/* SPDX-License-Identifier: GPL-2.0-or-later */ /* internal.h: mm/ internal definitions * * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #ifndef __MM_INTERNAL_H #define __MM_INTERNAL_H #include #include #include #include #include #include #include #include #include #include /* Internal core VMA manipulation functions. */ #include "vma.h" struct folio_batch; /* * The set of flags that only affect watermark checking and reclaim * behaviour. This is used by the MM to obey the caller constraints * about IO, FS and watermark checking while ignoring placement * hints such as HIGHMEM usage. */ #define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\ __GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\ __GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\ __GFP_NOLOCKDEP) /* The GFP flags allowed during early boot */ #define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS)) /* Control allocation cpuset and node placement constraints */ #define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE) /* Do not use these with a slab allocator */ #define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK) /* * Different from WARN_ON_ONCE(), no warning will be issued * when we specify __GFP_NOWARN. */ #define WARN_ON_ONCE_GFP(cond, gfp) ({ \ static bool __section(".data.once") __warned; \ int __ret_warn_once = !!(cond); \ \ if (unlikely(!(gfp & __GFP_NOWARN) && __ret_warn_once && !__warned)) { \ __warned = true; \ WARN_ON(1); \ } \ unlikely(__ret_warn_once); \ }) void page_writeback_init(void); /* * If a 16GB hugetlb folio were mapped by PTEs of all of its 4kB pages, * its nr_pages_mapped would be 0x400000: choose the ENTIRELY_MAPPED bit * above that range, instead of 2*(PMD_SIZE/PAGE_SIZE). Hugetlb currently * leaves nr_pages_mapped at 0, but avoid surprise if it participates later. */ #define ENTIRELY_MAPPED 0x800000 #define FOLIO_PAGES_MAPPED (ENTIRELY_MAPPED - 1) /* * Flags passed to __show_mem() and show_free_areas() to suppress output in * various contexts. */ #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ /* * How many individual pages have an elevated _mapcount. Excludes * the folio's entire_mapcount. * * Don't use this function outside of debugging code. */ static inline int folio_nr_pages_mapped(const struct folio *folio) { return atomic_read(&folio->_nr_pages_mapped) & FOLIO_PAGES_MAPPED; } /* * Retrieve the first entry of a folio based on a provided entry within the * folio. We cannot rely on folio->swap as there is no guarantee that it has * been initialized. Used for calling arch_swap_restore() */ static inline swp_entry_t folio_swap(swp_entry_t entry, const struct folio *folio) { swp_entry_t swap = { .val = ALIGN_DOWN(entry.val, folio_nr_pages(folio)), }; return swap; } static inline void *folio_raw_mapping(const struct folio *folio) { unsigned long mapping = (unsigned long)folio->mapping; return (void *)(mapping & ~PAGE_MAPPING_FLAGS); } #ifdef CONFIG_MMU /* Flags for folio_pte_batch(). */ typedef int __bitwise fpb_t; /* Compare PTEs after pte_mkclean(), ignoring the dirty bit. */ #define FPB_IGNORE_DIRTY ((__force fpb_t)BIT(0)) /* Compare PTEs after pte_clear_soft_dirty(), ignoring the soft-dirty bit. */ #define FPB_IGNORE_SOFT_DIRTY ((__force fpb_t)BIT(1)) static inline pte_t __pte_batch_clear_ignored(pte_t pte, fpb_t flags) { if (flags & FPB_IGNORE_DIRTY) pte = pte_mkclean(pte); if (likely(flags & FPB_IGNORE_SOFT_DIRTY)) pte = pte_clear_soft_dirty(pte); return pte_wrprotect(pte_mkold(pte)); } /** * folio_pte_batch - detect a PTE batch for a large folio * @folio: The large folio to detect a PTE batch for. * @addr: The user virtual address the first page is mapped at. * @start_ptep: Page table pointer for the first entry. * @pte: Page table entry for the first page. * @max_nr: The maximum number of table entries to consider. * @flags: Flags to modify the PTE batch semantics. * @any_writable: Optional pointer to indicate whether any entry except the * first one is writable. * @any_young: Optional pointer to indicate whether any entry except the * first one is young. * @any_dirty: Optional pointer to indicate whether any entry except the * first one is dirty. * * Detect a PTE batch: consecutive (present) PTEs that map consecutive * pages of the same large folio. * * All PTEs inside a PTE batch have the same PTE bits set, excluding the PFN, * the accessed bit, writable bit, dirty bit (with FPB_IGNORE_DIRTY) and * soft-dirty bit (with FPB_IGNORE_SOFT_DIRTY). * * start_ptep must map any page of the folio. max_nr must be at least one and * must be limited by the caller so scanning cannot exceed a single page table. * * Return: the number of table entries in the batch. */ static inline int folio_pte_batch(struct folio *folio, unsigned long addr, pte_t *start_ptep, pte_t pte, int max_nr, fpb_t flags, bool *any_writable, bool *any_young, bool *any_dirty) { unsigned long folio_end_pfn = folio_pfn(folio) + folio_nr_pages(folio); const pte_t *end_ptep = start_ptep + max_nr; pte_t expected_pte, *ptep; bool writable, young, dirty; int nr; if (any_writable) *any_writable = false; if (any_young) *any_young = false; if (any_dirty) *any_dirty = false; VM_WARN_ON_FOLIO(!pte_present(pte), folio); VM_WARN_ON_FOLIO(!folio_test_large(folio) || max_nr < 1, folio); VM_WARN_ON_FOLIO(page_folio(pfn_to_page(pte_pfn(pte))) != folio, folio); nr = pte_batch_hint(start_ptep, pte); expected_pte = __pte_batch_clear_ignored(pte_advance_pfn(pte, nr), flags); ptep = start_ptep + nr; while (ptep < end_ptep) { pte = ptep_get(ptep); if (any_writable) writable = !!pte_write(pte); if (any_young) young = !!pte_young(pte); if (any_dirty) dirty = !!pte_dirty(pte); pte = __pte_batch_clear_ignored(pte, flags); if (!pte_same(pte, expected_pte)) break; /* * Stop immediately once we reached the end of the folio. In * corner cases the next PFN might fall into a different * folio. */ if (pte_pfn(pte) >= folio_end_pfn) break; if (any_writable) *any_writable |= writable; if (any_young) *any_young |= young; if (any_dirty) *any_dirty |= dirty; nr = pte_batch_hint(ptep, pte); expected_pte = pte_advance_pfn(expected_pte, nr); ptep += nr; } return min(ptep - start_ptep, max_nr); } /** * pte_move_swp_offset - Move the swap entry offset field of a swap pte * forward or backward by delta * @pte: The initial pte state; is_swap_pte(pte) must be true and * non_swap_entry() must be false. * @delta: The direction and the offset we are moving; forward if delta * is positive; backward if delta is negative * * Moves the swap offset, while maintaining all other fields, including * swap type, and any swp pte bits. The resulting pte is returned. */ static inline pte_t pte_move_swp_offset(pte_t pte, long delta) { swp_entry_t entry = pte_to_swp_entry(pte); pte_t new = __swp_entry_to_pte(__swp_entry(swp_type(entry), (swp_offset(entry) + delta))); if (pte_swp_soft_dirty(pte)) new = pte_swp_mksoft_dirty(new); if (pte_swp_exclusive(pte)) new = pte_swp_mkexclusive(new); if (pte_swp_uffd_wp(pte)) new = pte_swp_mkuffd_wp(new); return new; } /** * pte_next_swp_offset - Increment the swap entry offset field of a swap pte. * @pte: The initial pte state; is_swap_pte(pte) must be true and * non_swap_entry() must be false. * * Increments the swap offset, while maintaining all other fields, including * swap type, and any swp pte bits. The resulting pte is returned. */ static inline pte_t pte_next_swp_offset(pte_t pte) { return pte_move_swp_offset(pte, 1); } /** * swap_pte_batch - detect a PTE batch for a set of contiguous swap entries * @start_ptep: Page table pointer for the first entry. * @max_nr: The maximum number of table entries to consider. * @pte: Page table entry for the first entry. * * Detect a batch of contiguous swap entries: consecutive (non-present) PTEs * containing swap entries all with consecutive offsets and targeting the same * swap type, all with matching swp pte bits. * * max_nr must be at least one and must be limited by the caller so scanning * cannot exceed a single page table. * * Return: the number of table entries in the batch. */ static inline int swap_pte_batch(pte_t *start_ptep, int max_nr, pte_t pte) { pte_t expected_pte = pte_next_swp_offset(pte); const pte_t *end_ptep = start_ptep + max_nr; swp_entry_t entry = pte_to_swp_entry(pte); pte_t *ptep = start_ptep + 1; unsigned short cgroup_id; VM_WARN_ON(max_nr < 1); VM_WARN_ON(!is_swap_pte(pte)); VM_WARN_ON(non_swap_entry(entry)); cgroup_id = lookup_swap_cgroup_id(entry); while (ptep < end_ptep) { pte = ptep_get(ptep); if (!pte_same(pte, expected_pte)) break; if (lookup_swap_cgroup_id(pte_to_swp_entry(pte)) != cgroup_id) break; expected_pte = pte_next_swp_offset(expected_pte); ptep++; } return ptep - start_ptep; } #endif /* CONFIG_MMU */ void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio, int nr_throttled); static inline void acct_reclaim_writeback(struct folio *folio) { pg_data_t *pgdat = folio_pgdat(folio); int nr_throttled = atomic_read(&pgdat->nr_writeback_throttled); if (nr_throttled) __acct_reclaim_writeback(pgdat, folio, nr_throttled); } static inline void wake_throttle_isolated(pg_data_t *pgdat) { wait_queue_head_t *wqh; wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED]; if (waitqueue_active(wqh)) wake_up(wqh); } vm_fault_t vmf_anon_prepare(struct vm_fault *vmf); vm_fault_t do_swap_page(struct vm_fault *vmf); void folio_rotate_reclaimable(struct folio *folio); bool __folio_end_writeback(struct folio *folio); void deactivate_file_folio(struct folio *folio); void folio_activate(struct folio *folio); void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas, struct vm_area_struct *start_vma, unsigned long floor, unsigned long ceiling, bool mm_wr_locked); void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte); struct zap_details; void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma, unsigned long addr, unsigned long end, struct zap_details *details); void page_cache_ra_order(struct readahead_control *, struct file_ra_state *, unsigned int order); void force_page_cache_ra(struct readahead_control *, unsigned long nr); static inline void force_page_cache_readahead(struct address_space *mapping, struct file *file, pgoff_t index, unsigned long nr_to_read) { DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index); force_page_cache_ra(&ractl, nr_to_read); } unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start, pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices); unsigned find_get_entries(struct address_space *mapping, pgoff_t *start, pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices); void filemap_free_folio(struct address_space *mapping, struct folio *folio); int truncate_inode_folio(struct address_space *mapping, struct folio *folio); bool truncate_inode_partial_folio(struct folio *folio, loff_t start, loff_t end); long mapping_evict_folio(struct address_space *mapping, struct folio *folio); unsigned long mapping_try_invalidate(struct address_space *mapping, pgoff_t start, pgoff_t end, unsigned long *nr_failed); /** * folio_evictable - Test whether a folio is evictable. * @folio: The folio to test. * * Test whether @folio is evictable -- i.e., should be placed on * active/inactive lists vs unevictable list. * * Reasons folio might not be evictable: * 1. folio's mapping marked unevictable * 2. One of the pages in the folio is part of an mlocked VMA */ static inline bool folio_evictable(struct folio *folio) { bool ret; /* Prevent address_space of inode and swap cache from being freed */ rcu_read_lock(); ret = !mapping_unevictable(folio_mapping(folio)) && !folio_test_mlocked(folio); rcu_read_unlock(); return ret; } /* * Turn a non-refcounted page (->_refcount == 0) into refcounted with * a count of one. */ static inline void set_page_refcounted(struct page *page) { VM_BUG_ON_PAGE(PageTail(page), page); VM_BUG_ON_PAGE(page_ref_count(page), page); set_page_count(page, 1); } /* * Return true if a folio needs ->release_folio() calling upon it. */ static inline bool folio_needs_release(struct folio *folio) { struct address_space *mapping = folio_mapping(folio); return folio_has_private(folio) || (mapping && mapping_release_always(mapping)); } extern unsigned long highest_memmap_pfn; /* * Maximum number of reclaim retries without progress before the OOM * killer is consider the only way forward. */ #define MAX_RECLAIM_RETRIES 16 /* * in mm/vmscan.c: */ bool folio_isolate_lru(struct folio *folio); void folio_putback_lru(struct folio *folio); extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason); /* * in mm/rmap.c: */ pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address); /* * in mm/page_alloc.c */ #define K(x) ((x) << (PAGE_SHIFT-10)) extern char * const zone_names[MAX_NR_ZONES]; /* perform sanity checks on struct pages being allocated or freed */ DECLARE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled); extern int min_free_kbytes; void setup_per_zone_wmarks(void); void calculate_min_free_kbytes(void); int __meminit init_per_zone_wmark_min(void); void page_alloc_sysctl_init(void); /* * Structure for holding the mostly immutable allocation parameters passed * between functions involved in allocations, including the alloc_pages* * family of functions. * * nodemask, migratetype and highest_zoneidx are initialized only once in * __alloc_pages() and then never change. * * zonelist, preferred_zone and highest_zoneidx are set first in * __alloc_pages() for the fast path, and might be later changed * in __alloc_pages_slowpath(). All other functions pass the whole structure * by a const pointer. */ struct alloc_context { struct zonelist *zonelist; nodemask_t *nodemask; struct zoneref *preferred_zoneref; int migratetype; /* * highest_zoneidx represents highest usable zone index of * the allocation request. Due to the nature of the zone, * memory on lower zone than the highest_zoneidx will be * protected by lowmem_reserve[highest_zoneidx]. * * highest_zoneidx is also used by reclaim/compaction to limit * the target zone since higher zone than this index cannot be * usable for this allocation request. */ enum zone_type highest_zoneidx; bool spread_dirty_pages; }; /* * This function returns the order of a free page in the buddy system. In * general, page_zone(page)->lock must be held by the caller to prevent the * page from being allocated in parallel and returning garbage as the order. * If a caller does not hold page_zone(page)->lock, it must guarantee that the * page cannot be allocated or merged in parallel. Alternatively, it must * handle invalid values gracefully, and use buddy_order_unsafe() below. */ static inline unsigned int buddy_order(struct page *page) { /* PageBuddy() must be checked by the caller */ return page_private(page); } /* * Like buddy_order(), but for callers who cannot afford to hold the zone lock. * PageBuddy() should be checked first by the caller to minimize race window, * and invalid values must be handled gracefully. * * READ_ONCE is used so that if the caller assigns the result into a local * variable and e.g. tests it for valid range before using, the compiler cannot * decide to remove the variable and inline the page_private(page) multiple * times, potentially observing different values in the tests and the actual * use of the result. */ #define buddy_order_unsafe(page) READ_ONCE(page_private(page)) /* * This function checks whether a page is free && is the buddy * we can coalesce a page and its buddy if * (a) the buddy is not in a hole (check before calling!) && * (b) the buddy is in the buddy system && * (c) a page and its buddy have the same order && * (d) a page and its buddy are in the same zone. * * For recording whether a page is in the buddy system, we set PageBuddy. * Setting, clearing, and testing PageBuddy is serialized by zone->lock. * * For recording page's order, we use page_private(page). */ static inline bool page_is_buddy(struct page *page, struct page *buddy, unsigned int order) { if (!page_is_guard(buddy) && !PageBuddy(buddy)) return false; if (buddy_order(buddy) != order) return false; /* * zone check is done late to avoid uselessly calculating * zone/node ids for pages that could never merge. */ if (page_zone_id(page) != page_zone_id(buddy)) return false; VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); return true; } /* * Locate the struct page for both the matching buddy in our * pair (buddy1) and the combined O(n+1) page they form (page). * * 1) Any buddy B1 will have an order O twin B2 which satisfies * the following equation: * B2 = B1 ^ (1 << O) * For example, if the starting buddy (buddy2) is #8 its order * 1 buddy is #10: * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 * * 2) Any buddy B will have an order O+1 parent P which * satisfies the following equation: * P = B & ~(1 << O) * * Assumption: *_mem_map is contiguous at least up to MAX_PAGE_ORDER */ static inline unsigned long __find_buddy_pfn(unsigned long page_pfn, unsigned int order) { return page_pfn ^ (1 << order); } /* * Find the buddy of @page and validate it. * @page: The input page * @pfn: The pfn of the page, it saves a call to page_to_pfn() when the * function is used in the performance-critical __free_one_page(). * @order: The order of the page * @buddy_pfn: The output pointer to the buddy pfn, it also saves a call to * page_to_pfn(). * * The found buddy can be a non PageBuddy, out of @page's zone, or its order is * not the same as @page. The validation is necessary before use it. * * Return: the found buddy page or NULL if not found. */ static inline struct page *find_buddy_page_pfn(struct page *page, unsigned long pfn, unsigned int order, unsigned long *buddy_pfn) { unsigned long __buddy_pfn = __find_buddy_pfn(pfn, order); struct page *buddy; buddy = page + (__buddy_pfn - pfn); if (buddy_pfn) *buddy_pfn = __buddy_pfn; if (page_is_buddy(page, buddy, order)) return buddy; return NULL; } extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn, unsigned long end_pfn, struct zone *zone); static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn, unsigned long end_pfn, struct zone *zone) { if (zone->contiguous) return pfn_to_page(start_pfn); return __pageblock_pfn_to_page(start_pfn, end_pfn, zone); } void set_zone_contiguous(struct zone *zone); static inline void clear_zone_contiguous(struct zone *zone) { zone->contiguous = false; } extern int __isolate_free_page(struct page *page, unsigned int order); extern void __putback_isolated_page(struct page *page, unsigned int order, int mt); extern void memblock_free_pages(struct page *page, unsigned long pfn, unsigned int order); extern void __free_pages_core(struct page *page, unsigned int order, enum meminit_context context); /* * This will have no effect, other than possibly generating a warning, if the * caller passes in a non-large folio. */ static inline void folio_set_order(struct folio *folio, unsigned int order) { if (WARN_ON_ONCE(!order || !folio_test_large(folio))) return; folio->_flags_1 = (folio->_flags_1 & ~0xffUL) | order; #ifdef CONFIG_64BIT folio->_folio_nr_pages = 1U << order; #endif } void __folio_undo_large_rmappable(struct folio *folio); static inline void folio_undo_large_rmappable(struct folio *folio) { if (folio_order(folio) <= 1 || !folio_test_large_rmappable(folio)) return; /* * At this point, there is no one trying to add the folio to * deferred_list. If folio is not in deferred_list, it's safe * to check without acquiring the split_queue_lock. */ if (data_race(list_empty(&folio->_deferred_list))) return; __folio_undo_large_rmappable(folio); } static inline struct folio *page_rmappable_folio(struct page *page) { struct folio *folio = (struct folio *)page; if (folio && folio_test_large(folio)) folio_set_large_rmappable(folio); return folio; } static inline void prep_compound_head(struct page *page, unsigned int order) { struct folio *folio = (struct folio *)page; folio_set_order(folio, order); atomic_set(&folio->_large_mapcount, -1); atomic_set(&folio->_entire_mapcount, -1); atomic_set(&folio->_nr_pages_mapped, 0); atomic_set(&folio->_pincount, 0); if (order > 1) INIT_LIST_HEAD(&folio->_deferred_list); } static inline void prep_compound_tail(struct page *head, int tail_idx) { struct page *p = head + tail_idx; p->mapping = TAIL_MAPPING; set_compound_head(p, head); set_page_private(p, 0); } extern void prep_compound_page(struct page *page, unsigned int order); extern void post_alloc_hook(struct page *page, unsigned int order, gfp_t gfp_flags); extern bool free_pages_prepare(struct page *page, unsigned int order); extern int user_min_free_kbytes; void free_unref_page(struct page *page, unsigned int order); void free_unref_folios(struct folio_batch *fbatch); extern void zone_pcp_reset(struct zone *zone); extern void zone_pcp_disable(struct zone *zone); extern void zone_pcp_enable(struct zone *zone); extern void zone_pcp_init(struct zone *zone); extern void *memmap_alloc(phys_addr_t size, phys_addr_t align, phys_addr_t min_addr, int nid, bool exact_nid); void memmap_init_range(unsigned long, int, unsigned long, unsigned long, unsigned long, enum meminit_context, struct vmem_altmap *, int); #if defined CONFIG_COMPACTION || defined CONFIG_CMA /* * in mm/compaction.c */ /* * compact_control is used to track pages being migrated and the free pages * they are being migrated to during memory compaction. The free_pfn starts * at the end of a zone and migrate_pfn begins at the start. Movable pages * are moved to the end of a zone during a compaction run and the run * completes when free_pfn <= migrate_pfn */ struct compact_control { struct list_head freepages[NR_PAGE_ORDERS]; /* List of free pages to migrate to */ struct list_head migratepages; /* List of pages being migrated */ unsigned int nr_freepages; /* Number of isolated free pages */ unsigned int nr_migratepages; /* Number of pages to migrate */ unsigned long free_pfn; /* isolate_freepages search base */ /* * Acts as an in/out parameter to page isolation for migration. * isolate_migratepages uses it as a search base. * isolate_migratepages_block will update the value to the next pfn * after the last isolated one. */ unsigned long migrate_pfn; unsigned long fast_start_pfn; /* a pfn to start linear scan from */ struct zone *zone; unsigned long total_migrate_scanned; unsigned long total_free_scanned; unsigned short fast_search_fail;/* failures to use free list searches */ short search_order; /* order to start a fast search at */ const gfp_t gfp_mask; /* gfp mask of a direct compactor */ int order; /* order a direct compactor needs */ int migratetype; /* migratetype of direct compactor */ const unsigned int alloc_flags; /* alloc flags of a direct compactor */ const int highest_zoneidx; /* zone index of a direct compactor */ enum migrate_mode mode; /* Async or sync migration mode */ bool ignore_skip_hint; /* Scan blocks even if marked skip */ bool no_set_skip_hint; /* Don't mark blocks for skipping */ bool ignore_block_suitable; /* Scan blocks considered unsuitable */ bool direct_compaction; /* False from kcompactd or /proc/... */ bool proactive_compaction; /* kcompactd proactive compaction */ bool whole_zone; /* Whole zone should/has been scanned */ bool contended; /* Signal lock contention */ bool finish_pageblock; /* Scan the remainder of a pageblock. Used * when there are potentially transient * isolation or migration failures to * ensure forward progress. */ bool alloc_contig; /* alloc_contig_range allocation */ }; /* * Used in direct compaction when a page should be taken from the freelists * immediately when one is created during the free path. */ struct capture_control { struct compact_control *cc; struct page *page; }; unsigned long isolate_freepages_range(struct compact_control *cc, unsigned long start_pfn, unsigned long end_pfn); int isolate_migratepages_range(struct compact_control *cc, unsigned long low_pfn, unsigned long end_pfn); int __alloc_contig_migrate_range(struct compact_control *cc, unsigned long start, unsigned long end, int migratetype); /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ void init_cma_reserved_pageblock(struct page *page); #endif /* CONFIG_COMPACTION || CONFIG_CMA */ int find_suitable_fallback(struct free_area *area, unsigned int order, int migratetype, bool only_stealable, bool *can_steal); static inline bool free_area_empty(struct free_area *area, int migratetype) { return list_empty(&area->free_list[migratetype]); } /* mm/util.c */ struct anon_vma *folio_anon_vma(struct folio *folio); #ifdef CONFIG_MMU void unmap_mapping_folio(struct folio *folio); extern long populate_vma_page_range(struct vm_area_struct *vma, unsigned long start, unsigned long end, int *locked); extern long faultin_page_range(struct mm_struct *mm, unsigned long start, unsigned long end, bool write, int *locked); extern bool mlock_future_ok(struct mm_struct *mm, unsigned long flags, unsigned long bytes); /* * NOTE: This function can't tell whether the folio is "fully mapped" in the * range. * "fully mapped" means all the pages of folio is associated with the page * table of range while this function just check whether the folio range is * within the range [start, end). Function caller needs to do page table * check if it cares about the page table association. * * Typical usage (like mlock or madvise) is: * Caller knows at least 1 page of folio is associated with page table of VMA * and the range [start, end) is intersect with the VMA range. Caller wants * to know whether the folio is fully associated with the range. It calls * this function to check whether the folio is in the range first. Then checks * the page table to know whether the folio is fully mapped to the range. */ static inline bool folio_within_range(struct folio *folio, struct vm_area_struct *vma, unsigned long start, unsigned long end) { pgoff_t pgoff, addr; unsigned long vma_pglen = vma_pages(vma); VM_WARN_ON_FOLIO(folio_test_ksm(folio), folio); if (start > end) return false; if (start < vma->vm_start) start = vma->vm_start; if (end > vma->vm_end) end = vma->vm_end; pgoff = folio_pgoff(folio); /* if folio start address is not in vma range */ if (!in_range(pgoff, vma->vm_pgoff, vma_pglen)) return false; addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); return !(addr < start || end - addr < folio_size(folio)); } static inline bool folio_within_vma(struct folio *folio, struct vm_area_struct *vma) { return folio_within_range(folio, vma, vma->vm_start, vma->vm_end); } /* * mlock_vma_folio() and munlock_vma_folio(): * should be called with vma's mmap_lock held for read or write, * under page table lock for the pte/pmd being added or removed. * * mlock is usually called at the end of folio_add_*_rmap_*(), munlock at * the end of folio_remove_rmap_*(); but new anon folios are managed by * folio_add_lru_vma() calling mlock_new_folio(). */ void mlock_folio(struct folio *folio); static inline void mlock_vma_folio(struct folio *folio, struct vm_area_struct *vma) { /* * The VM_SPECIAL check here serves two purposes. * 1) VM_IO check prevents migration from double-counting during mlock. * 2) Although mmap_region() and mlock_fixup() take care that VM_LOCKED * is never left set on a VM_SPECIAL vma, there is an interval while * file->f_op->mmap() is using vm_insert_page(s), when VM_LOCKED may * still be set while VM_SPECIAL bits are added: so ignore it then. */ if (unlikely((vma->vm_flags & (VM_LOCKED|VM_SPECIAL)) == VM_LOCKED)) mlock_folio(folio); } void munlock_folio(struct folio *folio); static inline void munlock_vma_folio(struct folio *folio, struct vm_area_struct *vma) { /* * munlock if the function is called. Ideally, we should only * do munlock if any page of folio is unmapped from VMA and * cause folio not fully mapped to VMA. * * But it's not easy to confirm that's the situation. So we * always munlock the folio and page reclaim will correct it * if it's wrong. */ if (unlikely(vma->vm_flags & VM_LOCKED)) munlock_folio(folio); } void mlock_new_folio(struct folio *folio); bool need_mlock_drain(int cpu); void mlock_drain_local(void); void mlock_drain_remote(int cpu); extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma); /** * vma_address - Find the virtual address a page range is mapped at * @vma: The vma which maps this object. * @pgoff: The page offset within its object. * @nr_pages: The number of pages to consider. * * If any page in this range is mapped by this VMA, return the first address * where any of these pages appear. Otherwise, return -EFAULT. */ static inline unsigned long vma_address(struct vm_area_struct *vma, pgoff_t pgoff, unsigned long nr_pages) { unsigned long address; if (pgoff >= vma->vm_pgoff) { address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); /* Check for address beyond vma (or wrapped through 0?) */ if (address < vma->vm_start || address >= vma->vm_end) address = -EFAULT; } else if (pgoff + nr_pages - 1 >= vma->vm_pgoff) { /* Test above avoids possibility of wrap to 0 on 32-bit */ address = vma->vm_start; } else { address = -EFAULT; } return address; } /* * Then at what user virtual address will none of the range be found in vma? * Assumes that vma_address() already returned a good starting address. */ static inline unsigned long vma_address_end(struct page_vma_mapped_walk *pvmw) { struct vm_area_struct *vma = pvmw->vma; pgoff_t pgoff; unsigned long address; /* Common case, plus ->pgoff is invalid for KSM */ if (pvmw->nr_pages == 1) return pvmw->address + PAGE_SIZE; pgoff = pvmw->pgoff + pvmw->nr_pages; address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); /* Check for address beyond vma (or wrapped through 0?) */ if (address < vma->vm_start || address > vma->vm_end) address = vma->vm_end; return address; } static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf, struct file *fpin) { int flags = vmf->flags; if (fpin) return fpin; /* * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or * anything, so we only pin the file and drop the mmap_lock if only * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt. */ if (fault_flag_allow_retry_first(flags) && !(flags & FAULT_FLAG_RETRY_NOWAIT)) { fpin = get_file(vmf->vma->vm_file); release_fault_lock(vmf); } return fpin; } #else /* !CONFIG_MMU */ static inline void unmap_mapping_folio(struct folio *folio) { } static inline void mlock_new_folio(struct folio *folio) { } static inline bool need_mlock_drain(int cpu) { return false; } static inline void mlock_drain_local(void) { } static inline void mlock_drain_remote(int cpu) { } static inline void vunmap_range_noflush(unsigned long start, unsigned long end) { } #endif /* !CONFIG_MMU */ /* Memory initialisation debug and verification */ #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT DECLARE_STATIC_KEY_TRUE(deferred_pages); bool __init deferred_grow_zone(struct zone *zone, unsigned int order); #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ enum mminit_level { MMINIT_WARNING, MMINIT_VERIFY, MMINIT_TRACE }; #ifdef CONFIG_DEBUG_MEMORY_INIT extern int mminit_loglevel; #define mminit_dprintk(level, prefix, fmt, arg...) \ do { \ if (level < mminit_loglevel) { \ if (level <= MMINIT_WARNING) \ pr_warn("mminit::" prefix " " fmt, ##arg); \ else \ printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \ } \ } while (0) extern void mminit_verify_pageflags_layout(void); extern void mminit_verify_zonelist(void); #else static inline void mminit_dprintk(enum mminit_level level, const char *prefix, const char *fmt, ...) { } static inline void mminit_verify_pageflags_layout(void) { } static inline void mminit_verify_zonelist(void) { } #endif /* CONFIG_DEBUG_MEMORY_INIT */ #define NODE_RECLAIM_NOSCAN -2 #define NODE_RECLAIM_FULL -1 #define NODE_RECLAIM_SOME 0 #define NODE_RECLAIM_SUCCESS 1 #ifdef CONFIG_NUMA extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int); extern int find_next_best_node(int node, nodemask_t *used_node_mask); #else static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask, unsigned int order) { return NODE_RECLAIM_NOSCAN; } static inline int find_next_best_node(int node, nodemask_t *used_node_mask) { return NUMA_NO_NODE; } #endif /* * mm/memory-failure.c */ #ifdef CONFIG_MEMORY_FAILURE void unmap_poisoned_folio(struct folio *folio, enum ttu_flags ttu); void shake_folio(struct folio *folio); extern int hwpoison_filter(struct page *p); extern u32 hwpoison_filter_dev_major; extern u32 hwpoison_filter_dev_minor; extern u64 hwpoison_filter_flags_mask; extern u64 hwpoison_filter_flags_value; extern u64 hwpoison_filter_memcg; extern u32 hwpoison_filter_enable; #define MAGIC_HWPOISON 0x48575053U /* HWPS */ void SetPageHWPoisonTakenOff(struct page *page); void ClearPageHWPoisonTakenOff(struct page *page); bool take_page_off_buddy(struct page *page); bool put_page_back_buddy(struct page *page); struct task_struct *task_early_kill(struct task_struct *tsk, int force_early); void add_to_kill_ksm(struct task_struct *tsk, struct page *p, struct vm_area_struct *vma, struct list_head *to_kill, unsigned long ksm_addr); unsigned long page_mapped_in_vma(struct page *page, struct vm_area_struct *vma); #else static inline void unmap_poisoned_folio(struct folio *folio, enum ttu_flags ttu) { } #endif extern unsigned long __must_check vm_mmap_pgoff(struct file *, unsigned long, unsigned long, unsigned long, unsigned long, unsigned long); extern void set_pageblock_order(void); struct folio *alloc_migrate_folio(struct folio *src, unsigned long private); unsigned long reclaim_pages(struct list_head *folio_list); unsigned int reclaim_clean_pages_from_list(struct zone *zone, struct list_head *folio_list); /* The ALLOC_WMARK bits are used as an index to zone->watermark */ #define ALLOC_WMARK_MIN WMARK_MIN #define ALLOC_WMARK_LOW WMARK_LOW #define ALLOC_WMARK_HIGH WMARK_HIGH #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ /* Mask to get the watermark bits */ #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) /* * Only MMU archs have async oom victim reclaim - aka oom_reaper so we * cannot assume a reduced access to memory reserves is sufficient for * !MMU */ #ifdef CONFIG_MMU #define ALLOC_OOM 0x08 #else #define ALLOC_OOM ALLOC_NO_WATERMARKS #endif #define ALLOC_NON_BLOCK 0x10 /* Caller cannot block. Allow access * to 25% of the min watermark or * 62.5% if __GFP_HIGH is set. */ #define ALLOC_MIN_RESERVE 0x20 /* __GFP_HIGH set. Allow access to 50% * of the min watermark. */ #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ #define ALLOC_CMA 0x80 /* allow allocations from CMA areas */ #ifdef CONFIG_ZONE_DMA32 #define ALLOC_NOFRAGMENT 0x100 /* avoid mixing pageblock types */ #else #define ALLOC_NOFRAGMENT 0x0 #endif #define ALLOC_HIGHATOMIC 0x200 /* Allows access to MIGRATE_HIGHATOMIC */ #define ALLOC_KSWAPD 0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */ /* Flags that allow allocations below the min watermark. */ #define ALLOC_RESERVES (ALLOC_NON_BLOCK|ALLOC_MIN_RESERVE|ALLOC_HIGHATOMIC|ALLOC_OOM) enum ttu_flags; struct tlbflush_unmap_batch; /* * only for MM internal work items which do not depend on * any allocations or locks which might depend on allocations */ extern struct workqueue_struct *mm_percpu_wq; #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH void try_to_unmap_flush(void); void try_to_unmap_flush_dirty(void); void flush_tlb_batched_pending(struct mm_struct *mm); #else static inline void try_to_unmap_flush(void) { } static inline void try_to_unmap_flush_dirty(void) { } static inline void flush_tlb_batched_pending(struct mm_struct *mm) { } #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ extern const struct trace_print_flags pageflag_names[]; extern const struct trace_print_flags vmaflag_names[]; extern const struct trace_print_flags gfpflag_names[]; static inline bool is_migrate_highatomic(enum migratetype migratetype) { return migratetype == MIGRATE_HIGHATOMIC; } void setup_zone_pageset(struct zone *zone); struct migration_target_control { int nid; /* preferred node id */ nodemask_t *nmask; gfp_t gfp_mask; enum migrate_reason reason; }; /* * mm/filemap.c */ size_t splice_folio_into_pipe(struct pipe_inode_info *pipe, struct folio *folio, loff_t fpos, size_t size); /* * mm/vmalloc.c */ #ifdef CONFIG_MMU void __init vmalloc_init(void); int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end, pgprot_t prot, struct page **pages, unsigned int page_shift); #else static inline void vmalloc_init(void) { } static inline int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end, pgprot_t prot, struct page **pages, unsigned int page_shift) { return -EINVAL; } #endif int __must_check __vmap_pages_range_noflush(unsigned long addr, unsigned long end, pgprot_t prot, struct page **pages, unsigned int page_shift); void vunmap_range_noflush(unsigned long start, unsigned long end); void __vunmap_range_noflush(unsigned long start, unsigned long end); int numa_migrate_check(struct folio *folio, struct vm_fault *vmf, unsigned long addr, int *flags, bool writable, int *last_cpupid); void free_zone_device_folio(struct folio *folio); int migrate_device_coherent_folio(struct folio *folio); /* * mm/gup.c */ int __must_check try_grab_folio(struct folio *folio, int refs, unsigned int flags); /* * mm/huge_memory.c */ void touch_pud(struct vm_area_struct *vma, unsigned long addr, pud_t *pud, bool write); void touch_pmd(struct vm_area_struct *vma, unsigned long addr, pmd_t *pmd, bool write); enum { /* mark page accessed */ FOLL_TOUCH = 1 << 16, /* a retry, previous pass started an IO */ FOLL_TRIED = 1 << 17, /* we are working on non-current tsk/mm */ FOLL_REMOTE = 1 << 18, /* pages must be released via unpin_user_page */ FOLL_PIN = 1 << 19, /* gup_fast: prevent fall-back to slow gup */ FOLL_FAST_ONLY = 1 << 20, /* allow unlocking the mmap lock */ FOLL_UNLOCKABLE = 1 << 21, /* VMA lookup+checks compatible with MADV_POPULATE_(READ|WRITE) */ FOLL_MADV_POPULATE = 1 << 22, }; #define INTERNAL_GUP_FLAGS (FOLL_TOUCH | FOLL_TRIED | FOLL_REMOTE | FOLL_PIN | \ FOLL_FAST_ONLY | FOLL_UNLOCKABLE | \ FOLL_MADV_POPULATE) /* * Indicates for which pages that are write-protected in the page table, * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the * GUP pin will remain consistent with the pages mapped into the page tables * of the MM. * * Temporary unmapping of PageAnonExclusive() pages or clearing of * PageAnonExclusive() has to protect against concurrent GUP: * * Ordinary GUP: Using the PT lock * * GUP-fast and fork(): mm->write_protect_seq * * GUP-fast and KSM or temporary unmapping (swap, migration): see * folio_try_share_anon_rmap_*() * * Must be called with the (sub)page that's actually referenced via the * page table entry, which might not necessarily be the head page for a * PTE-mapped THP. * * If the vma is NULL, we're coming from the GUP-fast path and might have * to fallback to the slow path just to lookup the vma. */ static inline bool gup_must_unshare(struct vm_area_struct *vma, unsigned int flags, struct page *page) { /* * FOLL_WRITE is implicitly handled correctly as the page table entry * has to be writable -- and if it references (part of) an anonymous * folio, that part is required to be marked exclusive. */ if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN) return false; /* * Note: PageAnon(page) is stable until the page is actually getting * freed. */ if (!PageAnon(page)) { /* * We only care about R/O long-term pining: R/O short-term * pinning does not have the semantics to observe successive * changes through the process page tables. */ if (!(flags & FOLL_LONGTERM)) return false; /* We really need the vma ... */ if (!vma) return true; /* * ... because we only care about writable private ("COW") * mappings where we have to break COW early. */ return is_cow_mapping(vma->vm_flags); } /* Paired with a memory barrier in folio_try_share_anon_rmap_*(). */ if (IS_ENABLED(CONFIG_HAVE_GUP_FAST)) smp_rmb(); /* * Note that PageKsm() pages cannot be exclusive, and consequently, * cannot get pinned. */ return !PageAnonExclusive(page); } extern bool mirrored_kernelcore; extern bool memblock_has_mirror(void); static __always_inline void vma_set_range(struct vm_area_struct *vma, unsigned long start, unsigned long end, pgoff_t pgoff) { vma->vm_start = start; vma->vm_end = end; vma->vm_pgoff = pgoff; } static inline bool vma_soft_dirty_enabled(struct vm_area_struct *vma) { /* * NOTE: we must check this before VM_SOFTDIRTY on soft-dirty * enablements, because when without soft-dirty being compiled in, * VM_SOFTDIRTY is defined as 0x0, then !(vm_flags & VM_SOFTDIRTY) * will be constantly true. */ if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY)) return false; /* * Soft-dirty is kind of special: its tracking is enabled when the * vma flags not set. */ return !(vma->vm_flags & VM_SOFTDIRTY); } static inline bool pmd_needs_soft_dirty_wp(struct vm_area_struct *vma, pmd_t pmd) { return vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd); } static inline bool pte_needs_soft_dirty_wp(struct vm_area_struct *vma, pte_t pte) { return vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte); } void __meminit __init_single_page(struct page *page, unsigned long pfn, unsigned long zone, int nid); /* shrinker related functions */ unsigned long shrink_slab(gfp_t gfp_mask, int nid, struct mem_cgroup *memcg, int priority); #ifdef CONFIG_64BIT static inline int can_do_mseal(unsigned long flags) { if (flags) return -EINVAL; return 0; } #else static inline int can_do_mseal(unsigned long flags) { return -EPERM; } #endif #ifdef CONFIG_SHRINKER_DEBUG static inline __printf(2, 0) int shrinker_debugfs_name_alloc( struct shrinker *shrinker, const char *fmt, va_list ap) { shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap); return shrinker->name ? 0 : -ENOMEM; } static inline void shrinker_debugfs_name_free(struct shrinker *shrinker) { kfree_const(shrinker->name); shrinker->name = NULL; } extern int shrinker_debugfs_add(struct shrinker *shrinker); extern struct dentry *shrinker_debugfs_detach(struct shrinker *shrinker, int *debugfs_id); extern void shrinker_debugfs_remove(struct dentry *debugfs_entry, int debugfs_id); #else /* CONFIG_SHRINKER_DEBUG */ static inline int shrinker_debugfs_add(struct shrinker *shrinker) { return 0; } static inline int shrinker_debugfs_name_alloc(struct shrinker *shrinker, const char *fmt, va_list ap) { return 0; } static inline void shrinker_debugfs_name_free(struct shrinker *shrinker) { } static inline struct dentry *shrinker_debugfs_detach(struct shrinker *shrinker, int *debugfs_id) { *debugfs_id = -1; return NULL; } static inline void shrinker_debugfs_remove(struct dentry *debugfs_entry, int debugfs_id) { } #endif /* CONFIG_SHRINKER_DEBUG */ /* Only track the nodes of mappings with shadow entries */ void workingset_update_node(struct xa_node *node); extern struct list_lru shadow_nodes; /* mremap.c */ unsigned long move_page_tables(struct vm_area_struct *vma, unsigned long old_addr, struct vm_area_struct *new_vma, unsigned long new_addr, unsigned long len, bool need_rmap_locks, bool for_stack); #ifdef CONFIG_UNACCEPTED_MEMORY void accept_page(struct page *page); #else /* CONFIG_UNACCEPTED_MEMORY */ static inline void accept_page(struct page *page) { } #endif /* CONFIG_UNACCEPTED_MEMORY */ #endif /* __MM_INTERNAL_H */