepages_supported()) return -EOPNOTSUPP; tmp = h->nr_overcommit_huge_pages; if (write && hstate_is_gigantic(h)) return -EINVAL; ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, &tmp); if (ret) goto out; if (write) { spin_lock_irq(&hugetlb_lock); h->nr_overcommit_huge_pages = tmp; spin_unlock_irq(&hugetlb_lock); } out: return ret; } #endif /* CONFIG_SYSCTL */ void hugetlb_report_meminfo(struct seq_file *m) { struct hstate *h; unsigned long total = 0; if (!hugepages_supported()) return; for_each_hstate(h) { unsigned long count = h->nr_huge_pages; total += huge_page_size(h) * count; if (h == &default_hstate) seq_printf(m, "HugePages_Total: %5lu\n" "HugePages_Free: %5lu\n" "HugePages_Rsvd: %5lu\n" "HugePages_Surp: %5lu\n" "Hugepagesize: %8lu kB\n", count, h->free_huge_pages, h->resv_huge_pages, h->surplus_huge_pages, huge_page_size(h) / SZ_1K); } seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K); } int hugetlb_report_node_meminfo(char *buf, int len, int nid) { struct hstate *h = &default_hstate; if (!hugepages_supported()) return 0; return sysfs_emit_at(buf, len, "Node %d HugePages_Total: %5u\n" "Node %d HugePages_Free: %5u\n" "Node %d HugePages_Surp: %5u\n", nid, h->nr_huge_pages_node[nid], nid, h->free_huge_pages_node[nid], nid, h->surplus_huge_pages_node[nid]); } void hugetlb_show_meminfo_node(int nid) { struct hstate *h; if (!hugepages_supported()) return; for_each_hstate(h) printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", nid, h->nr_huge_pages_node[nid], h->free_huge_pages_node[nid], h->surplus_huge_pages_node[nid], huge_page_size(h) / SZ_1K); } void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) { seq_printf(m, "HugetlbPages:\t%8lu kB\n", atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); } /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ unsigned long hugetlb_total_pages(void) { struct hstate *h; unsigned long nr_total_pages = 0; for_each_hstate(h) nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); return nr_total_pages; } static int hugetlb_acct_memory(struct hstate *h, long delta) { int ret = -ENOMEM; if (!delta) return 0; spin_lock_irq(&hugetlb_lock); /* * When cpuset is configured, it breaks the strict hugetlb page * reservation as the accounting is done on a global variable. Such * reservation is completely rubbish in the presence of cpuset because * the reservation is not checked against page availability for the * current cpuset. Application can still potentially OOM'ed by kernel * with lack of free htlb page in cpuset that the task is in. * Attempt to enforce strict accounting with cpuset is almost * impossible (or too ugly) because cpuset is too fluid that * task or memory node can be dynamically moved between cpusets. * * The change of semantics for shared hugetlb mapping with cpuset is * undesirable. However, in order to preserve some of the semantics, * we fall back to check against current free page availability as * a best attempt and hopefully to minimize the impact of changing * semantics that cpuset has. * * Apart from cpuset, we also have memory policy mechanism that * also determines from which node the kernel will allocate memory * in a NUMA system. So similar to cpuset, we also should consider * the memory policy of the current task. Similar to the description * above. */ if (delta > 0) { if (gather_surplus_pages(h, delta) < 0) goto out; if (delta > allowed_mems_nr(h)) { return_unused_surplus_pages(h, delta); goto out; } } ret = 0; if (delta < 0) return_unused_surplus_pages(h, (unsigned long) -delta); out: spin_unlock_irq(&hugetlb_lock); return ret; } static void hugetlb_vm_op_open(struct vm_area_struct *vma) { struct resv_map *resv = vma_resv_map(vma); /* * HPAGE_RESV_OWNER indicates a private mapping. * This new VMA should share its siblings reservation map if present. * The VMA will only ever have a valid reservation map pointer where * it is being copied for another still existing VMA. As that VMA * has a reference to the reservation map it cannot disappear until * after this open call completes. It is therefore safe to take a * new reference here without additional locking. */ if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { resv_map_dup_hugetlb_cgroup_uncharge_info(resv); kref_get(&resv->refs); } /* * vma_lock structure for sharable mappings is vma specific. * Clear old pointer (if copied via vm_area_dup) and allocate * new structure. Before clearing, make sure vma_lock is not * for this vma. */ if (vma->vm_flags & VM_MAYSHARE) { struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; if (vma_lock) { if (vma_lock->vma != vma) { vma->vm_private_data = NULL; hugetlb_vma_lock_alloc(vma); } else pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__); } else hugetlb_vma_lock_alloc(vma); } } static void hugetlb_vm_op_close(struct vm_area_struct *vma) { struct hstate *h = hstate_vma(vma); struct resv_map *resv; struct hugepage_subpool *spool = subpool_vma(vma); unsigned long reserve, start, end; long gbl_reserve; hugetlb_vma_lock_free(vma); resv = vma_resv_map(vma); if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) return; start = vma_hugecache_offset(h, vma, vma->vm_start); end = vma_hugecache_offset(h, vma, vma->vm_end); reserve = (end - start) - region_count(resv, start, end); hugetlb_cgroup_uncharge_counter(resv, start, end); if (reserve) { /* * Decrement reserve counts. The global reserve count may be * adjusted if the subpool has a minimum size. */ gbl_reserve = hugepage_subpool_put_pages(spool, reserve); hugetlb_acct_memory(h, -gbl_reserve); } kref_put(&resv->refs, resv_map_release); } static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) { if (addr & ~(huge_page_mask(hstate_vma(vma)))) return -EINVAL; /* * PMD sharing is only possible for PUD_SIZE-aligned address ranges * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this * split, unshare PMDs in the PUD_SIZE interval surrounding addr now. */ if (addr & ~PUD_MASK) { /* * hugetlb_vm_op_split is called right before we attempt to * split the VMA. We will need to unshare PMDs in the old and * new VMAs, so let's unshare before we split. */ unsigned long floor = addr & PUD_MASK; unsigned long ceil = floor + PUD_SIZE; if (floor >= vma->vm_start && ceil <= vma->vm_end) hugetlb_unshare_pmds(vma, floor, ceil); } return 0; } static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) { return huge_page_size(hstate_vma(vma)); } /* * We cannot handle pagefaults against hugetlb pages at all. They cause * handle_mm_fault() to try to instantiate regular-sized pages in the * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get * this far. */ static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) { BUG(); return 0; } /* * When a new function is introduced to vm_operations_struct and added * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. * This is because under System V memory model, mappings created via * shmget/shmat with "huge page" specified are backed by hugetlbfs files, * their original vm_ops are overwritten with shm_vm_ops. */ const struct vm_operations_struct hugetlb_vm_ops = { .fault = hugetlb_vm_op_fault, .open = hugetlb_vm_op_open, .close = hugetlb_vm_op_close, .may_split = hugetlb_vm_op_split, .pagesize = hugetlb_vm_op_pagesize, }; static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, int writable) { pte_t entry; unsigned int shift = huge_page_shift(hstate_vma(vma)); if (writable) { entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, vma->vm_page_prot))); } else { entry = huge_pte_wrprotect(mk_huge_pte(page, vma->vm_page_prot)); } entry = pte_mkyoung(entry); entry = arch_make_huge_pte(entry, shift, vma->vm_flags); return entry; } static void set_huge_ptep_writable(struct vm_area_struct *vma, unsigned long address, pte_t *ptep) { pte_t entry; entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) update_mmu_cache(vma, address, ptep); } bool is_hugetlb_entry_migration(pte_t pte) { swp_entry_t swp; if (huge_pte_none(pte) || pte_present(pte)) return false; swp = pte_to_swp_entry(pte); if (is_migration_entry(swp)) return true; else return false; } static bool is_hugetlb_entry_hwpoisoned(pte_t pte) { swp_entry_t swp; if (huge_pte_none(pte) || pte_present(pte)) return false; swp = pte_to_swp_entry(pte); if (is_hwpoison_entry(swp)) return true; else return false; } static void hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr, struct folio *new_folio) { __folio_mark_uptodate(new_folio); hugepage_add_new_anon_rmap(new_folio, vma, addr); set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, &new_folio->page, 1)); hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm); folio_set_hugetlb_migratable(new_folio); } int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) { pte_t *src_pte, *dst_pte, entry; struct page *ptepage; unsigned long addr; bool cow = is_cow_mapping(src_vma->vm_flags); struct hstate *h = hstate_vma(src_vma); unsigned long sz = huge_page_size(h); unsigned long npages = pages_per_huge_page(h); struct mmu_notifier_range range; unsigned long last_addr_mask; int ret = 0; if (cow) { mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src, src_vma->vm_start, src_vma->vm_end); mmu_notifier_invalidate_range_start(&range); mmap_assert_write_locked(src); raw_write_seqcount_begin(&src->write_protect_seq); } else { /* * For shared mappings the vma lock must be held before * calling hugetlb_walk() in the src vma. Otherwise, the * returned ptep could go away if part of a shared pmd and * another thread calls huge_pmd_unshare. */ hugetlb_vma_lock_read(src_vma); } last_addr_mask = hugetlb_mask_last_page(h); for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) { spinlock_t *src_ptl, *dst_ptl; src_pte = hugetlb_walk(src_vma, addr, sz); if (!src_pte) { addr |= last_addr_mask; continue; } dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz); if (!dst_pte) { ret = -ENOMEM; break; } /* * If the pagetables are shared don't copy or take references. * * dst_pte == src_pte is the common case of src/dest sharing. * However, src could have 'unshared' and dst shares with * another vma. So page_count of ptep page is checked instead * to reliably determine whether pte is shared. */ if (page_count(virt_to_page(dst_pte)) > 1) { addr |= last_addr_mask; continue; } dst_ptl = huge_pte_lock(h, dst, dst_pte); src_ptl = huge_pte_lockptr(h, src, src_pte); spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); entry = huge_ptep_get(src_pte); again: if (huge_pte_none(entry)) { /* * Skip if src entry none. */ ; } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) { bool uffd_wp = huge_pte_uffd_wp(entry); if (!userfaultfd_wp(dst_vma) && uffd_wp) entry = huge_pte_clear_uffd_wp(entry); set_huge_pte_at(dst, addr, dst_pte, entry); } else if (unlikely(is_hugetlb_entry_migration(entry))) { swp_entry_t swp_entry = pte_to_swp_entry(entry); bool uffd_wp = huge_pte_uffd_wp(entry); if (!is_readable_migration_entry(swp_entry) && cow) { /* * COW mappings require pages in both * parent and child to be set to read. */ swp_entry = make_readable_migration_entry( swp_offset(swp_entry)); entry = swp_entry_to_pte(swp_entry); if (userfaultfd_wp(src_vma) && uffd_wp) entry = huge_pte_mkuffd_wp(entry); set_huge_pte_at(src, addr, src_pte, entry); } if (!userfaultfd_wp(dst_vma) && uffd_wp) entry = huge_pte_clear_uffd_wp(entry); set_huge_pte_at(dst, addr, dst_pte, entry); } else if (unlikely(is_pte_marker(entry))) { /* No swap on hugetlb */ WARN_ON_ONCE( is_swapin_error_entry(pte_to_swp_entry(entry))); /* * We copy the pte marker only if the dst vma has * uffd-wp enabled. */ if (userfaultfd_wp(dst_vma)) set_huge_pte_at(dst, addr, dst_pte, entry); } else { entry = huge_ptep_get(src_pte); ptepage = pte_page(entry); get_page(ptepage); /* * Failing to duplicate the anon rmap is a rare case * where we see pinned hugetlb pages while they're * prone to COW. We need to do the COW earlier during * fork. * * When pre-allocating the page or copying data, we * need to be without the pgtable locks since we could * sleep during the process. */ if (!PageAnon(ptepage)) { page_dup_file_rmap(ptepage, true); } else if (page_try_dup_anon_rmap(ptepage, true, src_vma)) { pte_t src_pte_old = entry; struct folio *new_folio; spin_unlock(src_ptl); spin_unlock(dst_ptl); /* Do not use reserve as it's private owned */ new_folio = alloc_hugetlb_folio(dst_vma, addr, 1); if (IS_ERR(new_folio)) { put_page(ptepage); ret = PTR_ERR(new_folio); break; } copy_user_huge_page(&new_folio->page, ptepage, addr, dst_vma, npages); put_page(ptepage); /* Install the new hugetlb folio if src pte stable */ dst_ptl = huge_pte_lock(h, dst, dst_pte); src_ptl = huge_pte_lockptr(h, src, src_pte); spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); entry = huge_ptep_get(src_pte); if (!pte_same(src_pte_old, entry)) { restore_reserve_on_error(h, dst_vma, addr, new_folio); folio_put(new_folio); /* huge_ptep of dst_pte won't change as in child */ goto again; } hugetlb_install_folio(dst_vma, dst_pte, addr, new_folio); spin_unlock(src_ptl); spin_unlock(dst_ptl); continue; } if (cow) { /* * No need to notify as we are downgrading page * table protection not changing it to point * to a new page. * * See Documentation/mm/mmu_notifier.rst */ huge_ptep_set_wrprotect(src, addr, src_pte); entry = huge_pte_wrprotect(entry); } set_huge_pte_at(dst, addr, dst_pte, entry); hugetlb_count_add(npages, dst); } spin_unlock(src_ptl); spin_unlock(dst_ptl); } if (cow) { raw_write_seqcount_end(&src->write_protect_seq); mmu_notifier_invalidate_range_end(&range); } else { hugetlb_vma_unlock_read(src_vma); } return ret; } static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr, unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte) { struct hstate *h = hstate_vma(vma); struct mm_struct *mm = vma->vm_mm; spinlock_t *src_ptl, *dst_ptl; pte_t pte; dst_ptl = huge_pte_lock(h, mm, dst_pte); src_ptl = huge_pte_lockptr(h, mm, src_pte); /* * We don't have to worry about the ordering of src and dst ptlocks * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock. */ if (src_ptl != dst_ptl) spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); pte = huge_ptep_get_and_clear(mm, old_addr, src_pte); set_huge_pte_at(mm, new_addr, dst_pte, pte); if (src_ptl != dst_ptl) spin_unlock(src_ptl); spin_unlock(dst_ptl); } int move_hugetlb_page_tables(struct vm_area_struct *vma, struct vm_area_struct *new_vma, unsigned long old_addr, unsigned long new_addr, unsigned long len) { struct hstate *h = hstate_vma(vma); struct address_space *mapping = vma->vm_file->f_mapping; unsigned long sz = huge_page_size(h); struct mm_struct *mm = vma->vm_mm; unsigned long old_end = old_addr + len; unsigned long last_addr_mask; pte_t *src_pte, *dst_pte; struct mmu_notifier_range range; bool shared_pmd = false; mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr, old_end); adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); /* * In case of shared PMDs, we should cover the maximum possible * range. */ flush_cache_range(vma, range.start, range.end); mmu_notifier_invalidate_range_start(&range); last_addr_mask = hugetlb_mask_last_page(h); /* Prevent race with file truncation */ hugetlb_vma_lock_write(vma); i_mmap_lock_write(mapping); for (; old_addr < old_end; old_addr += sz, new_addr += sz) { src_pte = hugetlb_walk(vma, old_addr, sz); if (!src_pte) { old_addr |= last_addr_mask; new_addr |= last_addr_mask; continue; } if (huge_pte_none(huge_ptep_get(src_pte))) continue; if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) { shared_pmd = true; old_addr |= last_addr_mask; new_addr |= last_addr_mask; continue; } dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz); if (!dst_pte) break; move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte); } if (shared_pmd) flush_tlb_range(vma, range.start, range.end); else flush_tlb_range(vma, old_end - len, old_end); mmu_notifier_invalidate_range_end(&range); i_mmap_unlock_write(mapping); hugetlb_vma_unlock_write(vma); return len + old_addr - old_end; } static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, unsigned long start, unsigned long end, struct page *ref_page, zap_flags_t zap_flags) { struct mm_struct *mm = vma->vm_mm; unsigned long address; pte_t *ptep; pte_t pte; spinlock_t *ptl; struct page *page; struct hstate *h = hstate_vma(vma); unsigned long sz = huge_page_size(h); unsigned long last_addr_mask; bool force_flush = false; WARN_ON(!is_vm_hugetlb_page(vma)); BUG_ON(start & ~huge_page_mask(h)); BUG_ON(end & ~huge_page_mask(h)); /* * This is a hugetlb vma, all the pte entries should point * to huge page. */ tlb_change_page_size(tlb, sz); tlb_start_vma(tlb, vma); last_addr_mask = hugetlb_mask_last_page(h); address = start; for (; address < end; address += sz) { ptep = hugetlb_walk(vma, address, sz); if (!ptep) { address |= last_addr_mask; continue; } ptl = huge_pte_lock(h, mm, ptep); if (huge_pmd_unshare(mm, vma, address, ptep)) { spin_unlock(ptl); tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE); force_flush = true; address |= last_addr_mask; continue; } pte = huge_ptep_get(ptep); if (huge_pte_none(pte)) { spin_unlock(ptl); continue; } /* * Migrating hugepage or HWPoisoned hugepage is already * unmapped and its refcount is dropped, so just clear pte here. */ if (unlikely(!pte_present(pte))) { /* * If the pte was wr-protected by uffd-wp in any of the * swap forms, meanwhile the caller does not want to * drop the uffd-wp bit in this zap, then replace the * pte with a marker. */ if (pte_swp_uffd_wp_any(pte) && !(zap_flags & ZAP_FLAG_DROP_MARKER)) set_huge_pte_at(mm, address, ptep, make_pte_marker(PTE_MARKER_UFFD_WP)); else huge_pte_clear(mm, address, ptep, sz); spin_unlock(ptl); continue; } page = pte_page(pte); /* * If a reference page is supplied, it is because a specific * page is being unmapped, not a range. Ensure the page we * are about to unmap is the actual page of interest. */ if (ref_page) { if (page != ref_page) { spin_unlock(ptl); continue; } /* * Mark the VMA as having unmapped its page so that * future faults in this VMA will fail rather than * looking like data was lost */ set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); } pte = huge_ptep_get_and_clear(mm, address, ptep); tlb_remove_huge_tlb_entry(h, tlb, ptep, address); if (huge_pte_dirty(pte)) set_page_dirty(page); /* Leave a uffd-wp pte marker if needed */ if (huge_pte_uffd_wp(pte) && !(zap_flags & ZAP_FLAG_DROP_MARKER)) set_huge_pte_at(mm, address, ptep, make_pte_marker(PTE_MARKER_UFFD_WP)); hugetlb_count_sub(pages_per_huge_page(h), mm); page_remove_rmap(page, vma, true); spin_unlock(ptl); tlb_remove_page_size(tlb, page, huge_page_size(h)); /* * Bail out after unmapping reference page if supplied */ if (ref_page) break; } tlb_end_vma(tlb, vma); /* * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We * could defer the flush until now, since by holding i_mmap_rwsem we * guaranteed that the last refernece would not be dropped. But we must * do the flushing before we return, as otherwise i_mmap_rwsem will be * dropped and the last reference to the shared PMDs page might be * dropped as well. * * In theory we could defer the freeing of the PMD pages as well, but * huge_pmd_unshare() relies on the exact page_count for the PMD page to * detect sharing, so we cannot defer the release of the page either. * Instead, do flush now. */ if (force_flush) tlb_flush_mmu_tlbonly(tlb); } void __unmap_hugepage_range_final(struct mmu_gather *tlb, struct vm_area_struct *vma, unsigned long start, unsigned long end, struct page *ref_page, zap_flags_t zap_flags) { hugetlb_vma_lock_write(vma); i_mmap_lock_write(vma->vm_file->f_mapping); /* mmu notification performed in caller */ __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags); if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */ /* * Unlock and free the vma lock before releasing i_mmap_rwsem. * When the vma_lock is freed, this makes the vma ineligible * for pmd sharing. And, i_mmap_rwsem is required to set up * pmd sharing. This is important as page tables for this * unmapped range will be asynchrously deleted. If the page * tables are shared, there will be issues when accessed by * someone else. */ __hugetlb_vma_unlock_write_free(vma); i_mmap_unlock_write(vma->vm_file->f_mapping); } else { i_mmap_unlock_write(vma->vm_file->f_mapping); hugetlb_vma_unlock_write(vma); } } void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, unsigned long end, struct page *ref_page, zap_flags_t zap_flags) { struct mmu_notifier_range range; struct mmu_gather tlb; mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, start, end); adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); mmu_notifier_invalidate_range_start(&range); tlb_gather_mmu(&tlb, vma->vm_mm); __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags); mmu_notifier_invalidate_range_end(&range); tlb_finish_mmu(&tlb); } /* * This is called when the original mapper is failing to COW a MAP_PRIVATE * mapping it owns the reserve page for. The intention is to unmap the page * from other VMAs and let the children be SIGKILLed if they are faulting the * same region. */ static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, struct page *page, unsigned long address) { struct hstate *h = hstate_vma(vma); struct vm_area_struct *iter_vma; struct address_space *mapping; pgoff_t pgoff; /* * vm_pgoff is in PAGE_SIZE units, hence the different calculation * from page cache lookup which is in HPAGE_SIZE units. */ address = address & huge_page_mask(h); pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; mapping = vma->vm_file->f_mapping; /* * Take the mapping lock for the duration of the table walk. As * this mapping should be shared between all the VMAs, * __unmap_hugepage_range() is called as the lock is already held */ i_mmap_lock_write(mapping); vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { /* Do not unmap the current VMA */ if (iter_vma == vma) continue; /* * Shared VMAs have their own reserves and do not affect * MAP_PRIVATE accounting but it is possible that a shared * VMA is using the same page so check and skip such VMAs. */ if (iter_vma->vm_flags & VM_MAYSHARE) continue; /* * Unmap the page from other VMAs without their own reserves. * They get marked to be SIGKILLed if they fault in these * areas. This is because a future no-page fault on this VMA * could insert a zeroed page instead of the data existing * from the time of fork. This would look like data corruption */ if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) unmap_hugepage_range(iter_vma, address, address + huge_page_size(h), page, 0); } i_mmap_unlock_write(mapping); } /* * hugetlb_wp() should be called with page lock of the original hugepage held. * Called with hugetlb_fault_mutex_table held and pte_page locked so we * cannot race with other handlers or page migration. * Keep the pte_same checks anyway to make transition from the mutex easier. */ static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long address, pte_t *ptep, unsigned int flags, struct folio *pagecache_folio, spinlock_t *ptl) { const bool unshare = flags & FAULT_FLAG_UNSHARE; pte_t pte; struct hstate *h = hstate_vma(vma); struct page *old_page; struct folio *new_folio; int outside_reserve = 0; vm_fault_t ret = 0; unsigned long haddr = address & huge_page_mask(h); struct mmu_notifier_range range; /* * hugetlb does not support FOLL_FORCE-style write faults that keep the * PTE mapped R/O such as maybe_mkwrite() would do. */ if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE))) return VM_FAULT_SIGSEGV; /* Let's take out MAP_SHARED mappings first. */ if (vma->vm_flags & VM_MAYSHARE) { set_huge_ptep_writable(vma, haddr, ptep); return 0; } pte = huge_ptep_get(ptep); old_page = pte_page(pte); delayacct_wpcopy_start(); retry_avoidcopy: /* * If no-one else is actually using this page, we're the exclusive * owner and can reuse this page. */ if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { if (!PageAnonExclusive(old_page)) page_move_anon_rmap(old_page, vma); if (likely(!unshare)) set_huge_ptep_writable(vma, haddr, ptep); delayacct_wpcopy_end(); return 0; } VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page), old_page); /* * If the process that created a MAP_PRIVATE mapping is about to * perform a COW due to a shared page count, attempt to satisfy * the allocation without using the existing reserves. The pagecache * page is used to determine if the reserve at this address was * consumed or not. If reserves were used, a partial faulted mapping * at the time of fork() could consume its reserves on COW instead * of the full address range. */ if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && page_folio(old_page) != pagecache_folio) outside_reserve = 1; get_page(old_page); /* * Drop page table lock as buddy allocator may be called. It will * be acquired again before returning to the caller, as expected. */ spin_unlock(ptl); new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve); if (IS_ERR(new_folio)) { /* * If a process owning a MAP_PRIVATE mapping fails to COW, * it is due to references held by a child and an insufficient * huge page pool. To guarantee the original mappers * reliability, unmap the page from child processes. The child * may get SIGKILLed if it later faults. */ if (outside_reserve) { struct address_space *mapping = vma->vm_file->f_mapping; pgoff_t idx; u32 hash; put_page(old_page); /* * Drop hugetlb_fault_mutex and vma_lock before * unmapping. unmapping needs to hold vma_lock * in write mode. Dropping vma_lock in read mode * here is OK as COW mappings do not interact with * PMD sharing. * * Reacquire both after unmap operation. */ idx = vma_hugecache_offset(h, vma, haddr); hash = hugetlb_fault_mutex_hash(mapping, idx); hugetlb_vma_unlock_read(vma); mutex_unlock(&hugetlb_fault_mutex_table[hash]); unmap_ref_private(mm, vma, old_page, haddr); mutex_lock(&hugetlb_fault_mutex_table[hash]); hugetlb_vma_lock_read(vma); spin_lock(ptl); ptep = hugetlb_walk(vma, haddr, huge_page_size(h)); if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) goto retry_avoidcopy; /* * race occurs while re-acquiring page table * lock, and our job is done. */ delayacct_wpcopy_end(); return 0; } ret = vmf_error(PTR_ERR(new_folio)); goto out_release_old; } /* * When the original hugepage is shared one, it does not have * anon_vma prepared. */ if (unlikely(anon_vma_prepare(vma))) { ret = VM_FAULT_OOM; goto out_release_all; } copy_user_huge_page(&new_folio->page, old_page, address, vma, pages_per_huge_page(h)); __folio_mark_uptodate(new_folio); mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr, haddr + huge_page_size(h)); mmu_notifier_invalidate_range_start(&range); /* * Retake the page table lock to check for racing updates * before the page tables are altered */ spin_lock(ptl); ptep = hugetlb_walk(vma, haddr, huge_page_size(h)); if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { /* Break COW or unshare */ huge_ptep_clear_flush(vma, haddr, ptep); mmu_notifier_invalidate_range(mm, range.start, range.end); page_remove_rmap(old_page, vma, true); hugepage_add_new_anon_rmap(new_folio, vma, haddr); set_huge_pte_at(mm, haddr, ptep, make_huge_pte(vma, &new_folio->page, !unshare)); folio_set_hugetlb_migratable(new_folio); /* Make the old page be freed below */ new_folio = page_folio(old_page); } spin_unlock(ptl); mmu_notifier_invalidate_range_end(&range); out_release_all: /* * No restore in case of successful pagetable update (Break COW or * unshare) */ if (new_folio != page_folio(old_page)) restore_reserve_on_error(h, vma, haddr, new_folio); folio_put(new_folio); out_release_old: put_page(old_page); spin_lock(ptl); /* Caller expects lock to be held */ delayacct_wpcopy_end(); return ret; } /* * Return whether there is a pagecache page to back given address within VMA. * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. */ static bool hugetlbfs_pagecache_present(struct hstate *h, struct vm_area_struct *vma, unsigned long address) { struct address_space *mapping = vma->vm_file->f_mapping; pgoff_t idx = vma_hugecache_offset(h, vma, address); bool present; rcu_read_lock(); present = page_cache_next_miss(mapping, idx, 1) != idx; rcu_read_unlock(); return present; } int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping, pgoff_t idx) { struct inode *inode = mapping->host; struct hstate *h = hstate_inode(inode); int err; __folio_set_locked(folio); err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL); if (unlikely(err)) { __folio_clear_locked(folio); return err; } folio_clear_hugetlb_restore_reserve(folio); /* * mark folio dirty so that it will not be removed from cache/file * by non-hugetlbfs specific code paths. */ folio_mark_dirty(folio); spin_lock(&inode->i_lock); inode->i_blocks += blocks_per_huge_page(h); spin_unlock(&inode->i_lock); return 0; } static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma, struct address_space *mapping, pgoff_t idx, unsigned int flags, unsigned long haddr, unsigned long addr, unsigned long reason) { u32 hash; struct vm_fault vmf = { .vma = vma, .address = haddr, .real_address = addr, .flags = flags, /* * Hard to debug if it ends up being * used by a callee that assumes * something about the other * uninitialized fields... same as in * memory.c */ }; /* * vma_lock and hugetlb_fault_mutex must be dropped before handling * userfault. Also mmap_lock could be dropped due to handling * userfault, any vma operation should be careful from here. */ hugetlb_vma_unlock_read(vma); hash = hugetlb_fault_mutex_hash(mapping, idx); mutex_unlock(&hugetlb_fault_mutex_table[hash]); return handle_userfault(&vmf, reason); } /* * Recheck pte with pgtable lock. Returns true if pte didn't change, or * false if pte changed or is changing. */ static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, pte_t *ptep, pte_t old_pte) { spinlock_t *ptl; bool same; ptl = huge_pte_lock(h, mm, ptep); same = pte_same(huge_ptep_get(ptep), old_pte); spin_unlock(ptl); return same; } static vm_fault_t hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, struct address_space *mapping, pgoff_t idx, unsigned long address, pte_t *ptep, pte_t old_pte, unsigned int flags) { struct hstate *h = hstate_vma(vma); vm_fault_t ret = VM_FAULT_SIGBUS; int anon_rmap = 0; unsigned long size; struct folio *folio; pte_t new_pte; spinlock_t *ptl; unsigned long haddr = address & huge_page_mask(h); bool new_folio, new_pagecache_folio = false; u32 hash = hugetlb_fault_mutex_hash(mapping, idx); /* * Currently, we are forced to kill the process in the event the * original mapper has unmapped pages from the child due to a failed * COW/unsharing. Warn that such a situation has occurred as it may not * be obvious. */ if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", current->pid); goto out; } /* * Use page lock to guard against racing truncation * before we get page_table_lock. */ new_folio = false; folio = filemap_lock_folio(mapping, idx); if (IS_ERR(folio)) { size = i_size_read(mapping->host) >> huge_page_shift(h); if (idx >= size) goto out; /* Check for page in userfault range */ if (userfaultfd_missing(vma)) { /* * Since hugetlb_no_page() was examining pte * without pgtable lock, we need to re-test under * lock because the pte may not be stable and could * have changed from under us. Try to detect * either changed or during-changing ptes and retry * properly when needed. * * Note that userfaultfd is actually fine with * false positives (e.g. caused by pte changed), * but not wrong logical events (e.g. caused by * reading a pte during changing). The latter can * confuse the userspace, so the strictness is very * much preferred. E.g., MISSING event should * never happen on the page after UFFDIO_COPY has * correctly installed the page and returned. */ if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) { ret = 0; goto out; } return hugetlb_handle_userfault(vma, mapping, idx, flags, haddr, address, VM_UFFD_MISSING); } folio = alloc_hugetlb_folio(vma, haddr, 0); if (IS_ERR(folio)) { /* * Returning error will result in faulting task being * sent SIGBUS. The hugetlb fault mutex prevents two * tasks from racing to fault in the same page which * could result in false unable to allocate errors. * Page migration does not take the fault mutex, but * does a clear then write of pte's under page table * lock. Page fault code could race with migration, * notice the clear pte and try to allocate a page * here. Before returning error, get ptl and make * sure there really is no pte entry. */ if (hugetlb_pte_stable(h, mm, ptep, old_pte)) ret = vmf_error(PTR_ERR(folio)); else ret = 0; goto out; } clear_huge_page(&folio->page, address, pages_per_huge_page(h)); __folio_mark_uptodate(folio); new_folio = true; if (vma->vm_flags & VM_MAYSHARE) { int err = hugetlb_add_to_page_cache(folio, mapping, idx); if (err) { /* * err can't be -EEXIST which implies someone * else consumed the reservation since hugetlb * fault mutex is held when add a hugetlb page * to the page cache. So it's safe to call * restore_reserve_on_error() here. */ restore_reserve_on_error(h, vma, haddr, folio); folio_put(folio); goto out; } new_pagecache_folio = true; } else { folio_lock(folio); if (unlikely(anon_vma_prepare(vma))) { ret = VM_FAULT_OOM; goto backout_unlocked; } anon_rmap = 1; } } else { /* * If memory error occurs between mmap() and fault, some process * don't have hwpoisoned swap entry for errored virtual address. * So we need to block hugepage fault by PG_hwpoison bit check. */ if (unlikely(folio_test_hwpoison(folio))) { ret = VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h)); goto backout_unlocked; } /* Check for page in userfault range. */ if (userfaultfd_minor(vma)) { folio_unlock(folio); folio_put(folio); /* See comment in userfaultfd_missing() block above */ if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) { ret = 0; goto out; } return hugetlb_handle_userfault(vma, mapping, idx, flags, haddr, address, VM_UFFD_MINOR); } } /* * If we are going to COW a private mapping later, we examine the * pending reservations for this page now. This will ensure that * any allocations necessary to record that reservation occur outside * the spinlock. */ if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { if (vma_needs_reservation(h, vma, haddr) < 0) { ret = VM_FAULT_OOM; goto backout_unlocked; } /* Just decrements count, does not deallocate */ vma_end_reservation(h, vma, haddr); } ptl = huge_pte_lock(h, mm, ptep); ret = 0; /* If pte changed from under us, retry */ if (!pte_same(huge_ptep_get(ptep), old_pte)) goto backout; if (anon_rmap) hugepage_add_new_anon_rmap(folio, vma, haddr); else page_dup_file_rmap(&folio->page, true); new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE) && (vma->vm_flags & VM_SHARED))); /* * If this pte was previously wr-protected, keep it wr-protected even * if populated. */ if (unlikely(pte_marker_uffd_wp(old_pte))) new_pte = huge_pte_mkuffd_wp(new_pte); set_huge_pte_at(mm, haddr, ptep, new_pte); hugetlb_count_add(pages_per_huge_page(h), mm); if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { /* Optimization, do the COW without a second fault */ ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl); } spin_unlock(ptl); /* * Only set hugetlb_migratable in newly allocated pages. Existing pages * found in the pagecache may not have hugetlb_migratable if they have * been isolated for migration. */ if (new_folio) folio_set_hugetlb_migratable(folio); folio_unlock(folio); out: hugetlb_vma_unlock_read(vma); mutex_unlock(&hugetlb_fault_mutex_table[hash]); return ret; backout: spin_unlock(ptl); backout_unlocked: if (new_folio && !new_pagecache_folio) restore_reserve_on_error(h, vma, haddr, folio); folio_unlock(folio); folio_put(folio); goto out; } #ifdef CONFIG_SMP u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) { unsigned long key[2]; u32 hash; key[0] = (unsigned long) mapping; key[1] = idx; hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); return hash & (num_fault_mutexes - 1); } #else /* * For uniprocessor systems we always use a single mutex, so just * return 0 and avoid the hashing overhead. */ u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) { return 0; } #endif vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long address, unsigned int flags) { pte_t *ptep, entry; spinlock_t *ptl; vm_fault_t ret; u32 hash; pgoff_t idx; struct page *page = NULL; struct folio *pagecache_folio = NULL; struct hstate *h = hstate_vma(vma); struct address_space *mapping; int need_wait_lock = 0; unsigned long haddr = address & huge_page_mask(h); /* * Serialize hugepage allocation and instantiation, so that we don't * get spurious allocation failures if two CPUs race to instantiate * the same page in the page cache. */ mapping = vma->vm_file->f_mapping; idx = vma_hugecache_offset(h, vma, haddr); hash = hugetlb_fault_mutex_hash(mapping, idx); mutex_lock(&hugetlb_fault_mutex_table[hash]); /* * Acquire vma lock before calling huge_pte_alloc and hold * until finished with ptep. This prevents huge_pmd_unshare from * being called elsewhere and making the ptep no longer valid. */ hugetlb_vma_lock_read(vma); ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h)); if (!ptep) { hugetlb_vma_unlock_read(vma); mutex_unlock(&hugetlb_fault_mutex_table[hash]); return VM_FAULT_OOM; } entry = huge_ptep_get(ptep); /* PTE markers should be handled the same way as none pte */ if (huge_pte_none_mostly(entry)) /* * hugetlb_no_page will drop vma lock and hugetlb fault * mutex internally, which make us return immediately. */ return hugetlb_no_page(mm, vma, mapping, idx, address, ptep, entry, flags); ret = 0; /* * entry could be a migration/hwpoison entry at this point, so this * check prevents the kernel from going below assuming that we have * an active hugepage in pagecache. This goto expects the 2nd page * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will * properly handle it. */ if (!pte_present(entry)) { if (unlikely(is_hugetlb_entry_migration(entry))) { /* * Release the hugetlb fault lock now, but retain * the vma lock, because it is needed to guard the * huge_pte_lockptr() later in * migration_entry_wait_huge(). The vma lock will * be released there. */ mutex_unlock(&hugetlb_fault_mutex_table[hash]); migration_entry_wait_huge(vma, ptep); return 0; } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) ret = VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h)); goto out_mutex; } /* * If we are going to COW/unshare the mapping later, we examine the * pending reservations for this page now. This will ensure that any * allocations necessary to record that reservation occur outside the * spinlock. Also lookup the pagecache page now as it is used to * determine if a reservation has been consumed. */ if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) { if (vma_needs_reservation(h, vma, haddr) < 0) { ret = VM_FAULT_OOM; goto out_mutex; } /* Just decrements count, does not deallocate */ vma_end_reservation(h, vma, haddr); pagecache_folio = filemap_lock_folio(mapping, idx); if (IS_ERR(pagecache_folio)) pagecache_folio = NULL; } ptl = huge_pte_lock(h, mm, ptep); /* Check for a racing update before calling hugetlb_wp() */ if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) goto out_ptl; /* Handle userfault-wp first, before trying to lock more pages */ if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) && (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { struct vm_fault vmf = { .vma = vma, .address = haddr, .real_address = address, .flags = flags, }; spin_unlock(ptl); if (pagecache_folio) { folio_unlock(pagecache_folio); folio_put(pagecache_folio); } hugetlb_vma_unlock_read(vma); mutex_unlock(&hugetlb_fault_mutex_table[hash]); return handle_userfault(&vmf, VM_UFFD_WP); } /* * hugetlb_wp() requires page locks of pte_page(entry) and * pagecache_folio, so here we need take the former one * when page != pagecache_folio or !pagecache_folio. */ page = pte_page(entry); if (page_folio(page) != pagecache_folio) if (!trylock_page(page)) { need_wait_lock = 1; goto out_ptl; } get_page(page); if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { if (!huge_pte_write(entry)) { ret = hugetlb_wp(mm, vma, address, ptep, flags, pagecache_folio, ptl); goto out_put_page; } else if (likely(flags & FAULT_FLAG_WRITE)) { entry = huge_pte_mkdirty(entry); } } entry = pte_mkyoung(entry); if (huge_ptep_set_access_flags(vma, haddr, ptep, entry, flags & FAULT_FLAG_WRITE)) update_mmu_cache(vma, haddr, ptep); out_put_page: if (page_folio(page) != pagecache_folio) unlock_page(page); put_page(page); out_ptl: spin_unlock(ptl); if (pagecache_folio) { folio_unlock(pagecache_folio); folio_put(pagecache_folio); } out_mutex: hugetlb_vma_unlock_read(vma); mutex_unlock(&hugetlb_fault_mutex_table[hash]); /* * Generally it's safe to hold refcount during waiting page lock. But * here we just wait to defer the next page fault to avoid busy loop and * the page is not used after unlocked before returning from the current * page fault. So we are safe from accessing freed page, even if we wait * here without taking refcount. */ if (need_wait_lock) wait_on_page_locked(page); return ret; } #ifdef CONFIG_USERFAULTFD /* * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte * with modifications for hugetlb pages. */ int hugetlb_mfill_atomic_pte(struct mm_struct *dst_mm, pte_t *dst_pte, struct vm_area_struct *dst_vma, unsigned long dst_addr, unsigned long src_addr, enum mcopy_atomic_mode mode, struct page **pagep, bool wp_copy) { bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE); struct hstate *h = hstate_vma(dst_vma); struct address_space *mapping = dst_vma->vm_file->f_mapping; pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr); unsigned long size; int vm_shared = dst_vma->vm_flags & VM_SHARED; pte_t _dst_pte; spinlock_t *ptl; int ret = -ENOMEM; struct folio *folio; int writable; bool folio_in_pagecache = false; if (is_continue) { ret = -EFAULT; folio = filemap_lock_folio(mapping, idx); if (IS_ERR(folio)) goto out; folio_in_pagecache = true; } else if (!*pagep) { /* If a page already exists, then it's UFFDIO_COPY for * a non-missing case. Return -EEXIST. */ if (vm_shared && hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { ret = -EEXIST; goto out; } folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0); if (IS_ERR(folio)) { ret = -ENOMEM; goto out; } ret = copy_huge_page_from_user(&folio->page, (const void __user *) src_addr, pages_per_huge_page(h), false); /* fallback to copy_from_user outside mmap_lock */ if (unlikely(ret)) { ret = -ENOENT; /* Free the allocated folio which may have * consumed a reservation. */ restore_reserve_on_error(h, dst_vma, dst_addr, folio); folio_put(folio); /* Allocate a temporary folio to hold the copied * contents. */ folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr); if (!folio) { ret = -ENOMEM; goto out; } *pagep = &folio->page; /* Set the outparam pagep and return to the caller to * copy the contents outside the lock. Don't free the * page. */ goto out; } } else { if (vm_shared && hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { put_page(*pagep); ret = -EEXIST; *pagep = NULL; goto out; } folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0); if (IS_ERR(folio)) { put_page(*pagep); ret = -ENOMEM; *pagep = NULL; goto out; } copy_user_huge_page(&folio->page, *pagep, dst_addr, dst_vma, pages_per_huge_page(h)); put_page(*pagep); *pagep = NULL; } /* * The memory barrier inside __folio_mark_uptodate makes sure that * preceding stores to the page contents become visible before * the set_pte_at() write. */ __folio_mark_uptodate(folio); /* Add shared, newly allocated pages to the page cache. */ if (vm_shared && !is_continue) { size = i_size_read(mapping->host) >> huge_page_shift(h); ret = -EFAULT; if (idx >= size) goto out_release_nounlock; /* * Serialization between remove_inode_hugepages() and * hugetlb_add_to_page_cache() below happens through the * hugetlb_fault_mutex_table that here must be hold by * the caller. */ ret = hugetlb_add_to_page_cache(folio, mapping, idx); if (ret) goto out_release_nounlock; folio_in_pagecache = true; } ptl = huge_pte_lock(h, dst_mm, dst_pte); ret = -EIO; if (folio_test_hwpoison(folio)) goto out_release_unlock; /* * We allow to overwrite a pte marker: consider when both MISSING|WP * registered, we firstly wr-protect a none pte which has no page cache * page backing it, then access the page. */ ret = -EEXIST; if (!huge_pte_none_mostly(huge_ptep_get(dst_pte))) goto out_release_unlock; if (folio_in_pagecache) page_dup_file_rmap(&folio->page, true); else hugepage_add_new_anon_rmap(folio, dst_vma, dst_addr); /* * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY * with wp flag set, don't set pte write bit. */ if (wp_copy || (is_continue && !vm_shared)) writable = 0; else writable = dst_vma->vm_flags & VM_WRITE; _dst_pte = make_huge_pte(dst_vma, &folio->page, writable); /* * Always mark UFFDIO_COPY page dirty; note that this may not be * extremely important for hugetlbfs for now since swapping is not * supported, but we should still be clear in that this page cannot be * thrown away at will, even if write bit not set. */ _dst_pte = huge_pte_mkdirty(_dst_pte); _dst_pte = pte_mkyoung(_dst_pte); if (wp_copy) _dst_pte = huge_pte_mkuffd_wp(_dst_pte); set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); hugetlb_count_add(pages_per_huge_page(h), dst_mm); /* No need to invalidate - it was non-present before */ update_mmu_cache(dst_vma, dst_addr, dst_pte); spin_unlock(ptl); if (!is_continue) folio_set_hugetlb_migratable(folio); if (vm_shared || is_continue) folio_unlock(folio); ret = 0; out: return ret; out_release_unlock: spin_unlock(ptl); if (vm_shared || is_continue) folio_unlock(folio); out_release_nounlock: if (!folio_in_pagecache) restore_reserve_on_error(h, dst_vma, dst_addr, folio); folio_put(folio); goto out; } #endif /* CONFIG_USERFAULTFD */ static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma, int refs, struct page **pages, struct vm_area_struct **vmas) { int nr; for (nr = 0; nr < refs; nr++) { if (likely(pages)) pages[nr] = nth_page(page, nr); if (vmas) vmas[nr] = vma; } } static inline bool __follow_hugetlb_must_fault(struct vm_area_struct *vma, unsigned int flags, pte_t *pte, bool *unshare) { pte_t pteval = huge_ptep_get(pte); *unshare = false; if (is_swap_pte(pteval)) return true; if (huge_pte_write(pteval)) return false; if (flags & FOLL_WRITE) return true; if (gup_must_unshare(vma, flags, pte_page(pteval))) { *unshare = true; return true; } return false; } struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma, unsigned long address, unsigned int flags) { struct hstate *h = hstate_vma(vma); struct mm_struct *mm = vma->vm_mm; unsigned long haddr = address & huge_page_mask(h); struct page *page = NULL; spinlock_t *ptl; pte_t *pte, entry; /* * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via * follow_hugetlb_page(). */ if (WARN_ON_ONCE(flags & FOLL_PIN)) return NULL; hugetlb_vma_lock_read(vma); pte = hugetlb_walk(vma, haddr, huge_page_size(h)); if (!pte) goto out_unlock; ptl = huge_pte_lock(h, mm, pte); entry = huge_ptep_get(pte); if (pte_present(entry)) { page = pte_page(entry) + ((address & ~huge_page_mask(h)) >> PAGE_SHIFT); /* * Note that page may be a sub-page, and with vmemmap * optimizations the page struct may be read only. * try_grab_page() will increase the ref count on the * head page, so this will be OK. * * try_grab_page() should always be able to get the page here, * because we hold the ptl lock and have verified pte_present(). */ if (try_grab_page(page, flags)) { page = NULL; goto out; } } out: spin_unlock(ptl); out_unlock: hugetlb_vma_unlock_read(vma); return page; } long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, struct page **pages, struct vm_area_struct **vmas, unsigned long *position, unsigned long *nr_pages, long i, unsigned int flags, int *locked) { unsigned long pfn_offset; unsigned long vaddr = *position; unsigned long remainder = *nr_pages; struct hstate *h = hstate_vma(vma); int err = -EFAULT, refs; while (vaddr < vma->vm_end && remainder) { pte_t *pte; spinlock_t *ptl = NULL; bool unshare = false; int absent; struct page *page; /* * If we have a pending SIGKILL, don't keep faulting pages and * potentially allocating memory. */ if (fatal_signal_pending(current)) { remainder = 0; break; } hugetlb_vma_lock_read(vma); /* * Some archs (sparc64, sh*) have multiple pte_ts to * each hugepage. We have to make sure we get the * first, for the page indexing below to work. * * Note that page table lock is not held when pte is null. */ pte = hugetlb_walk(vma, vaddr & huge_page_mask(h), huge_page_size(h)); if (pte) ptl = huge_pte_lock(h, mm, pte); absent = !pte || huge_pte_none(huge_ptep_get(pte)); /* * When coredumping, it suits get_dump_page if we just return * an error where there's an empty slot with no huge pagecache * to back it. This way, we avoid allocating a hugepage, and * the sparse dumpfile avoids allocating disk blocks, but its * huge holes still show up with zeroes where they need to be. */ if (absent && (flags & FOLL_DUMP) && !hugetlbfs_pagecache_present(h, vma, vaddr)) { if (pte) spin_unlock(ptl); hugetlb_vma_unlock_read(vma); remainder = 0; break; } /* * We need call hugetlb_fault for both hugepages under migration * (in which case hugetlb_fault waits for the migration,) and * hwpoisoned hugepages (in which case we need to prevent the * caller from accessing to them.) In order to do this, we use * here is_swap_pte instead of is_hugetlb_entry_migration and * is_hugetlb_entry_hwpoisoned. This is because it simply covers * both cases, and because we can't follow correct pages * directly from any kind of swap entries. */ if (absent || __follow_hugetlb_must_fault(vma, flags, pte, &unshare)) { vm_fault_t ret; unsigned int fault_flags = 0; if (pte) spin_unlock(ptl); hugetlb_vma_unlock_read(vma); if (flags & FOLL_WRITE) fault_flags |= FAULT_FLAG_WRITE; else if (unshare) fault_flags |= FAULT_FLAG_UNSHARE; if (locked) { fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; if (flags & FOLL_INTERRUPTIBLE) fault_flags |= FAULT_FLAG_INTERRUPTIBLE; } if (flags & FOLL_NOWAIT) fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; if (flags & FOLL_TRIED) { /* * Note: FAULT_FLAG_ALLOW_RETRY and * FAULT_FLAG_TRIED can co-exist */ fault_flags |= FAULT_FLAG_TRIED; } ret = hugetlb_fault(mm, vma, vaddr, fault_flags); if (ret & VM_FAULT_ERROR) { err = vm_fault_to_errno(ret, flags); remainder = 0; break; } if (ret & VM_FAULT_RETRY) { if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) *locked = 0; *nr_pages = 0; /* * VM_FAULT_RETRY must not return an * error, it will return zero * instead. * * No need to update "position" as the * caller will not check it after * *nr_pages is set to 0. */ return i; } continue; } pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; page = pte_page(huge_ptep_get(pte)); VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && !PageAnonExclusive(page), page); /* * If subpage information not requested, update counters * and skip the same_page loop below. */ if (!pages && !vmas && !pfn_offset && (vaddr + huge_page_size(h) < vma->vm_end) && (remainder >= pages_per_huge_page(h))) { vaddr += huge_page_size(h); remainder -= pages_per_huge_page(h); i += pages_per_huge_page(h); spin_unlock(ptl); hugetlb_vma_unlock_read(vma); continue; } /* vaddr may not be aligned to PAGE_SIZE */ refs = min3(pages_per_huge_page(h) - pfn_offset, remainder, (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT); if (pages || vmas) record_subpages_vmas(nth_page(page, pfn_offset), vma, refs, likely(pages) ? pages + i : NULL, vmas ? vmas + i : NULL); if (pages) { /* * try_grab_folio() should always succeed here, * because: a) we hold the ptl lock, and b) we've just * checked that the huge page is present in the page * tables. If the huge page is present, then the tail * pages must also be present. The ptl prevents the * head page and tail pages from being rearranged in * any way. As this is hugetlb, the pages will never * be p2pdma or not longterm pinable. So this page * must be available at this point, unless the page * refcount overflowed: */ if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs, flags))) { spin_unlock(ptl); hugetlb_vma_unlock_read(vma); remainder = 0; err = -ENOMEM; break; } } vaddr += (refs << PAGE_SHIFT); remainder -= refs; i += refs; spin_unlock(ptl); hugetlb_vma_unlock_read(vma); } *nr_pages = remainder; /* * setting position is actually required only if remainder is * not zero but it's faster not to add a "if (remainder)" * branch. */ *position = vaddr; return i ? i : err; } long hugetlb_change_protection(struct vm_area_struct *vma, unsigned long address, unsigned long end, pgprot_t newprot, unsigned long cp_flags) { struct mm_struct *mm = vma->vm_mm; unsigned long start = address; pte_t *ptep; pte_t pte; struct hstate *h = hstate_vma(vma); long pages = 0, psize = huge_page_size(h); bool shared_pmd = false; struct mmu_notifier_range range; unsigned long last_addr_mask; bool uffd_wp = cp_flags & MM_CP_UFFD_WP; bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; /* * In the case of shared PMDs, the area to flush could be beyond * start/end. Set range.start/range.end to cover the maximum possible * range if PMD sharing is possible. */ mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 0, mm, start, end); adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); BUG_ON(address >= end); flush_cache_range(vma, range.start, range.end); mmu_notifier_invalidate_range_start(&range); hugetlb_vma_lock_write(vma); i_mmap_lock_write(vma->vm_file->f_mapping); last_addr_mask = hugetlb_mask_last_page(h); for (; address < end; address += psize) { spinlock_t *ptl; ptep = hugetlb_walk(vma, address, psize); if (!ptep) { if (!uffd_wp) { address |= last_addr_mask; continue; } /* * Userfaultfd wr-protect requires pgtable * pre-allocations to install pte markers. */ ptep = huge_pte_alloc(mm, vma, address, psize); if (!ptep) { pages = -ENOMEM; break; } } ptl = huge_pte_lock(h, mm, ptep); if (huge_pmd_unshare(mm, vma, address, ptep)) { /* * When uffd-wp is enabled on the vma, unshare * shouldn't happen at all. Warn about it if it * happened due to some reason. */ WARN_ON_ONCE(uffd_wp || uffd_wp_resolve); pages++; spin_unlock(ptl); shared_pmd = true; address |= last_addr_mask; continue; } pte = huge_ptep_get(ptep); if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { /* Nothing to do. */ } else if (unlikely(is_hugetlb_entry_migration(pte))) { swp_entry_t entry = pte_to_swp_entry(pte); struct page *page = pfn_swap_entry_to_page(entry); pte_t newpte = pte; if (is_writable_migration_entry(entry)) { if (PageAnon(page)) entry = make_readable_exclusive_migration_entry( swp_offset(entry)); else entry = make_readable_migration_entry( swp_offset(entry)); newpte = swp_entry_to_pte(entry); pages++; } if (uffd_wp) newpte = pte_swp_mkuffd_wp(newpte); else if (uffd_wp_resolve) newpte = pte_swp_clear_uffd_wp(newpte); if (!pte_same(pte, newpte)) set_huge_pte_at(mm, address, ptep, newpte); } else if (unlikely(is_pte_marker(pte))) { /* No other markers apply for now. */ WARN_ON_ONCE(!pte_marker_uffd_wp(pte)); if (uffd_wp_resolve) /* Safe to modify directly (non-present->none). */ huge_pte_clear(mm, address, ptep, psize); } else if (!huge_pte_none(pte)) { pte_t old_pte; unsigned int shift = huge_page_shift(hstate_vma(vma)); old_pte = huge_ptep_modify_prot_start(vma, address, ptep); pte = huge_pte_modify(old_pte, newprot); pte = arch_make_huge_pte(pte, shift, vma->vm_flags); if (uffd_wp) pte = huge_pte_mkuffd_wp(pte); else if (uffd_wp_resolve) pte = huge_pte_clear_uffd_wp(pte); huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); pages++; } else { /* None pte */ if (unlikely(uffd_wp)) /* Safe to modify directly (none->non-present). */ set_huge_pte_at(mm, address, ptep, make_pte_marker(PTE_MARKER_UFFD_WP)); } spin_unlock(ptl); } /* * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare * may have cleared our pud entry and done put_page on the page table: * once we release i_mmap_rwsem, another task can do the final put_page * and that page table be reused and filled with junk. If we actually * did unshare a page of pmds, flush the range corresponding to the pud. */ if (shared_pmd) flush_hugetlb_tlb_range(vma, range.start, range.end); else flush_hugetlb_tlb_range(vma, start, end); /* * No need to call mmu_notifier_invalidate_range() we are downgrading * page table protection not changing it to point to a new page. * * See Documentation/mm/mmu_notifier.rst */ i_mmap_unlock_write(vma->vm_file->f_mapping); hugetlb_vma_unlock_write(vma); mmu_notifier_invalidate_range_end(&range); return pages > 0 ? (pages << h->order) : pages; } /* Return true if reservation was successful, false otherwise. */ bool hugetlb_reserve_pages(struct inode *inode, long from, long to, struct vm_area_struct *vma, vm_flags_t vm_flags) { long chg = -1, add = -1; struct hstate *h = hstate_inode(inode); struct hugepage_subpool *spool = subpool_inode(inode); struct resv_map *resv_map; struct hugetlb_cgroup *h_cg = NULL; long gbl_reserve, regions_needed = 0; /* This should never happen */ if (from > to) { VM_WARN(1, "%s called with a negative range\n", __func__); return false; } /* * vma specific semaphore used for pmd sharing and fault/truncation * synchronization */ hugetlb_vma_lock_alloc(vma); /* * Only apply hugepage reservation if asked. At fault time, an * attempt will be made for VM_NORESERVE to allocate a page * without using reserves */ if (vm_flags & VM_NORESERVE) return true; /* * Shared mappings base their reservation on the number of pages that * are already allocated on behalf of the file. Private mappings need * to reserve the full area even if read-only as mprotect() may be * called to make the mapping read-write. Assume !vma is a shm mapping */ if (!vma || vma->vm_flags & VM_MAYSHARE) { /* * resv_map can not be NULL as hugetlb_reserve_pages is only * called for inodes for which resv_maps were created (see * hugetlbfs_get_inode). */ resv_map = inode_resv_map(inode); chg = region_chg(resv_map, from, to, ®ions_needed); } else { /* Private mapping. */ resv_map = resv_map_alloc(); if (!resv_map) goto out_err; chg = to - from; set_vma_resv_map(vma, resv_map); set_vma_resv_flags(vma, HPAGE_RESV_OWNER); } if (chg < 0) goto out_err; if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h), chg * pages_per_huge_page(h), &h_cg) < 0) goto out_err; if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { /* For private mappings, the hugetlb_cgroup uncharge info hangs * of the resv_map. */ resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); } /* * There must be enough pages in the subpool for the mapping. If * the subpool has a minimum size, there may be some global * reservations already in place (gbl_reserve). */ gbl_reserve = hugepage_subpool_get_pages(spool, chg); if (gbl_reserve < 0) goto out_uncharge_cgroup; /* * Check enough hugepages are available for the reservation. * Hand the pages back to the subpool if there are not */ if (hugetlb_acct_memory(h, gbl_reserve) < 0) goto out_put_pages; /* * Account for the reservations made. Shared mappings record regions * that have reservations as they are shared by multiple VMAs. * When the last VMA disappears, the region map says how much * the reservation was and the page cache tells how much of * the reservation was consumed. Private mappings are per-VMA and * only the consumed reservations are tracked. When the VMA * disappears, the original reservation is the VMA size and the * consumed reservations are stored in the map. Hence, nothing * else has to be done for private mappings here */ if (!vma || vma->vm_flags & VM_MAYSHARE) { add = region_add(resv_map, from, to, regions_needed, h, h_cg); if (unlikely(add < 0)) { hugetlb_acct_memory(h, -gbl_reserve); goto out_put_pages; } else if (unlikely(chg > add)) { /* * pages in this range were added to the reserve * map between region_chg and region_add. This * indicates a race with alloc_hugetlb_folio. Adjust * the subpool and reserve counts modified above * based on the difference. */ long rsv_adjust; /* * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the * reference to h_cg->css. See comment below for detail. */ hugetlb_cgroup_uncharge_cgroup_rsvd( hstate_index(h), (chg - add) * pages_per_huge_page(h), h_cg); rsv_adjust = hugepage_subpool_put_pages(spool, chg - add); hugetlb_acct_memory(h, -rsv_adjust); } else if (h_cg) { /* * The file_regions will hold their own reference to * h_cg->css. So we should release the reference held * via hugetlb_cgroup_charge_cgroup_rsvd() when we are * done. */ hugetlb_cgroup_put_rsvd_cgroup(h_cg); } } return true; out_put_pages: /* put back original number of pages, chg */ (void)hugepage_subpool_put_pages(spool, chg); out_uncharge_cgroup: hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), chg * pages_per_huge_page(h), h_cg); out_err: hugetlb_vma_lock_free(vma); if (!vma || vma->vm_flags & VM_MAYSHARE) /* Only call region_abort if the region_chg succeeded but the * region_add failed or didn't run. */ if (chg >= 0 && add < 0) region_abort(resv_map, from, to, regions_needed); if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) kref_put(&resv_map->refs, resv_map_release); return false; } long hugetlb_unreserve_pages(struct inode *inode, long start, long end, long freed) { struct hstate *h = hstate_inode(inode); struct resv_map *resv_map = inode_resv_map(inode); long chg = 0; struct hugepage_subpool *spool = subpool_inode(inode); long gbl_reserve; /* * Since this routine can be called in the evict inode path for all * hugetlbfs inodes, resv_map could be NULL. */ if (resv_map) { chg = region_del(resv_map, start, end); /* * region_del() can fail in the rare case where a region * must be split and another region descriptor can not be * allocated. If end == LONG_MAX, it will not fail. */ if (chg < 0) return chg; } spin_lock(&inode->i_lock); inode->i_blocks -= (blocks_per_huge_page(h) * freed); spin_unlock(&inode->i_lock); /* * If the subpool has a minimum size, the number of global * reservations to be released may be adjusted. * * Note that !resv_map implies freed == 0. So (chg - freed) * won't go negative. */ gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); hugetlb_acct_memory(h, -gbl_reserve); return 0; } #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE static unsigned long page_table_shareable(struct vm_area_struct *svma, struct vm_area_struct *vma, unsigned long addr, pgoff_t idx) { unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + svma->vm_start; unsigned long sbase = saddr & PUD_MASK; unsigned long s_end = sbase + PUD_SIZE; /* Allow segments to share if only one is marked locked */ unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK; unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK; /* * match the virtual addresses, permission and the alignment of the * page table page. * * Also, vma_lock (vm_private_data) is required for sharing. */ if (pmd_index(addr) != pmd_index(saddr) || vm_flags != svm_flags || !range_in_vma(svma, sbase, s_end) || !svma->vm_private_data) return 0; return saddr; } bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) { unsigned long start = addr & PUD_MASK; unsigned long end = start + PUD_SIZE; #ifdef CONFIG_USERFAULTFD if (uffd_disable_huge_pmd_share(vma)) return false; #endif /* * check on proper vm_flags and page table alignment */ if (!(vma->vm_flags & VM_MAYSHARE)) return false; if (!vma->vm_private_data) /* vma lock required for sharing */ return false; if (!range_in_vma(vma, start, end)) return false; return true; } /* * Determine if start,end range within vma could be mapped by shared pmd. * If yes, adjust start and end to cover range associated with possible * shared pmd mappings. */ void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, unsigned long *start, unsigned long *end) { unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE), v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); /* * vma needs to span at least one aligned PUD size, and the range * must be at least partially within in. */ if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) || (*end <= v_start) || (*start >= v_end)) return; /* Extend the range to be PUD aligned for a worst case scenario */ if (*start > v_start) *start = ALIGN_DOWN(*start, PUD_SIZE); if (*end < v_end) *end = ALIGN(*end, PUD_SIZE); } /* * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() * and returns the corresponding pte. While this is not necessary for the * !shared pmd case because we can allocate the pmd later as well, it makes the * code much cleaner. pmd allocation is essential for the shared case because * pud has to be populated inside the same i_mmap_rwsem section - otherwise * racing tasks could either miss the sharing (see huge_pte_offset) or select a * bad pmd for sharing. */ pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, pud_t *pud) { struct address_space *mapping = vma->vm_file->f_mapping; pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; struct vm_area_struct *svma; unsigned long saddr; pte_t *spte = NULL; pte_t *pte; spinlock_t *ptl; i_mmap_lock_read(mapping); vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { if (svma == vma) continue; saddr = page_table_shareable(svma, vma, addr, idx); if (saddr) { spte = hugetlb_walk(svma, saddr, vma_mmu_pagesize(svma)); if (spte) { get_page(virt_to_page(spte)); break; } } } if (!spte) goto out; ptl = huge_pte_lock(hstate_vma(vma), mm, spte); if (pud_none(*pud)) { pud_populate(mm, pud, (pmd_t *)((unsigned long)spte & PAGE_MASK)); mm_inc_nr_pmds(mm); } else { put_page(virt_to_page(spte)); } spin_unlock(ptl); out: pte = (pte_t *)pmd_alloc(mm, pud, addr); i_mmap_unlock_read(mapping); return pte; } /* * unmap huge page backed by shared pte. * * Hugetlb pte page is ref counted at the time of mapping. If pte is shared * indicated by page_count > 1, unmap is achieved by clearing pud and * decrementing the ref count. If count == 1, the pte page is not shared. * * Called with page table lock held. * * returns: 1 successfully unmapped a shared pte page * 0 the underlying pte page is not shared, or it is the last user */ int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) { pgd_t *pgd = pgd_offset(mm, addr); p4d_t *p4d = p4d_offset(pgd, addr); pud_t *pud = pud_offset(p4d, addr); i_mmap_assert_write_locked(vma->vm_file->f_mapping); hugetlb_vma_assert_locked(vma); BUG_ON(page_count(virt_to_page(ptep)) == 0); if (page_count(virt_to_page(ptep)) == 1) return 0; pud_clear(pud); put_page(virt_to_page(ptep)); mm_dec_nr_pmds(mm); return 1; } #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, pud_t *pud) { return NULL; } int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) { return 0; } void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, unsigned long *start, unsigned long *end) { } bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) { return false; } #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, unsigned long sz) { pgd_t *pgd; p4d_t *p4d; pud_t *pud; pte_t *pte = NULL; pgd = pgd_offset(mm, addr); p4d = p4d_alloc(mm, pgd, addr); if (!p4d) return NULL; pud = pud_alloc(mm, p4d, addr); if (pud) { if (sz == PUD_SIZE) { pte = (pte_t *)pud; } else { BUG_ON(sz != PMD_SIZE); if (want_pmd_share(vma, addr) && pud_none(*pud)) pte = huge_pmd_share(mm, vma, addr, pud); else pte = (pte_t *)pmd_alloc(mm, pud, addr); } } BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte)); return pte; } /* * huge_pte_offset() - Walk the page table to resolve the hugepage * entry at address @addr * * Return: Pointer to page table entry (PUD or PMD) for * address @addr, or NULL if a !p*d_present() entry is encountered and the * size @sz doesn't match the hugepage size at this level of the page * table. */ pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz) { pgd_t *pgd; p4d_t *p4d; pud_t *pud; pmd_t *pmd; pgd = pgd_offset(mm, addr); if (!pgd_present(*pgd)) return NULL; p4d = p4d_offset(pgd, addr); if (!p4d_present(*p4d)) return NULL; pud = pud_offset(p4d, addr); if (sz == PUD_SIZE) /* must be pud huge, non-present or none */ return (pte_t *)pud; if (!pud_present(*pud)) return NULL; /* must have a valid entry and size to go further */ pmd = pmd_offset(pud, addr); /* must be pmd huge, non-present or none */ return (pte_t *)pmd; } /* * Return a mask that can be used to update an address to the last huge * page in a page table page mapping size. Used to skip non-present * page table entries when linearly scanning address ranges. Architectures * with unique huge page to page table relationships can define their own * version of this routine. */ unsigned long hugetlb_mask_last_page(struct hstate *h) { unsigned long hp_size = huge_page_size(h); if (hp_size == PUD_SIZE) return P4D_SIZE - PUD_SIZE; else if (hp_size == PMD_SIZE) return PUD_SIZE - PMD_SIZE; else return 0UL; } #else /* See description above. Architectures can provide their own version. */ __weak unsigned long hugetlb_mask_last_page(struct hstate *h) { #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE if (huge_page_size(h) == PMD_SIZE) return PUD_SIZE - PMD_SIZE; #endif return 0UL; } #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ /* * These functions are overwritable if your architecture needs its own * behavior. */ bool isolate_hugetlb(struct folio *folio, struct list_head *list) { bool ret = true; spin_lock_irq(&hugetlb_lock); if (!folio_test_hugetlb(folio) || !folio_test_hugetlb_migratable(folio) || !folio_try_get(folio)) { ret = false; goto unlock; } folio_clear_hugetlb_migratable(folio); list_move_tail(&folio->lru, list); unlock: spin_unlock_irq(&hugetlb_lock); return ret; } int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison) { int ret = 0; *hugetlb = false; spin_lock_irq(&hugetlb_lock); if (folio_test_hugetlb(folio)) { *hugetlb = true; if (folio_test_hugetlb_freed(folio)) ret = 0; else if (folio_test_hugetlb_migratable(folio) || unpoison) ret = folio_try_get(folio); else ret = -EBUSY; } spin_unlock_irq(&hugetlb_lock); return ret; } int get_huge_page_for_hwpoison(unsigned long pfn, int flags, bool *migratable_cleared) { int ret; spin_lock_irq(&hugetlb_lock); ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared); spin_unlock_irq(&hugetlb_lock); return ret; } void folio_putback_active_hugetlb(struct folio *folio) { spin_lock_irq(&hugetlb_lock); folio_set_hugetlb_migratable(folio); list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist); spin_unlock_irq(&hugetlb_lock); folio_put(folio); } void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason) { struct hstate *h = folio_hstate(old_folio); hugetlb_cgroup_migrate(old_folio, new_folio); set_page_owner_migrate_reason(&new_folio->page, reason); /* * transfer temporary state of the new hugetlb folio. This is * reverse to other transitions because the newpage is going to * be final while the old one will be freed so it takes over * the temporary status. * * Also note that we have to transfer the per-node surplus state * here as well otherwise the global surplus count will not match * the per-node's. */ if (folio_test_hugetlb_temporary(new_folio)) { int old_nid = folio_nid(old_folio); int new_nid = folio_nid(new_folio); folio_set_hugetlb_temporary(old_folio); folio_clear_hugetlb_temporary(new_folio); /* * There is no need to transfer the per-node surplus state * when we do not cross the node. */ if (new_nid == old_nid) return; spin_lock_irq(&hugetlb_lock); if (h->surplus_huge_pages_node[old_nid]) { h->surplus_huge_pages_node[old_nid]--; h->surplus_huge_pages_node[new_nid]++; } spin_unlock_irq(&hugetlb_lock); } } static void hugetlb_unshare_pmds(struct vm_area_struct *vma, unsigned long start, unsigned long end) { struct hstate *h = hstate_vma(vma); unsigned long sz = huge_page_size(h); struct mm_struct *mm = vma->vm_mm; struct mmu_notifier_range range; unsigned long address; spinlock_t *ptl; pte_t *ptep; if (!(vma->vm_flags & VM_MAYSHARE)) return; if (start >= end) return; flush_cache_range(vma, start, end); /* * No need to call adjust_range_if_pmd_sharing_possible(), because * we have already done the PUD_SIZE alignment. */ mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, start, end); mmu_notifier_invalidate_range_start(&range); hugetlb_vma_lock_write(vma); i_mmap_lock_write(vma->vm_file->f_mapping); for (address = start; address < end; address += PUD_SIZE) { ptep = hugetlb_walk(vma, address, sz); if (!ptep) continue; ptl = huge_pte_lock(h, mm, ptep); huge_pmd_unshare(mm, vma, address, ptep); spin_unlock(ptl); } flush_hugetlb_tlb_range(vma, start, end); i_mmap_unlock_write(vma->vm_file->f_mapping); hugetlb_vma_unlock_write(vma); /* * No need to call mmu_notifier_invalidate_range(), see * Documentation/mm/mmu_notifier.rst. */ mmu_notifier_invalidate_range_end(&range); } /* * This function will unconditionally remove all the shared pmd pgtable entries * within the specific vma for a hugetlbfs memory range. */ void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) { hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE), ALIGN_DOWN(vma->vm_end, PUD_SIZE)); } #ifdef CONFIG_CMA static bool cma_reserve_called __initdata; static int __init cmdline_parse_hugetlb_cma(char *p) { int nid, count = 0; unsigned long tmp; char *s = p; while (*s) { if (sscanf(s, "%lu%n", &tmp, &count) != 1) break; if (s[count] == ':') { if (tmp >= MAX_NUMNODES) break; nid = array_index_nospec(tmp, MAX_NUMNODES); s += count + 1; tmp = memparse(s, &s); hugetlb_cma_size_in_node[nid] = tmp; hugetlb_cma_size += tmp; /* * Skip the separator if have one, otherwise * break the parsing. */ if (*s == ',') s++; else break; } else { hugetlb_cma_size = memparse(p, &p); break; } } return 0; } early_param("hugetlb_cma", cmdline_parse_hugetlb_cma); void __init hugetlb_cma_reserve(int order) { unsigned long size, reserved, per_node; bool node_specific_cma_alloc = false; int nid; cma_reserve_called = true; if (!hugetlb_cma_size) return; for (nid = 0; nid < MAX_NUMNODES; nid++) { if (hugetlb_cma_size_in_node[nid] == 0) continue; if (!node_online(nid)) { pr_warn("hugetlb_cma: invalid node %d specified\n", nid); hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; hugetlb_cma_size_in_node[nid] = 0; continue; } if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) { pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n", nid, (PAGE_SIZE << order) / SZ_1M); hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; hugetlb_cma_size_in_node[nid] = 0; } else { node_specific_cma_alloc = true; } } /* Validate the CMA size again in case some invalid nodes specified. */ if (!hugetlb_cma_size) return; if (hugetlb_cma_size < (PAGE_SIZE << order)) { pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n", (PAGE_SIZE << order) / SZ_1M); hugetlb_cma_size = 0; return; } if (!node_specific_cma_alloc) { /* * If 3 GB area is requested on a machine with 4 numa nodes, * let's allocate 1 GB on first three nodes and ignore the last one. */ per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes); pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n", hugetlb_cma_size / SZ_1M, per_node / SZ_1M); } reserved = 0; for_each_online_node(nid) { int res; char name[CMA_MAX_NAME]; if (node_specific_cma_alloc) { if (hugetlb_cma_size_in_node[nid] == 0) continue; size = hugetlb_cma_size_in_node[nid]; } else { size = min(per_node, hugetlb_cma_size - reserved); } size = round_up(size, PAGE_SIZE << order); snprintf(name, sizeof(name), "hugetlb%d", nid); /* * Note that 'order per bit' is based on smallest size that * may be returned to CMA allocator in the case of * huge page demotion. */ res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << HUGETLB_PAGE_ORDER, 0, false, name, &hugetlb_cma[nid], nid); if (res) { pr_warn("hugetlb_cma: reservation failed: err %d, node %d", res, nid); continue; } reserved += size; pr_info("hugetlb_cma: reserved %lu MiB on node %d\n", size / SZ_1M, nid); if (reserved >= hugetlb_cma_size) break; } if (!reserved) /* * hugetlb_cma_size is used to determine if allocations from * cma are possible. Set to zero if no cma regions are set up. */ hugetlb_cma_size = 0; } static void __init hugetlb_cma_check(void) { if (!hugetlb_cma_size || cma_reserve_called) return; pr_warn("hugetlb_cma: the option isn't supported by current arch\n"); } #endif /* CONFIG_CMA */