// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2008, 2009 Intel Corporation * Authors: Andi Kleen, Fengguang Wu * * High level machine check handler. Handles pages reported by the * hardware as being corrupted usually due to a multi-bit ECC memory or cache * failure. * * In addition there is a "soft offline" entry point that allows stop using * not-yet-corrupted-by-suspicious pages without killing anything. * * Handles page cache pages in various states. The tricky part * here is that we can access any page asynchronously in respect to * other VM users, because memory failures could happen anytime and * anywhere. This could violate some of their assumptions. This is why * this code has to be extremely careful. Generally it tries to use * normal locking rules, as in get the standard locks, even if that means * the error handling takes potentially a long time. * * It can be very tempting to add handling for obscure cases here. * In general any code for handling new cases should only be added iff: * - You know how to test it. * - You have a test that can be added to mce-test * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/ * - The case actually shows up as a frequent (top 10) page state in * tools/mm/page-types when running a real workload. * * There are several operations here with exponential complexity because * of unsuitable VM data structures. For example the operation to map back * from RMAP chains to processes has to walk the complete process list and * has non linear complexity with the number. But since memory corruptions * are rare we hope to get away with this. This avoids impacting the core * VM. */ #define pr_fmt(fmt) "Memory failure: " fmt #include <linux/kernel.h> #include <linux/mm.h> #include <linux/page-flags.h> #include <linux/sched/signal.h> #include <linux/sched/task.h> #include <linux/dax.h> #include <linux/ksm.h> #include <linux/rmap.h> #include <linux/export.h> #include <linux/pagemap.h> #include <linux/swap.h> #include <linux/backing-dev.h> #include <linux/migrate.h> #include <linux/slab.h> #include <linux/swapops.h> #include <linux/hugetlb.h> #include <linux/memory_hotplug.h> #include <linux/mm_inline.h> #include <linux/memremap.h> #include <linux/kfifo.h> #include <linux/ratelimit.h> #include <linux/pagewalk.h> #include <linux/shmem_fs.h> #include <linux/sysctl.h> #include "swap.h" #include "internal.h" #include "ras/ras_event.h" static int sysctl_memory_failure_early_kill __read_mostly; static int sysctl_memory_failure_recovery __read_mostly = 1; atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); static bool hw_memory_failure __read_mostly = false; static DEFINE_MUTEX(mf_mutex); void num_poisoned_pages_inc(unsigned long pfn) { atomic_long_inc(&num_poisoned_pages); memblk_nr_poison_inc(pfn); } void num_poisoned_pages_sub(unsigned long pfn, long i) { atomic_long_sub(i, &num_poisoned_pages); if (pfn != -1UL) memblk_nr_poison_sub(pfn, i); } /** * MF_ATTR_RO - Create sysfs entry for each memory failure statistics. * @_name: name of the file in the per NUMA sysfs directory. */ #define MF_ATTR_RO(_name) \ static ssize_t _name##_show(struct device *dev, \ struct device_attribute *attr, \ char *buf) \ { \ struct memory_failure_stats *mf_stats = \ &NODE_DATA(dev->id)->mf_stats; \ return sprintf(buf, "%lu\n", mf_stats->_name); \ } \ static DEVICE_ATTR_RO(_name) MF_ATTR_RO(total); MF_ATTR_RO(ignored); MF_ATTR_RO(failed); MF_ATTR_RO(delayed); MF_ATTR_RO(recovered); static struct attribute *memory_failure_attr[] = { &dev_attr_total.attr, &dev_attr_ignored.attr, &dev_attr_failed.attr, &dev_attr_delayed.attr, &dev_attr_recovered.attr, NULL, }; const struct attribute_group memory_failure_attr_group = { .name = "memory_failure", .attrs = memory_failure_attr, }; static struct ctl_table memory_failure_table[] = { { .procname = "memory_failure_early_kill", .data = &sysctl_memory_failure_early_kill, .maxlen = sizeof(sysctl_memory_failure_early_kill), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = SYSCTL_ZERO, .extra2 = SYSCTL_ONE, }, { .procname = "memory_failure_recovery", .data = &sysctl_memory_failure_recovery, .maxlen = sizeof(sysctl_memory_failure_recovery), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = SYSCTL_ZERO, .extra2 = SYSCTL_ONE, }, { } }; /* * Return values: * 1: the page is dissolved (if needed) and taken off from buddy, * 0: the page is dissolved (if needed) and not taken off from buddy, * < 0: failed to dissolve. */ static int __page_handle_poison(struct page *page) { int ret; zone_pcp_disable(page_zone(page)); ret = dissolve_free_huge_page(page); if (!ret) ret = take_page_off_buddy(page); zone_pcp_enable(page_zone(page)); return ret; } static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release) { if (hugepage_or_freepage) { /* * Doing this check for free pages is also fine since dissolve_free_huge_page * returns 0 for non-hugetlb pages as well. */ if (__page_handle_poison(page) <= 0) /* * We could fail to take off the target page from buddy * for example due to racy page allocation, but that's * acceptable because soft-offlined page is not broken * and if someone really want to use it, they should * take it. */ return false; } SetPageHWPoison(page); if (release) put_page(page); page_ref_inc(page); num_poisoned_pages_inc(page_to_pfn(page)); return true; } #if IS_ENABLED(CONFIG_HWPOISON_INJECT) u32 hwpoison_filter_enable = 0; u32 hwpoison_filter_dev_major = ~0U; u32 hwpoison_filter_dev_minor = ~0U; u64 hwpoison_filter_flags_mask; u64 hwpoison_filter_flags_value; EXPORT_SYMBOL_GPL(hwpoison_filter_enable); EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); static int hwpoison_filter_dev(struct page *p) { struct address_space *mapping; dev_t dev; if (hwpoison_filter_dev_major == ~0U && hwpoison_filter_dev_minor == ~0U) return 0; mapping = page_mapping(p); if (mapping == NULL || mapping->host == NULL) return -EINVAL; dev = mapping->host->i_sb->s_dev; if (hwpoison_filter_dev_major != ~0U && hwpoison_filter_dev_major != MAJOR(dev)) return -EINVAL; if (hwpoison_filter_dev_minor != ~0U && hwpoison_filter_dev_minor != MINOR(dev)) return -EINVAL; return 0; } static int hwpoison_filter_flags(struct page *p) { if (!hwpoison_filter_flags_mask) return 0; if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == hwpoison_filter_flags_value) return 0; else return -EINVAL; } /* * This allows stress tests to limit test scope to a collection of tasks * by putting them under some memcg. This prevents killing unrelated/important * processes such as /sbin/init. Note that the target task may share clean * pages with init (eg. libc text), which is harmless. If the target task * share _dirty_ pages with another task B, the test scheme must make sure B * is also included in the memcg. At last, due to race conditions this filter * can only guarantee that the page either belongs to the memcg tasks, or is * a freed page. */ #ifdef CONFIG_MEMCG u64 hwpoison_filter_memcg; EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); static int hwpoison_filter_task(struct page *p) { if (!hwpoison_filter_memcg) return 0; if (page_cgroup_ino(p) != hwpoison_filter_memcg) return -EINVAL; return 0; } #else static int hwpoison_filter_task(struct page *p) { return 0; } #endif int hwpoison_filter(struct page *p) { if (!hwpoison_filter_enable) return 0; if (hwpoison_filter_dev(p)) return -EINVAL; if (hwpoison_filter_flags(p)) return -EINVAL; if (hwpoison_filter_task(p)) return -EINVAL; return 0; } #else int hwpoison_filter(struct page *p) { return 0; } #endif EXPORT_SYMBOL_GPL(hwpoison_filter); /* * Kill all processes that have a poisoned page mapped and then isolate * the page. * * General strategy: * Find all processes having the page mapped and kill them. * But we keep a page reference around so that the page is not * actually freed yet. * Then stash the page away * * There's no convenient way to get back to mapped processes * from the VMAs. So do a brute-force search over all * running processes. * * Remember that machine checks are not common (or rather * if they are common you have other problems), so this shouldn't * be a performance issue. * * Also there are some races possible while we get from the * error detection to actually handle it. */ struct to_kill { struct list_head nd; struct task_struct *tsk; unsigned long addr; short size_shift; }; /* * Send all the processes who have the page mapped a signal. * ``action optional'' if they are not immediately affected by the error * ``action required'' if error happened in current execution context */ static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags) { struct task_struct *t = tk->tsk; short addr_lsb = tk->size_shift; int ret = 0; pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n", pfn, t->comm, t->pid); if ((flags & MF_ACTION_REQUIRED) && (t == current)) ret = force_sig_mceerr(BUS_MCEERR_AR, (void __user *)tk->addr, addr_lsb); else /* * Signal other processes sharing the page if they have * PF_MCE_EARLY set. * Don't use force here, it's convenient if the signal * can be temporarily blocked. * This could cause a loop when the user sets SIGBUS * to SIG_IGN, but hopefully no one will do that? */ ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr, addr_lsb, t); if (ret < 0) pr_info("Error sending signal to %s:%d: %d\n", t->comm, t->pid, ret); return ret; } /* * Unknown page type encountered. Try to check whether it can turn PageLRU by * lru_add_drain_all. */ void shake_page(struct page *p) { if (PageHuge(p)) return; /* * TODO: Could shrink slab caches here if a lightweight range-based * shrinker will be available. */ if (PageSlab(p)) return; lru_add_drain_all(); } EXPORT_SYMBOL_GPL(shake_page); static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma, unsigned long address) { unsigned long ret = 0; pgd_t *pgd; p4d_t *p4d; pud_t *pud; pmd_t *pmd; pte_t *pte; pte_t ptent; VM_BUG_ON_VMA(address == -EFAULT, vma); pgd = pgd_offset(vma->vm_mm, address); if (!pgd_present(*pgd)) return 0; p4d = p4d_offset(pgd, address); if (!p4d_present(*p4d)) return 0; pud = pud_offset(p4d, address); if (!pud_present(*pud)) return 0; if (pud_devmap(*pud)) return PUD_SHIFT; pmd = pmd_offset(pud, address); if (!pmd_present(*pmd)) return 0; if (pmd_devmap(*pmd)) return PMD_SHIFT; pte = pte_offset_map(pmd, address); if (!pte) return 0; ptent = ptep_get(pte); if (pte_present(ptent) && pte_devmap(ptent)) ret = PAGE_SHIFT; pte_unmap(pte); return ret; } /* * Failure handling: if we can't find or can't kill a process there's * not much we can do. We just print a message and ignore otherwise. */ #define FSDAX_INVALID_PGOFF ULONG_MAX /* * Schedule a process for later kill. * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. * * Note: @fsdax_pgoff is used only when @p is a fsdax page and a * filesystem with a memory failure handler has claimed the * memory_failure event. In all other cases, page->index and * page->mapping are sufficient for mapping the page back to its * corresponding user virtual address. */ static void __add_to_kill(struct task_struct *tsk, struct page *p, struct vm_area_struct *vma, struct list_head *to_kill, unsigned long ksm_addr, pgoff_t fsdax_pgoff) { struct to_kill *tk; tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); if (!tk) { pr_err("Out of memory while machine check handling\n"); return; } tk->addr = ksm_addr ? ksm_addr : page_address_in_vma(p, vma); if (is_zone_device_page(p)) { if (fsdax_pgoff != FSDAX_INVALID_PGOFF) tk->addr = vma_pgoff_address(fsdax_pgoff, 1, vma); tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr); } else tk->size_shift = page_shift(compound_head(p)); /* * Send SIGKILL if "tk->addr == -EFAULT". Also, as * "tk->size_shift" is always non-zero for !is_zone_device_page(), * so "tk->size_shift == 0" effectively checks no mapping on * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times * to a process' address space, it's possible not all N VMAs * contain mappings for the page, but at least one VMA does. * Only deliver SIGBUS with payload derived from the VMA that * has a mapping for the page. */ if (tk->addr == -EFAULT) { pr_info("Unable to find user space address %lx in %s\n", page_to_pfn(p), tsk->comm); } else if (tk->size_shift == 0) { kfree(tk); return; } get_task_struct(tsk); tk->tsk = tsk; list_add_tail(&tk->nd, to_kill); } static void add_to_kill_anon_file(struct task_struct *tsk, struct page *p, struct vm_area_struct *vma, struct list_head *to_kill) { __add_to_kill(tsk, p, vma, to_kill, 0, FSDAX_INVALID_PGOFF); } #ifdef CONFIG_KSM static bool task_in_to_kill_list(struct list_head *to_kill, struct task_struct *tsk) { struct to_kill *tk, *next; list_for_each_entry_safe(tk, next, to_kill, nd) { if (tk->tsk == tsk) return true; } return false; } void add_to_kill_ksm(struct task_struct *tsk, struct page *p, struct vm_area_struct *vma, struct list_head *to_kill, unsigned long ksm_addr) { if (!task_in_to_kill_list(to_kill, tsk)) __add_to_kill(tsk, p, vma, to_kill, ksm_addr, FSDAX_INVALID_PGOFF); } #endif /* * Kill the processes that have been collected earlier. * * Only do anything when FORCEKILL is set, otherwise just free the * list (this is used for clean pages which do not need killing) * Also when FAIL is set do a force kill because something went * wrong earlier. */ static void kill_procs(struct list_head *to_kill, int forcekill, bool fail, unsigned long pfn, int flags) { struct to_kill *tk, *next; list_for_each_entry_safe(tk, next, to_kill, nd) { if (forcekill) { /* * In case something went wrong with munmapping * make sure the process doesn't catch the * signal and then access the memory. Just kill it. */ if (fail || tk->addr == -EFAULT) { pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", pfn, tk->tsk->comm, tk->tsk->pid); do_send_sig_info(SIGKILL, SEND_SIG_PRIV, tk->tsk, PIDTYPE_PID); } /* * In theory the process could have mapped * something else on the address in-between. We could * check for that, but we need to tell the * process anyways. */ else if (kill_proc(tk, pfn, flags) < 0) pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n", pfn, tk->tsk->comm, tk->tsk->pid); } list_del(&tk->nd); put_task_struct(tk->tsk); kfree(tk); } } /* * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO) * on behalf of the thread group. Return task_struct of the (first found) * dedicated thread if found, and return NULL otherwise. * * We already hold read_lock(&tasklist_lock) in the caller, so we don't * have to call rcu_read_lock/unlock() in this function. */ static struct task_struct *find_early_kill_thread(struct task_struct *tsk) { struct task_struct *t; for_each_thread(tsk, t) { if (t->flags & PF_MCE_PROCESS) { if (t->flags & PF_MCE_EARLY) return t; } else { if (sysctl_memory_failure_early_kill) return t; } } return NULL; } /* * Determine whether a given process is "early kill" process which expects * to be signaled when some page under the process is hwpoisoned. * Return task_struct of the dedicated thread (main thread unless explicitly * specified) if the process is "early kill" and otherwise returns NULL. * * Note that the above is true for Action Optional case. For Action Required * case, it's only meaningful to the current thread which need to be signaled * with SIGBUS, this error is Action Optional for other non current * processes sharing the same error page,if the process is "early kill", the * task_struct of the dedicated thread will also be returned. */ struct task_struct *task_early_kill(struct task_struct *tsk, int force_early) { if (!tsk->mm) return NULL; /* * Comparing ->mm here because current task might represent * a subthread, while tsk always points to the main thread. */ if (force_early && tsk->mm == current->mm) return current; return find_early_kill_thread(tsk); } /* * Collect processes when the error hit an anonymous page. */ static void collect_procs_anon(struct page *page, struct list_head *to_kill, int force_early) { struct folio *folio = page_folio(page); struct vm_area_struct *vma; struct task_struct *tsk; struct anon_vma *av; pgoff_t pgoff; av = folio_lock_anon_vma_read(folio, NULL); if (av == NULL) /* Not actually mapped anymore */ return; pgoff = page_to_pgoff(page); read_lock(&tasklist_lock); for_each_process(tsk) { struct anon_vma_chain *vmac; struct task_struct *t = task_early_kill(tsk, force_early); if (!t) continue; anon_vma_interval_tree_foreach(vmac, &av->rb_root, pgoff, pgoff) { vma = vmac->vma; if (vma->vm_mm != t->mm) continue; if (!page_mapped_in_vma(page, vma)) continue; add_to_kill_anon_file(t, page, vma, to_kill); } } read_unlock(&tasklist_lock); anon_vma_unlock_read(av); } /* * Collect processes when the error hit a file mapped page. */ static void collect_procs_file(struct page *page, struct list_head *to_kill, int force_early) { struct vm_area_struct *vma; struct task_struct *tsk; struct address_space *mapping = page->mapping; pgoff_t pgoff; i_mmap_lock_read(mapping); read_lock(&tasklist_lock); pgoff = page_to_pgoff(page); for_each_process(tsk) { struct task_struct *t = task_early_kill(tsk, force_early); if (!t) continue; vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { /* * Send early kill signal to tasks where a vma covers * the page but the corrupted page is not necessarily * mapped in its pte. * Assume applications who requested early kill want * to be informed of all such data corruptions. */ if (vma->vm_mm == t->mm) add_to_kill_anon_file(t, page, vma, to_kill); } } read_unlock(&tasklist_lock); i_mmap_unlock_read(mapping); } #ifdef CONFIG_FS_DAX static void add_to_kill_fsdax(struct task_struct *tsk, struct page *p, struct vm_area_struct *vma, struct list_head *to_kill, pgoff_t pgoff) { __add_to_kill(tsk, p, vma, to_kill, 0, pgoff); } /* * Collect processes when the error hit a fsdax page. */ static void collect_procs_fsdax(struct page *page, struct address_space *mapping, pgoff_t pgoff, struct list_head *to_kill) { struct vm_area_struct *vma; struct task_struct *tsk; i_mmap_lock_read(mapping); read_lock(&tasklist_lock); for_each_process(tsk) { struct task_struct *t = task_early_kill(tsk, true); if (!t) continue; vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { if (vma->vm_mm == t->mm) add_to_kill_fsdax(t, page, vma, to_kill, pgoff); } } read_unlock(&tasklist_lock); i_mmap_unlock_read(mapping); } #endif /* CONFIG_FS_DAX */ /* * Collect the processes who have the corrupted page mapped to kill. */ static void collect_procs(struct page *page, struct list_head *tokill, int force_early) { if (!page->mapping) return; if (unlikely(PageKsm(page))) collect_procs_ksm(page, tokill, force_early); else if (PageAnon(page)) collect_procs_anon(page, tokill, force_early); else collect_procs_file(page, tokill, force_early); } struct hwp_walk { struct to_kill tk; unsigned long pfn; int flags; }; static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift) { tk->addr = addr; tk->size_shift = shift; } static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift, unsigned long poisoned_pfn, struct to_kill *tk) { unsigned long pfn = 0; if (pte_present(pte)) { pfn = pte_pfn(pte); } else { swp_entry_t swp = pte_to_swp_entry(pte); if (is_hwpoison_entry(swp)) pfn = swp_offset_pfn(swp); } if (!pfn || pfn != poisoned_pfn) return 0; set_to_kill(tk, addr, shift); return 1; } #ifdef CONFIG_TRANSPARENT_HUGEPAGE static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, struct hwp_walk *hwp) { pmd_t pmd = *pmdp; unsigned long pfn; unsigned long hwpoison_vaddr; if (!pmd_present(pmd)) return 0; pfn = pmd_pfn(pmd); if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) { hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT); set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT); return 1; } return 0; } #else static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, struct hwp_walk *hwp) { return 0; } #endif static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr, unsigned long end, struct mm_walk *walk) { struct hwp_walk *hwp = walk->private; int ret = 0; pte_t *ptep, *mapped_pte; spinlock_t *ptl; ptl = pmd_trans_huge_lock(pmdp, walk->vma); if (ptl) { ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp); spin_unlock(ptl); goto out; } mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp, addr, &ptl); if (!ptep) goto out; for (; addr != end; ptep++, addr += PAGE_SIZE) { ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT, hwp->pfn, &hwp->tk); if (ret == 1) break; } pte_unmap_unlock(mapped_pte, ptl); out: cond_resched(); return ret; } #ifdef CONFIG_HUGETLB_PAGE static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask, unsigned long addr, unsigned long end, struct mm_walk *walk) { struct hwp_walk *hwp = walk->private; pte_t pte = huge_ptep_get(ptep); struct hstate *h = hstate_vma(walk->vma); return check_hwpoisoned_entry(pte, addr, huge_page_shift(h), hwp->pfn, &hwp->tk); } #else #define hwpoison_hugetlb_range NULL #endif static const struct mm_walk_ops hwp_walk_ops = { .pmd_entry = hwpoison_pte_range, .hugetlb_entry = hwpoison_hugetlb_range, .walk_lock = PGWALK_RDLOCK, }; /* * Sends SIGBUS to the current process with error info. * * This function is intended to handle "Action Required" MCEs on already * hardware poisoned pages. They could happen, for example, when * memory_failure() failed to unmap the error page at the first call, or * when multiple local machine checks happened on different CPUs. * * MCE handler currently has no easy access to the error virtual address, * so this function walks page table to find it. The returned virtual address * is proper in most cases, but it could be wrong when the application * process has multiple entries mapping the error page. */ static int kill_accessing_process(struct task_struct *p, unsigned long pfn, int flags) { int ret; struct hwp_walk priv = { .pfn = pfn, }; priv.tk.tsk = p; if (!p->mm) return -EFAULT; mmap_read_lock(p->mm); ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops, (void *)&priv); if (ret == 1 && priv.tk.addr) kill_proc(&priv.tk, pfn, flags); else ret = 0; mmap_read_unlock(p->mm); return ret > 0 ? -EHWPOISON : -EFAULT; } static const char *action_name[] = { [MF_IGNORED] = "Ignored", [MF_FAILED] = "Failed", [MF_DELAYED] = "Delayed", [MF_RECOVERED] = "Recovered", }; static const char * const action_page_types[] = { [MF_MSG_KERNEL] = "reserved kernel page", [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page", [MF_MSG_SLAB] = "kernel slab page", [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking", [MF_MSG_HUGE] = "huge page", [MF_MSG_FREE_HUGE] = "free huge page", [MF_MSG_UNMAP_FAILED] = "unmapping failed page", [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page", [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page", [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page", [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page", [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page", [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page", [MF_MSG_DIRTY_LRU] = "dirty LRU page", [MF_MSG_CLEAN_LRU] = "clean LRU page", [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page", [MF_MSG_BUDDY] = "free buddy page", [MF_MSG_DAX] = "dax page", [MF_MSG_UNSPLIT_THP] = "unsplit thp", [MF_MSG_UNKNOWN] = "unknown page", }; /* * XXX: It is possible that a page is isolated from LRU cache, * and then kept in swap cache or failed to remove from page cache. * The page count will stop it from being freed by unpoison. * Stress tests should be aware of this memory leak problem. */ static int delete_from_lru_cache(struct page *p) { if (isolate_lru_page(p)) { /* * Clear sensible page flags, so that the buddy system won't * complain when the page is unpoison-and-freed. */ ClearPageActive(p); ClearPageUnevictable(p); /* * Poisoned page might never drop its ref count to 0 so we have * to uncharge it manually from its memcg. */ mem_cgroup_uncharge(page_folio(p)); /* * drop the page count elevated by isolate_lru_page() */ put_page(p); return 0; } return -EIO; } static int truncate_error_page(struct page *p, unsigned long pfn, struct address_space *mapping) { int ret = MF_FAILED; if (mapping->a_ops->error_remove_page) { struct folio *folio = page_folio(p); int err = mapping->a_ops->error_remove_page(mapping, p); if (err != 0) pr_info("%#lx: Failed to punch page: %d\n", pfn, err); else if (!filemap_release_folio(folio, GFP_NOIO)) pr_info("%#lx: failed to release buffers\n", pfn); else ret = MF_RECOVERED; } else { /* * If the file system doesn't support it just invalidate * This fails on dirty or anything with private pages */ if (invalidate_inode_page(p)) ret = MF_RECOVERED; else pr_info("%#lx: Failed to invalidate\n", pfn); } return ret; } struct page_state { unsigned long mask; unsigned long res; enum mf_action_page_type type; /* Callback ->action() has to unlock the relevant page inside it. */ int (*action)(struct page_state *ps, struct page *p); }; /* * Return true if page is still referenced by others, otherwise return * false. * * The extra_pins is true when one extra refcount is expected. */ static bool has_extra_refcount(struct page_state *ps, struct page *p, bool extra_pins) { int count = page_count(p) - 1; if (extra_pins) count -= 1; if (count > 0) { pr_err("%#lx: %s still referenced by %d users\n", page_to_pfn(p), action_page_types[ps->type], count); return true; } return false; } /* * Error hit kernel page. * Do nothing, try to be lucky and not touch this instead. For a few cases we * could be more sophisticated. */ static int me_kernel(struct page_state *ps, struct page *p) { unlock_page(p); return MF_IGNORED; } /* * Page in unknown state. Do nothing. */ static int me_unknown(struct page_state *ps, struct page *p) { pr_err("%#lx: Unknown page state\n", page_to_pfn(p)); unlock_page(p); return MF_FAILED; } /* * Clean (or cleaned) page cache page. */ static int me_pagecache_clean(struct page_state *ps, struct page *p) { int ret; struct address_space *mapping; bool extra_pins; delete_from_lru_cache(p); /* * For anonymous pages we're done the only reference left * should be the one m_f() holds. */ if (PageAnon(p)) { ret = MF_RECOVERED; goto out; } /* * Now truncate the page in the page cache. This is really * more like a "temporary hole punch" * Don't do this for block devices when someone else * has a reference, because it could be file system metadata * and that's not safe to truncate. */ mapping = page_mapping(p); if (!mapping) { /* * Page has been teared down in the meanwhile */ ret = MF_FAILED; goto out; } /* * The shmem page is kept in page cache instead of truncating * so is expected to have an extra refcount after error-handling. */ extra_pins = shmem_mapping(mapping); /* * Truncation is a bit tricky. Enable it per file system for now. * * Open: to take i_rwsem or not for this? Right now we don't. */ ret = truncate_error_page(p, page_to_pfn(p), mapping); if (has_extra_refcount(ps, p, extra_pins)) ret = MF_FAILED; out: unlock_page(p); return ret; } /* * Dirty pagecache page * Issues: when the error hit a hole page the error is not properly * propagated. */ static int me_pagecache_dirty(struct page_state *ps, struct page *p) { struct address_space *mapping = page_mapping(p); SetPageError(p); /* TBD: print more information about the file. */ if (mapping) { /* * IO error will be reported by write(), fsync(), etc. * who check the mapping. * This way the application knows that something went * wrong with its dirty file data. * * There's one open issue: * * The EIO will be only reported on the next IO * operation and then cleared through the IO map. * Normally Linux has two mechanisms to pass IO error * first through the AS_EIO flag in the address space * and then through the PageError flag in the page. * Since we drop pages on memory failure handling the * only mechanism open to use is through AS_AIO. * * This has the disadvantage that it gets cleared on * the first operation that returns an error, while * the PageError bit is more sticky and only cleared * when the page is reread or dropped. If an * application assumes it will always get error on * fsync, but does other operations on the fd before * and the page is dropped between then the error * will not be properly reported. * * This can already happen even without hwpoisoned * pages: first on metadata IO errors (which only * report through AS_EIO) or when the page is dropped * at the wrong time. * * So right now we assume that the application DTRT on * the first EIO, but we're not worse than other parts * of the kernel. */ mapping_set_error(mapping, -EIO); } return me_pagecache_clean(ps, p); } /* * Clean and dirty swap cache. * * Dirty swap cache page is tricky to handle. The page could live both in page * cache and swap cache(ie. page is freshly swapped in). So it could be * referenced concurrently by 2 types of PTEs: * normal PTEs and swap PTEs. We try to handle them consistently by calling * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs, * and then * - clear dirty bit to prevent IO * - remove from LRU * - but keep in the swap cache, so that when we return to it on * a later page fault, we know the application is accessing * corrupted data and shall be killed (we installed simple * interception code in do_swap_page to catch it). * * Clean swap cache pages can be directly isolated. A later page fault will * bring in the known good data from disk. */ static int me_swapcache_dirty(struct page_state *ps, struct page *p) { int ret; bool extra_pins = false; ClearPageDirty(p); /* Trigger EIO in shmem: */ ClearPageUptodate(p); ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED; unlock_page(p); if (ret == MF_DELAYED) extra_pins = true; if (has_extra_refcount(ps, p, extra_pins)) ret = MF_FAILED; return ret; } static int me_swapcache_clean(struct page_state *ps, struct page *p) { struct folio *folio = page_folio(p); int ret; delete_from_swap_cache(folio); ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED; folio_unlock(folio); if (has_extra_refcount(ps, p, false)) ret = MF_FAILED; return ret; } /* * Huge pages. Needs work. * Issues: * - Error on hugepage is contained in hugepage unit (not in raw page unit.) * To narrow down kill region to one page, we need to break up pmd. */ static int me_huge_page(struct page_state *ps, struct page *p) { int res; struct page *hpage = compound_head(p); struct address_space *mapping; bool extra_pins = false; mapping = page_mapping(hpage); if (mapping) { res = truncate_error_page(hpage, page_to_pfn(p), mapping); /* The page is kept in page cache. */ extra_pins = true; unlock_page(hpage); } else { unlock_page(hpage); /* * migration entry prevents later access on error hugepage, * so we can free and dissolve it into buddy to save healthy * subpages. */ put_page(hpage); if (__page_handle_poison(p) >= 0) { page_ref_inc(p); res = MF_RECOVERED; } else { res = MF_FAILED; } } if (has_extra_refcount(ps, p, extra_pins)) res = MF_FAILED; return res; } /* * Various page states we can handle. * * A page state is defined by its current page->flags bits. * The table matches them in order and calls the right handler. * * This is quite tricky because we can access page at any time * in its live cycle, so all accesses have to be extremely careful. * * This is not complete. More states could be added. * For any missing state don't attempt recovery. */ #define dirty (1UL << PG_dirty) #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked)) #define unevict (1UL << PG_unevictable) #define mlock (1UL << PG_mlocked) #define lru (1UL << PG_lru) #define head (1UL << PG_head) #define slab (1UL << PG_slab) #define reserved (1UL << PG_reserved) static struct page_state error_states[] = { { reserved, reserved, MF_MSG_KERNEL, me_kernel }, /* * free pages are specially detected outside this table: * PG_buddy pages only make a small fraction of all free pages. */ /* * Could in theory check if slab page is free or if we can drop * currently unused objects without touching them. But just * treat it as standard kernel for now. */ { slab, slab, MF_MSG_SLAB, me_kernel }, { head, head, MF_MSG_HUGE, me_huge_page }, { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty }, { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean }, { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty }, { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean }, { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty }, { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean }, { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty }, { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean }, /* * Catchall entry: must be at end. */ { 0, 0, MF_MSG_UNKNOWN, me_unknown }, }; #undef dirty #undef sc #undef unevict #undef mlock #undef lru #undef head #undef slab #undef reserved static void update_per_node_mf_stats(unsigned long pfn, enum mf_result result) { int nid = MAX_NUMNODES; struct memory_failure_stats *mf_stats = NULL; nid = pfn_to_nid(pfn); if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) { WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid); return; } mf_stats = &NODE_DATA(nid)->mf_stats; switch (result) { case MF_IGNORED: ++mf_stats->ignored; break; case MF_FAILED: ++mf_stats->failed; break; case MF_DELAYED: ++mf_stats->delayed; break; case MF_RECOVERED: ++mf_stats->recovered; break; default: WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result); break; } ++mf_stats->total; } /* * "Dirty/Clean" indication is not 100% accurate due to the possibility of * setting PG_dirty outside page lock. See also comment above set_page_dirty(). */ static int action_result(unsigned long pfn, enum mf_action_page_type type, enum mf_result result) { trace_memory_failure_event(pfn, type, result); num_poisoned_pages_inc(pfn); update_per_node_mf_stats(pfn, result); pr_err("%#lx: recovery action for %s: %s\n", pfn, action_page_types[type], action_name[result]); return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY; } static int page_action(struct page_state *ps, struct page *p, unsigned long pfn) { int result; /* page p should be unlocked after returning from ps->action(). */ result = ps->action(ps, p); /* Could do more checks here if page looks ok */ /* * Could adjust zone counters here to correct for the missing page. */ return action_result(pfn, ps->type, result); } static inline bool PageHWPoisonTakenOff(struct page *page) { return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON; } void SetPageHWPoisonTakenOff(struct page *page) { set_page_private(page, MAGIC_HWPOISON); } void ClearPageHWPoisonTakenOff(struct page *page) { if (PageHWPoison(page)) set_page_private(page, 0); } /* * Return true if a page type of a given page is supported by hwpoison * mechanism (while handling could fail), otherwise false. This function * does not return true for hugetlb or device memory pages, so it's assumed * to be called only in the context where we never have such pages. */ static inline bool HWPoisonHandlable(struct page *page, unsigned long flags) { /* Soft offline could migrate non-LRU movable pages */ if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page)) return true; return PageLRU(page) || is_free_buddy_page(page); } static int __get_hwpoison_page(struct page *page, unsigned long flags) { struct folio *folio = page_folio(page); int ret = 0; bool hugetlb = false; ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false); if (hugetlb) { /* Make sure hugetlb demotion did not happen from under us. */ if (folio == page_folio(page)) return ret; if (ret > 0) { folio_put(folio); folio = page_folio(page); } } /* * This check prevents from calling folio_try_get() for any * unsupported type of folio in order to reduce the risk of unexpected * races caused by taking a folio refcount. */ if (!HWPoisonHandlable(&folio->page, flags)) return -EBUSY; if (folio_try_get(folio)) { if (folio == page_folio(page)) return 1; pr_info("%#lx cannot catch tail\n", page_to_pfn(page)); folio_put(folio); } return 0; } static int get_any_page(struct page *p, unsigned long flags) { int ret = 0, pass = 0; bool count_increased = false; if (flags & MF_COUNT_INCREASED) count_increased = true; try_again: if (!count_increased) { ret = __get_hwpoison_page(p, flags); if (!ret) { if (page_count(p)) { /* We raced with an allocation, retry. */ if (pass++ < 3) goto try_again; ret = -EBUSY; } else if (!PageHuge(p) && !is_free_buddy_page(p)) { /* We raced with put_page, retry. */ if (pass++ < 3) goto try_again; ret = -EIO; } goto out; } else if (ret == -EBUSY) { /* * We raced with (possibly temporary) unhandlable * page, retry. */ if (pass++ < 3) { shake_page(p); goto try_again; } ret = -EIO; goto out; } } if (PageHuge(p) || HWPoisonHandlable(p, flags)) { ret = 1; } else { /* * A page we cannot handle. Check whether we can turn * it into something we can handle. */ if (pass++ < 3) { put_page(p); shake_page(p); count_increased = false; goto try_again; } put_page(p); ret = -EIO; } out: if (ret == -EIO) pr_err("%#lx: unhandlable page.\n", page_to_pfn(p)); return ret; } static int __get_unpoison_page(struct page *page) { struct folio *folio = page_folio(page); int ret = 0; bool hugetlb = false; ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true); if (hugetlb) { /* Make sure hugetlb demotion did not happen from under us. */ if (folio == page_folio(page)) return ret; if (ret > 0) folio_put(folio); } /* * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison, * but also isolated from buddy freelist, so need to identify the * state and have to cancel both operations to unpoison. */ if (PageHWPoisonTakenOff(page)) return -EHWPOISON; return get_page_unless_zero(page) ? 1 : 0; } /** * get_hwpoison_page() - Get refcount for memory error handling * @p: Raw error page (hit by memory error) * @flags: Flags controlling behavior of error handling * * get_hwpoison_page() takes a page refcount of an error page to handle memory * error on it, after checking that the error page is in a well-defined state * (defined as a page-type we can successfully handle the memory error on it, * such as LRU page and hugetlb page). * * Memory error handling could be triggered at any time on any type of page, * so it's prone to race with typical memory management lifecycle (like * allocation and free). So to avoid such races, get_hwpoison_page() takes * extra care for the error page's state (as done in __get_hwpoison_page()), * and has some retry logic in get_any_page(). * * When called from unpoison_memory(), the caller should already ensure that * the given page has PG_hwpoison. So it's never reused for other page * allocations, and __get_unpoison_page() never races with them. * * Return: 0 on failure, * 1 on success for in-use pages in a well-defined state, * -EIO for pages on which we can not handle memory errors, * -EBUSY when get_hwpoison_page() has raced with page lifecycle * operations like allocation and free, * -EHWPOISON when the page is hwpoisoned and taken off from buddy. */ static int get_hwpoison_page(struct page *p, unsigned long flags) { int ret; zone_pcp_disable(page_zone(p)); if (flags & MF_UNPOISON) ret = __get_unpoison_page(p); else ret = get_any_page(p, flags); zone_pcp_enable(page_zone(p)); return ret; } /* * Do all that is necessary to remove user space mappings. Unmap * the pages and send SIGBUS to the processes if the data was dirty. */ static bool hwpoison_user_mappings(struct page *p, unsigned long pfn, int flags, struct page *hpage) { struct folio *folio = page_folio(hpage); enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON; struct address_space *mapping; LIST_HEAD(tokill); bool unmap_success; int forcekill; bool mlocked = PageMlocked(hpage); /* * Here we are interested only in user-mapped pages, so skip any * other types of pages. */ if (PageReserved(p) || PageSlab(p) || PageTable(p)) return true; if (!(PageLRU(hpage) || PageHuge(p))) return true; /* * This check implies we don't kill processes if their pages * are in the swap cache early. Those are always late kills. */ if (!page_mapped(hpage)) return true; if (PageSwapCache(p)) { pr_err("%#lx: keeping poisoned page in swap cache\n", pfn); ttu &= ~TTU_HWPOISON; } /* * Propagate the dirty bit from PTEs to struct page first, because we * need this to decide if we should kill or just drop the page. * XXX: the dirty test could be racy: set_page_dirty() may not always * be called inside page lock (it's recommended but not enforced). */ mapping = page_mapping(hpage); if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping && mapping_can_writeback(mapping)) { if (page_mkclean(hpage)) { SetPageDirty(hpage); } else { ttu &= ~TTU_HWPOISON; pr_info("%#lx: corrupted page was clean: dropped without side effects\n", pfn); } } /* * First collect all the processes that have the page * mapped in dirty form. This has to be done before try_to_unmap, * because ttu takes the rmap data structures down. */ collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED); if (PageHuge(hpage) && !PageAnon(hpage)) { /* * For hugetlb pages in shared mappings, try_to_unmap * could potentially call huge_pmd_unshare. Because of * this, take semaphore in write mode here and set * TTU_RMAP_LOCKED to indicate we have taken the lock * at this higher level. */ mapping = hugetlb_page_mapping_lock_write(hpage); if (mapping) { try_to_unmap(folio, ttu|TTU_RMAP_LOCKED); i_mmap_unlock_write(mapping); } else pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn); } else { try_to_unmap(folio, ttu); } unmap_success = !page_mapped(hpage); if (!unmap_success) pr_err("%#lx: failed to unmap page (mapcount=%d)\n", pfn, page_mapcount(hpage)); /* * try_to_unmap() might put mlocked page in lru cache, so call * shake_page() again to ensure that it's flushed. */ if (mlocked) shake_page(hpage); /* * Now that the dirty bit has been propagated to the * struct page and all unmaps done we can decide if * killing is needed or not. Only kill when the page * was dirty or the process is not restartable, * otherwise the tokill list is merely * freed. When there was a problem unmapping earlier * use a more force-full uncatchable kill to prevent * any accesses to the poisoned memory. */ forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL) || !unmap_success; kill_procs(&tokill, forcekill, !unmap_success, pfn, flags); return unmap_success; } static int identify_page_state(unsigned long pfn, struct page *p, unsigned long page_flags) { struct page_state *ps; /* * The first check uses the current page flags which may not have any * relevant information. The second check with the saved page flags is * carried out only if the first check can't determine the page status. */ for (ps = error_states;; ps++) if ((p->flags & ps->mask) == ps->res) break; page_flags |= (p->flags & (1UL << PG_dirty)); if (!ps->mask) for (ps = error_states;; ps++) if ((page_flags & ps->mask) == ps->res) break; return page_action(ps, p, pfn); } static int try_to_split_thp_page(struct page *page) { int ret; lock_page(page); ret = split_huge_page(page); unlock_page(page); if (unlikely(ret)) put_page(page); return ret; } static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn, struct address_space *mapping, pgoff_t index, int flags) { struct to_kill *tk; unsigned long size = 0; list_for_each_entry(tk, to_kill, nd) if (tk->size_shift) size = max(size, 1UL << tk->size_shift); if (size) { /* * Unmap the largest mapping to avoid breaking up device-dax * mappings which are constant size. The actual size of the * mapping being torn down is communicated in siginfo, see * kill_proc() */ loff_t start = (index << PAGE_SHIFT) & ~(size - 1); unmap_mapping_range(mapping, start, size, 0); } kill_procs(to_kill, flags & MF_MUST_KILL, false, pfn, flags); } static int mf_generic_kill_procs(unsigned long long pfn, int flags, struct dev_pagemap *pgmap) { struct page *page = pfn_to_page(pfn); LIST_HEAD(to_kill); dax_entry_t cookie; int rc = 0; /* * Pages instantiated by device-dax (not filesystem-dax) * may be compound pages. */ page = compound_head(page); /* * Prevent the inode from being freed while we are interrogating * the address_space, typically this would be handled by * lock_page(), but dax pages do not use the page lock. This * also prevents changes to the mapping of this pfn until * poison signaling is complete. */ cookie = dax_lock_page(page); if (!cookie) return -EBUSY; if (hwpoison_filter(page)) { rc = -EOPNOTSUPP; goto unlock; } switch (pgmap->type) { case MEMORY_DEVICE_PRIVATE: case MEMORY_DEVICE_COHERENT: /* * TODO: Handle device pages which may need coordination * with device-side memory. */ rc = -ENXIO; goto unlock; default: break; } /* * Use this flag as an indication that the dax page has been * remapped UC to prevent speculative consumption of poison. */ SetPageHWPoison(page); /* * Unlike System-RAM there is no possibility to swap in a * different physical page at a given virtual address, so all * userspace consumption of ZONE_DEVICE memory necessitates * SIGBUS (i.e. MF_MUST_KILL) */ flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; collect_procs(page, &to_kill, true); unmap_and_kill(&to_kill, pfn, page->mapping, page->index, flags); unlock: dax_unlock_page(page, cookie); return rc; } #ifdef CONFIG_FS_DAX /** * mf_dax_kill_procs - Collect and kill processes who are using this file range * @mapping: address_space of the file in use * @index: start pgoff of the range within the file * @count: length of the range, in unit of PAGE_SIZE * @mf_flags: memory failure flags */ int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, unsigned long count, int mf_flags) { LIST_HEAD(to_kill); dax_entry_t cookie; struct page *page; size_t end = index + count; mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; for (; index < end; index++) { page = NULL; cookie = dax_lock_mapping_entry(mapping, index, &page); if (!cookie) return -EBUSY; if (!page) goto unlock; SetPageHWPoison(page); collect_procs_fsdax(page, mapping, index, &to_kill); unmap_and_kill(&to_kill, page_to_pfn(page), mapping, index, mf_flags); unlock: dax_unlock_mapping_entry(mapping, index, cookie); } return 0; } EXPORT_SYMBOL_GPL(mf_dax_kill_procs); #endif /* CONFIG_FS_DAX */ #ifdef CONFIG_HUGETLB_PAGE /* * Struct raw_hwp_page represents information about "raw error page", * constructing singly linked list from ->_hugetlb_hwpoison field of folio. */ struct raw_hwp_page { struct llist_node node; struct page *page; }; static inline struct llist_head *raw_hwp_list_head(struct folio *folio) { return (struct llist_head *)&folio->_hugetlb_hwpoison; } bool is_raw_hwpoison_page_in_hugepage(struct page *page) { struct llist_head *raw_hwp_head; struct raw_hwp_page *p; struct folio *folio = page_folio(page); bool ret = false; if (!folio_test_hwpoison(folio)) return false; if (!folio_test_hugetlb(folio)) return PageHWPoison(page); /* * When RawHwpUnreliable is set, kernel lost track of which subpages * are HWPOISON. So return as if ALL subpages are HWPOISONed. */ if (folio_test_hugetlb_raw_hwp_unreliable(folio)) return true; mutex_lock(&mf_mutex); raw_hwp_head = raw_hwp_list_head(folio); llist_for_each_entry(p, raw_hwp_head->first, node) { if (page == p->page) { ret = true; break; } } mutex_unlock(&mf_mutex); return ret; } static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag) { struct llist_node *head; struct raw_hwp_page *p, *next; unsigned long count = 0; head = llist_del_all(raw_hwp_list_head(folio)); llist_for_each_entry_safe(p, next, head, node) { if (move_flag) SetPageHWPoison(p->page); else num_poisoned_pages_sub(page_to_pfn(p->page), 1); kfree(p); count++; } return count; } static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page) { struct llist_head *head; struct raw_hwp_page *raw_hwp; struct raw_hwp_page *p, *next; int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0; /* * Once the hwpoison hugepage has lost reliable raw error info, * there is little meaning to keep additional error info precisely, * so skip to add additional raw error info. */ if (folio_test_hugetlb_raw_hwp_unreliable(folio)) return -EHWPOISON; head = raw_hwp_list_head(folio); llist_for_each_entry_safe(p, next, head->first, node) { if (p->page == page) return -EHWPOISON; } raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC); if (raw_hwp) { raw_hwp->page = page; llist_add(&raw_hwp->node, head); /* the first error event will be counted in action_result(). */ if (ret) num_poisoned_pages_inc(page_to_pfn(page)); } else { /* * Failed to save raw error info. We no longer trace all * hwpoisoned subpages, and we need refuse to free/dissolve * this hwpoisoned hugepage. */ folio_set_hugetlb_raw_hwp_unreliable(folio); /* * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not * used any more, so free it. */ __folio_free_raw_hwp(folio, false); } return ret; } static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag) { /* * hugetlb_vmemmap_optimized hugepages can't be freed because struct * pages for tail pages are required but they don't exist. */ if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio)) return 0; /* * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by * definition. */ if (folio_test_hugetlb_raw_hwp_unreliable(folio)) return 0; return __folio_free_raw_hwp(folio, move_flag); } void folio_clear_hugetlb_hwpoison(struct folio *folio) { if (folio_test_hugetlb_raw_hwp_unreliable(folio)) return; if (folio_test_hugetlb_vmemmap_optimized(folio)) return; folio_clear_hwpoison(folio); folio_free_raw_hwp(folio, true); } /* * Called from hugetlb code with hugetlb_lock held. * * Return values: * 0 - free hugepage * 1 - in-use hugepage * 2 - not a hugepage * -EBUSY - the hugepage is busy (try to retry) * -EHWPOISON - the hugepage is already hwpoisoned */ int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, bool *migratable_cleared) { struct page *page = pfn_to_page(pfn); struct folio *folio = page_folio(page); int ret = 2; /* fallback to normal page handling */ bool count_increased = false; if (!folio_test_hugetlb(folio)) goto out; if (flags & MF_COUNT_INCREASED) { ret = 1; count_increased = true; } else if (folio_test_hugetlb_freed(folio)) { ret = 0; } else if (folio_test_hugetlb_migratable(folio)) { ret = folio_try_get(folio); if (ret) count_increased = true; } else { ret = -EBUSY; if (!(flags & MF_NO_RETRY)) goto out; } if (folio_set_hugetlb_hwpoison(folio, page)) { ret = -EHWPOISON; goto out; } /* * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them * from being migrated by memory hotremove. */ if (count_increased && folio_test_hugetlb_migratable(folio)) { folio_clear_hugetlb_migratable(folio); *migratable_cleared = true; } return ret; out: if (count_increased) folio_put(folio); return ret; } /* * Taking refcount of hugetlb pages needs extra care about race conditions * with basic operations like hugepage allocation/free/demotion. * So some of prechecks for hwpoison (pinning, and testing/setting * PageHWPoison) should be done in single hugetlb_lock range. */ static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb) { int res; struct page *p = pfn_to_page(pfn); struct folio *folio; unsigned long page_flags; bool migratable_cleared = false; *hugetlb = 1; retry: res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared); if (res == 2) { /* fallback to normal page handling */ *hugetlb = 0; return 0; } else if (res == -EHWPOISON) { pr_err("%#lx: already hardware poisoned\n", pfn); if (flags & MF_ACTION_REQUIRED) { folio = page_folio(p); res = kill_accessing_process(current, folio_pfn(folio), flags); } return res; } else if (res == -EBUSY) { if (!(flags & MF_NO_RETRY)) { flags |= MF_NO_RETRY; goto retry; } return action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED); } folio = page_folio(p); folio_lock(folio); if (hwpoison_filter(p)) { folio_clear_hugetlb_hwpoison(folio); if (migratable_cleared) folio_set_hugetlb_migratable(folio); folio_unlock(folio); if (res == 1) folio_put(folio); return -EOPNOTSUPP; } /* * Handling free hugepage. The possible race with hugepage allocation * or demotion can be prevented by PageHWPoison flag. */ if (res == 0) { folio_unlock(folio); if (__page_handle_poison(p) >= 0) { page_ref_inc(p); res = MF_RECOVERED; } else { res = MF_FAILED; } return action_result(pfn, MF_MSG_FREE_HUGE, res); } page_flags = folio->flags; if (!hwpoison_user_mappings(p, pfn, flags, &folio->page)) { folio_unlock(folio); return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); } return identify_page_state(pfn, p, page_flags); } #else static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb) { return 0; } static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag) { return 0; } #endif /* CONFIG_HUGETLB_PAGE */ /* Drop the extra refcount in case we come from madvise() */ static void put_ref_page(unsigned long pfn, int flags) { struct page *page; if (!(flags & MF_COUNT_INCREASED)) return; page = pfn_to_page(pfn); if (page) put_page(page); } static int memory_failure_dev_pagemap(unsigned long pfn, int flags, struct dev_pagemap *pgmap) { int rc = -ENXIO; /* device metadata space is not recoverable */ if (!pgmap_pfn_valid(pgmap, pfn)) goto out; /* * Call driver's implementation to handle the memory failure, otherwise * fall back to generic handler. */ if (pgmap_has_memory_failure(pgmap)) { rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags); /* * Fall back to generic handler too if operation is not * supported inside the driver/device/filesystem. */ if (rc != -EOPNOTSUPP) goto out; } rc = mf_generic_kill_procs(pfn, flags, pgmap); out: /* drop pgmap ref acquired in caller */ put_dev_pagemap(pgmap); if (rc != -EOPNOTSUPP) action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED); return rc; } /** * memory_failure - Handle memory failure of a page. * @pfn: Page Number of the corrupted page * @flags: fine tune action taken * * This function is called by the low level machine check code * of an architecture when it detects hardware memory corruption * of a page. It tries its best to recover, which includes * dropping pages, killing processes etc. * * The function is primarily of use for corruptions that * happen outside the current execution context (e.g. when * detected by a background scrubber) * * Must run in process context (e.g. a work queue) with interrupts * enabled and no spinlocks held. * * Return: 0 for successfully handled the memory error, * -EOPNOTSUPP for hwpoison_filter() filtered the error event, * < 0(except -EOPNOTSUPP) on failure. */ int memory_failure(unsigned long pfn, int flags) { struct page *p; struct page *hpage; struct dev_pagemap *pgmap; int res = 0; unsigned long page_flags; bool retry = true; int hugetlb = 0; if (!sysctl_memory_failure_recovery) panic("Memory failure on page %lx", pfn); mutex_lock(&mf_mutex); if (!(flags & MF_SW_SIMULATED)) hw_memory_failure = true; p = pfn_to_online_page(pfn); if (!p) { res = arch_memory_failure(pfn, flags); if (res == 0) goto unlock_mutex; if (pfn_valid(pfn)) { pgmap = get_dev_pagemap(pfn, NULL); put_ref_page(pfn, flags); if (pgmap) { res = memory_failure_dev_pagemap(pfn, flags, pgmap); goto unlock_mutex; } } pr_err("%#lx: memory outside kernel control\n", pfn); res = -ENXIO; goto unlock_mutex; } try_again: res = try_memory_failure_hugetlb(pfn, flags, &hugetlb); if (hugetlb) goto unlock_mutex; if (TestSetPageHWPoison(p)) { pr_err("%#lx: already hardware poisoned\n", pfn); res = -EHWPOISON; if (flags & MF_ACTION_REQUIRED) res = kill_accessing_process(current, pfn, flags); if (flags & MF_COUNT_INCREASED) put_page(p); goto unlock_mutex; } /* * We need/can do nothing about count=0 pages. * 1) it's a free page, and therefore in safe hand: * check_new_page() will be the gate keeper. * 2) it's part of a non-compound high order page. * Implies some kernel user: cannot stop them from * R/W the page; let's pray that the page has been * used and will be freed some time later. * In fact it's dangerous to directly bump up page count from 0, * that may make page_ref_freeze()/page_ref_unfreeze() mismatch. */ if (!(flags & MF_COUNT_INCREASED)) { res = get_hwpoison_page(p, flags); if (!res) { if (is_free_buddy_page(p)) { if (take_page_off_buddy(p)) { page_ref_inc(p); res = MF_RECOVERED; } else { /* We lost the race, try again */ if (retry) { ClearPageHWPoison(p); retry = false; goto try_again; } res = MF_FAILED; } res = action_result(pfn, MF_MSG_BUDDY, res); } else { res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED); } goto unlock_mutex; } else if (res < 0) { res = action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED); goto unlock_mutex; } } hpage = compound_head(p); if (PageTransHuge(hpage)) { /* * The flag must be set after the refcount is bumped * otherwise it may race with THP split. * And the flag can't be set in get_hwpoison_page() since * it is called by soft offline too and it is just called * for !MF_COUNT_INCREASED. So here seems to be the best * place. * * Don't need care about the above error handling paths for * get_hwpoison_page() since they handle either free page * or unhandlable page. The refcount is bumped iff the * page is a valid handlable page. */ SetPageHasHWPoisoned(hpage); if (try_to_split_thp_page(p) < 0) { res = action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED); goto unlock_mutex; } VM_BUG_ON_PAGE(!page_count(p), p); } /* * We ignore non-LRU pages for good reasons. * - PG_locked is only well defined for LRU pages and a few others * - to avoid races with __SetPageLocked() * - to avoid races with __SetPageSlab*() (and more non-atomic ops) * The check (unnecessarily) ignores LRU pages being isolated and * walked by the page reclaim code, however that's not a big loss. */ shake_page(p); lock_page(p); /* * We're only intended to deal with the non-Compound page here. * However, the page could have changed compound pages due to * race window. If this happens, we could try again to hopefully * handle the page next round. */ if (PageCompound(p)) { if (retry) { ClearPageHWPoison(p); unlock_page(p); put_page(p); flags &= ~MF_COUNT_INCREASED; retry = false; goto try_again; } res = action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED); goto unlock_page; } /* * We use page flags to determine what action should be taken, but * the flags can be modified by the error containment action. One * example is an mlocked page, where PG_mlocked is cleared by * page_remove_rmap() in try_to_unmap_one(). So to determine page status * correctly, we save a copy of the page flags at this time. */ page_flags = p->flags; if (hwpoison_filter(p)) { ClearPageHWPoison(p); unlock_page(p); put_page(p); res = -EOPNOTSUPP; goto unlock_mutex; } /* * __munlock_folio() may clear a writeback page's LRU flag without * page_lock. We need wait writeback completion for this page or it * may trigger vfs BUG while evict inode. */ if (!PageLRU(p) && !PageWriteback(p)) goto identify_page_state; /* * It's very difficult to mess with pages currently under IO * and in many cases impossible, so we just avoid it here. */ wait_on_page_writeback(p); /* * Now take care of user space mappings. * Abort on fail: __filemap_remove_folio() assumes unmapped page. */ if (!hwpoison_user_mappings(p, pfn, flags, p)) { res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); goto unlock_page; } /* * Torn down by someone else? */ if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED); goto unlock_page; } identify_page_state: res = identify_page_state(pfn, p, page_flags); mutex_unlock(&mf_mutex); return res; unlock_page: unlock_page(p); unlock_mutex: mutex_unlock(&mf_mutex); return res; } EXPORT_SYMBOL_GPL(memory_failure); #define MEMORY_FAILURE_FIFO_ORDER 4 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) struct memory_failure_entry { unsigned long pfn; int flags; }; struct memory_failure_cpu { DECLARE_KFIFO(fifo, struct memory_failure_entry, MEMORY_FAILURE_FIFO_SIZE); spinlock_t lock; struct work_struct work; }; static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); /** * memory_failure_queue - Schedule handling memory failure of a page. * @pfn: Page Number of the corrupted page * @flags: Flags for memory failure handling * * This function is called by the low level hardware error handler * when it detects hardware memory corruption of a page. It schedules * the recovering of error page, including dropping pages, killing * processes etc. * * The function is primarily of use for corruptions that * happen outside the current execution context (e.g. when * detected by a background scrubber) * * Can run in IRQ context. */ void memory_failure_queue(unsigned long pfn, int flags) { struct memory_failure_cpu *mf_cpu; unsigned long proc_flags; struct memory_failure_entry entry = { .pfn = pfn, .flags = flags, }; mf_cpu = &get_cpu_var(memory_failure_cpu); spin_lock_irqsave(&mf_cpu->lock, proc_flags); if (kfifo_put(&mf_cpu->fifo, entry)) schedule_work_on(smp_processor_id(), &mf_cpu->work); else pr_err("buffer overflow when queuing memory failure at %#lx\n", pfn); spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); put_cpu_var(memory_failure_cpu); } EXPORT_SYMBOL_GPL(memory_failure_queue); static void memory_failure_work_func(struct work_struct *work) { struct memory_failure_cpu *mf_cpu; struct memory_failure_entry entry = { 0, }; unsigned long proc_flags; int gotten; mf_cpu = container_of(work, struct memory_failure_cpu, work); for (;;) { spin_lock_irqsave(&mf_cpu->lock, proc_flags); gotten = kfifo_get(&mf_cpu->fifo, &entry); spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); if (!gotten) break; if (entry.flags & MF_SOFT_OFFLINE) soft_offline_page(entry.pfn, entry.flags); else memory_failure(entry.pfn, entry.flags); } } /* * Process memory_failure work queued on the specified CPU. * Used to avoid return-to-userspace racing with the memory_failure workqueue. */ void memory_failure_queue_kick(int cpu) { struct memory_failure_cpu *mf_cpu; mf_cpu = &per_cpu(memory_failure_cpu, cpu); cancel_work_sync(&mf_cpu->work); memory_failure_work_func(&mf_cpu->work); } static int __init memory_failure_init(void) { struct memory_failure_cpu *mf_cpu; int cpu; for_each_possible_cpu(cpu) { mf_cpu = &per_cpu(memory_failure_cpu, cpu); spin_lock_init(&mf_cpu->lock); INIT_KFIFO(mf_cpu->fifo); INIT_WORK(&mf_cpu->work, memory_failure_work_func); } register_sysctl_init("vm", memory_failure_table); return 0; } core_initcall(memory_failure_init); #undef pr_fmt #define pr_fmt(fmt) "" fmt #define unpoison_pr_info(fmt, pfn, rs) \ ({ \ if (__ratelimit(rs)) \ pr_info(fmt, pfn); \ }) /** * unpoison_memory - Unpoison a previously poisoned page * @pfn: Page number of the to be unpoisoned page * * Software-unpoison a page that has been poisoned by * memory_failure() earlier. * * This is only done on the software-level, so it only works * for linux injected failures, not real hardware failures * * Returns 0 for success, otherwise -errno. */ int unpoison_memory(unsigned long pfn) { struct folio *folio; struct page *p; int ret = -EBUSY, ghp; unsigned long count = 1; bool huge = false; static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL, DEFAULT_RATELIMIT_BURST); if (!pfn_valid(pfn)) return -ENXIO; p = pfn_to_page(pfn); folio = page_folio(p); mutex_lock(&mf_mutex); if (hw_memory_failure) { unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n", pfn, &unpoison_rs); ret = -EOPNOTSUPP; goto unlock_mutex; } if (!PageHWPoison(p)) { unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n", pfn, &unpoison_rs); goto unlock_mutex; } if (folio_ref_count(folio) > 1) { unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n", pfn, &unpoison_rs); goto unlock_mutex; } if (folio_test_slab(folio) || PageTable(&folio->page) || folio_test_reserved(folio)) goto unlock_mutex; /* * Note that folio->_mapcount is overloaded in SLAB, so the simple test * in folio_mapped() has to be done after folio_test_slab() is checked. */ if (folio_mapped(folio)) { unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n", pfn, &unpoison_rs); goto unlock_mutex; } if (folio_mapping(folio)) { unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n", pfn, &unpoison_rs); goto unlock_mutex; } ghp = get_hwpoison_page(p, MF_UNPOISON); if (!ghp) { if (PageHuge(p)) { huge = true; count = folio_free_raw_hwp(folio, false); if (count == 0) goto unlock_mutex; } ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY; } else if (ghp < 0) { if (ghp == -EHWPOISON) { ret = put_page_back_buddy(p) ? 0 : -EBUSY; } else { ret = ghp; unpoison_pr_info("Unpoison: failed to grab page %#lx\n", pfn, &unpoison_rs); } } else { if (PageHuge(p)) { huge = true; count = folio_free_raw_hwp(folio, false); if (count == 0) { folio_put(folio); goto unlock_mutex; } } folio_put(folio); if (TestClearPageHWPoison(p)) { folio_put(folio); ret = 0; } } unlock_mutex: mutex_unlock(&mf_mutex); if (!ret) { if (!huge) num_poisoned_pages_sub(pfn, 1); unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n", page_to_pfn(p), &unpoison_rs); } return ret; } EXPORT_SYMBOL(unpoison_memory); static bool isolate_page(struct page *page, struct list_head *pagelist) { bool isolated = false; if (PageHuge(page)) { isolated = isolate_hugetlb(page_folio(page), pagelist); } else { bool lru = !__PageMovable(page); if (lru) isolated = isolate_lru_page(page); else isolated = isolate_movable_page(page, ISOLATE_UNEVICTABLE); if (isolated) { list_add(&page->lru, pagelist); if (lru) inc_node_page_state(page, NR_ISOLATED_ANON + page_is_file_lru(page)); } } /* * If we succeed to isolate the page, we grabbed another refcount on * the page, so we can safely drop the one we got from get_any_page(). * If we failed to isolate the page, it means that we cannot go further * and we will return an error, so drop the reference we got from * get_any_page() as well. */ put_page(page); return isolated; } /* * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages. * If the page is a non-dirty unmapped page-cache page, it simply invalidates. * If the page is mapped, it migrates the contents over. */ static int soft_offline_in_use_page(struct page *page) { long ret = 0; unsigned long pfn = page_to_pfn(page); struct page *hpage = compound_head(page); char const *msg_page[] = {"page", "hugepage"}; bool huge = PageHuge(page); LIST_HEAD(pagelist); struct migration_target_control mtc = { .nid = NUMA_NO_NODE, .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, }; if (!huge && PageTransHuge(hpage)) { if (try_to_split_thp_page(page)) { pr_info("soft offline: %#lx: thp split failed\n", pfn); return -EBUSY; } hpage = page; } lock_page(page); if (!huge) wait_on_page_writeback(page); if (PageHWPoison(page)) { unlock_page(page); put_page(page); pr_info("soft offline: %#lx page already poisoned\n", pfn); return 0; } if (!huge && PageLRU(page) && !PageSwapCache(page)) /* * Try to invalidate first. This should work for * non dirty unmapped page cache pages. */ ret = invalidate_inode_page(page); unlock_page(page); if (ret) { pr_info("soft_offline: %#lx: invalidated\n", pfn); page_handle_poison(page, false, true); return 0; } if (isolate_page(hpage, &pagelist)) { ret = migrate_pages(&pagelist, alloc_migration_target, NULL, (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL); if (!ret) { bool release = !huge; if (!page_handle_poison(page, huge, release)) ret = -EBUSY; } else { if (!list_empty(&pagelist)) putback_movable_pages(&pagelist); pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n", pfn, msg_page[huge], ret, &page->flags); if (ret > 0) ret = -EBUSY; } } else { pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n", pfn, msg_page[huge], page_count(page), &page->flags); ret = -EBUSY; } return ret; } /** * soft_offline_page - Soft offline a page. * @pfn: pfn to soft-offline * @flags: flags. Same as memory_failure(). * * Returns 0 on success * -EOPNOTSUPP for hwpoison_filter() filtered the error event * < 0 otherwise negated errno. * * Soft offline a page, by migration or invalidation, * without killing anything. This is for the case when * a page is not corrupted yet (so it's still valid to access), * but has had a number of corrected errors and is better taken * out. * * The actual policy on when to do that is maintained by * user space. * * This should never impact any application or cause data loss, * however it might take some time. * * This is not a 100% solution for all memory, but tries to be * ``good enough'' for the majority of memory. */ int soft_offline_page(unsigned long pfn, int flags) { int ret; bool try_again = true; struct page *page; if (!pfn_valid(pfn)) { WARN_ON_ONCE(flags & MF_COUNT_INCREASED); return -ENXIO; } /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */ page = pfn_to_online_page(pfn); if (!page) { put_ref_page(pfn, flags); return -EIO; } mutex_lock(&mf_mutex); if (PageHWPoison(page)) { pr_info("%s: %#lx page already poisoned\n", __func__, pfn); put_ref_page(pfn, flags); mutex_unlock(&mf_mutex); return 0; } retry: get_online_mems(); ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE); put_online_mems(); if (hwpoison_filter(page)) { if (ret > 0) put_page(page); mutex_unlock(&mf_mutex); return -EOPNOTSUPP; } if (ret > 0) { ret = soft_offline_in_use_page(page); } else if (ret == 0) { if (!page_handle_poison(page, true, false)) { if (try_again) { try_again = false; flags &= ~MF_COUNT_INCREASED; goto retry; } ret = -EBUSY; } } mutex_unlock(&mf_mutex); return ret; }