/* * Memory Migration functionality - linux/mm/migration.c * * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter * * Page migration was first developed in the context of the memory hotplug * project. The main authors of the migration code are: * * IWAMOTO Toshihiro * Hirokazu Takahashi * Dave Hansen * Christoph Lameter */ #include #include #include #include #include #include #include #include #include #include #include #include #include "internal.h" /* The maximum number of pages to take off the LRU for migration */ #define MIGRATE_CHUNK_SIZE 256 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) /* * Isolate one page from the LRU lists. If successful put it onto * the indicated list with elevated page count. * * Result: * -EBUSY: page not on LRU list * 0: page removed from LRU list and added to the specified list. */ int isolate_lru_page(struct page *page, struct list_head *pagelist) { int ret = -EBUSY; if (PageLRU(page)) { struct zone *zone = page_zone(page); spin_lock_irq(&zone->lru_lock); if (PageLRU(page)) { ret = 0; get_page(page); ClearPageLRU(page); if (PageActive(page)) del_page_from_active_list(zone, page); else del_page_from_inactive_list(zone, page); list_add_tail(&page->lru, pagelist); } spin_unlock_irq(&zone->lru_lock); } return ret; } /* * migrate_prep() needs to be called after we have compiled the list of pages * to be migrated using isolate_lru_page() but before we begin a series of calls * to migrate_pages(). */ int migrate_prep(void) { /* Must have swap device for migration */ if (nr_swap_pages <= 0) return -ENODEV; /* * Clear the LRU lists so pages can be isolated. * Note that pages may be moved off the LRU after we have * drained them. Those pages will fail to migrate like other * pages that may be busy. */ lru_add_drain_all(); return 0; } static inline void move_to_lru(struct page *page) { list_del(&page->lru); if (PageActive(page)) { /* * lru_cache_add_active checks that * the PG_active bit is off. */ ClearPageActive(page); lru_cache_add_active(page); } else { lru_cache_add(page); } put_page(page); } /* * Add isolated pages on the list back to the LRU. * * returns the number of pages put back. */ int putback_lru_pages(struct list_head *l) { struct page *page; struct page *page2; int count = 0; list_for_each_entry_safe(page, page2, l, lru) { move_to_lru(page); count++; } return count; } static inline int is_swap_pte(pte_t pte) { return !pte_none(pte) && !pte_present(pte) && !pte_file(pte); } /* * Restore a potential migration pte to a working pte entry */ static void remove_migration_pte(struct vm_area_struct *vma, unsigned long addr, struct page *old, struct page *new) { struct mm_struct *mm = vma->vm_mm; swp_entry_t entry; pgd_t *pgd; pud_t *pud; pmd_t *pmd; pte_t *ptep, pte; spinlock_t *ptl; pgd = pgd_offset(mm, addr); if (!pgd_present(*pgd)) return; pud = pud_offset(pgd, addr); if (!pud_present(*pud)) return; pmd = pmd_offset(pud, addr); if (!pmd_present(*pmd)) return; ptep = pte_offset_map(pmd, addr); if (!is_swap_pte(*ptep)) { pte_unmap(ptep); return; } ptl = pte_lockptr(mm, pmd); spin_lock(ptl); pte = *ptep; if (!is_swap_pte(pte)) goto out; entry = pte_to_swp_entry(pte); if (!is_migration_entry(entry) || migration_entry_to_page(entry) != old) goto out; inc_mm_counter(mm, anon_rss); get_page(new); pte = pte_mkold(mk_pte(new, vma->vm_page_prot)); if (is_write_migration_entry(entry)) pte = pte_mkwrite(pte); set_pte_at(mm, addr, ptep, pte); page_add_anon_rmap(new, vma, addr); out: pte_unmap_unlock(ptep, ptl); } /* * Get rid of all migration entries and replace them by * references to the indicated page. * * Must hold mmap_sem lock on at least one of the vmas containing * the page so that the anon_vma cannot vanish. */ static void remove_migration_ptes(struct page *old, struct page *new) { struct anon_vma *anon_vma; struct vm_area_struct *vma; unsigned long mapping; mapping = (unsigned long)new->mapping; if (!mapping || (mapping & PAGE_MAPPING_ANON) == 0) return; /* * We hold the mmap_sem lock. So no need to call page_lock_anon_vma. */ anon_vma = (struct anon_vma *) (mapping - PAGE_MAPPING_ANON); spin_lock(&anon_vma->lock); list_for_each_entry(vma, &anon_vma->head, anon_vma_node) remove_migration_pte(vma, page_address_in_vma(new, vma), old, new); spin_unlock(&anon_vma->lock); } /* * Something used the pte of a page under migration. We need to * get to the page and wait until migration is finished. * When we return from this function the fault will be retried. * * This function is called from do_swap_page(). */ void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, unsigned long address) { pte_t *ptep, pte; spinlock_t *ptl; swp_entry_t entry; struct page *page; ptep = pte_offset_map_lock(mm, pmd, address, &ptl); pte = *ptep; if (!is_swap_pte(pte)) goto out; entry = pte_to_swp_entry(pte); if (!is_migration_entry(entry)) goto out; page = migration_entry_to_page(entry); get_page(page); pte_unmap_unlock(ptep, ptl); wait_on_page_locked(page); put_page(page); return; out: pte_unmap_unlock(ptep, ptl); } /* * swapout a single page * page is locked upon entry, unlocked on exit */ static int swap_page(struct page *page) { struct address_space *mapping = page_mapping(page); if (page_mapped(page) && mapping) if (try_to_unmap(page, 1) != SWAP_SUCCESS) goto unlock_retry; if (PageDirty(page)) { /* Page is dirty, try to write it out here */ switch(pageout(page, mapping)) { case PAGE_KEEP: case PAGE_ACTIVATE: goto unlock_retry; case PAGE_SUCCESS: goto retry; case PAGE_CLEAN: ; /* try to free the page below */ } } if (PagePrivate(page)) { if (!try_to_release_page(page, GFP_KERNEL) || (!mapping && page_count(page) == 1)) goto unlock_retry; } if (remove_mapping(mapping, page)) { /* Success */ unlock_page(page); return 0; } unlock_retry: unlock_page(page); retry: return -EAGAIN; } /* * Replace the page in the mapping. * * The number of remaining references must be: * 1 for anonymous pages without a mapping * 2 for pages with a mapping * 3 for pages with a mapping and PagePrivate set. */ static int migrate_page_move_mapping(struct address_space *mapping, struct page *newpage, struct page *page) { struct page **radix_pointer; write_lock_irq(&mapping->tree_lock); radix_pointer = (struct page **)radix_tree_lookup_slot( &mapping->page_tree, page_index(page)); if (!page_mapping(page) || page_count(page) != 2 + !!PagePrivate(page) || *radix_pointer != page) { write_unlock_irq(&mapping->tree_lock); return -EAGAIN; } /* * Now we know that no one else is looking at the page. */ get_page(newpage); if (PageSwapCache(page)) { SetPageSwapCache(newpage); set_page_private(newpage, page_private(page)); } *radix_pointer = newpage; __put_page(page); write_unlock_irq(&mapping->tree_lock); return 0; } /* * Copy the page to its new location */ static void migrate_page_copy(struct page *newpage, struct page *page) { copy_highpage(newpage, page); if (PageError(page)) SetPageError(newpage); if (PageReferenced(page)) SetPageReferenced(newpage); if (PageUptodate(page)) SetPageUptodate(newpage); if (PageActive(page)) SetPageActive(newpage); if (PageChecked(page)) SetPageChecked(newpage); if (PageMappedToDisk(page)) SetPageMappedToDisk(newpage); if (PageDirty(page)) { clear_page_dirty_for_io(page); set_page_dirty(newpage); } ClearPageSwapCache(page); ClearPageActive(page); ClearPagePrivate(page); set_page_private(page, 0); page->mapping = NULL; /* * If any waiters have accumulated on the new page then * wake them up. */ if (PageWriteback(newpage)) end_page_writeback(newpage); } /************************************************************ * Migration functions ***********************************************************/ /* Always fail migration. Used for mappings that are not movable */ int fail_migrate_page(struct address_space *mapping, struct page *newpage, struct page *page) { return -EIO; } EXPORT_SYMBOL(fail_migrate_page); /* * Common logic to directly migrate a single page suitable for * pages that do not use PagePrivate. * * Pages are locked upon entry and exit. */ int migrate_page(struct address_space *mapping, struct page *newpage, struct page *page) { int rc; BUG_ON(PageWriteback(page)); /* Writeback must be complete */ rc = migrate_page_move_mapping(mapping, newpage, page); if (rc) return rc; migrate_page_copy(newpage, page); /* * Remove auxiliary swap entries and replace * them with real ptes. * * Note that a real pte entry will allow processes that are not * waiting on the page lock to use the new page via the page tables * before the new page is unlocked. */ remove_from_swap(newpage); return 0; } EXPORT_SYMBOL(migrate_page); /* * Migration function for pages with buffers. This function can only be used * if the underlying filesystem guarantees that no other references to "page" * exist. */ int buffer_migrate_page(struct address_space *mapping, struct page *newpage, struct page *page) { struct buffer_head *bh, *head; int rc; if (!page_has_buffers(page)) return migrate_page(mapping, newpage, page); head = page_buffers(page); rc = migrate_page_move_mapping(mapping, newpage, page); if (rc) return rc; bh = head; do { get_bh(bh); lock_buffer(bh); bh = bh->b_this_page; } while (bh != head); ClearPagePrivate(page); set_page_private(newpage, page_private(page)); set_page_private(page, 0); put_page(page); get_page(newpage); bh = head; do { set_bh_page(bh, newpage, bh_offset(bh)); bh = bh->b_this_page; } while (bh != head); SetPagePrivate(newpage); migrate_page_copy(newpage, page); bh = head; do { unlock_buffer(bh); put_bh(bh); bh = bh->b_this_page; } while (bh != head); return 0; } EXPORT_SYMBOL(buffer_migrate_page); static int fallback_migrate_page(struct address_space *mapping, struct page *newpage, struct page *page) { /* * Default handling if a filesystem does not provide * a migration function. We can only migrate clean * pages so try to write out any dirty pages first. */ if (PageDirty(page)) { switch (pageout(page, mapping)) { case PAGE_KEEP: case PAGE_ACTIVATE: return -EAGAIN; case PAGE_SUCCESS: /* Relock since we lost the lock */ lock_page(page); /* Must retry since page state may have changed */ return -EAGAIN; case PAGE_CLEAN: ; /* try to migrate the page below */ } } /* * Buffers may be managed in a filesystem specific way. * We must have no buffers or drop them. */ if (page_has_buffers(page) && !try_to_release_page(page, GFP_KERNEL)) return -EAGAIN; return migrate_page(mapping, newpage, page); } /* * migrate_pages * * Two lists are passed to this function. The first list * contains the pages isolated from the LRU to be migrated. * The second list contains new pages that the pages isolated * can be moved to. If the second list is NULL then all * pages are swapped out. * * The function returns after 10 attempts or if no pages * are movable anymore because to has become empty * or no retryable pages exist anymore. * * Return: Number of pages not migrated when "to" ran empty. */ int migrate_pages(struct list_head *from, struct list_head *to, struct list_head *moved, struct list_head *failed) { int retry; int nr_failed = 0; int pass = 0; struct page *page; struct page *page2; int swapwrite = current->flags & PF_SWAPWRITE; int rc; if (!swapwrite) current->flags |= PF_SWAPWRITE; redo: retry = 0; list_for_each_entry_safe(page, page2, from, lru) { struct page *newpage = NULL; struct address_space *mapping; cond_resched(); rc = 0; if (page_count(page) == 1) /* page was freed from under us. So we are done. */ goto next; if (to && list_empty(to)) break; /* * Skip locked pages during the first two passes to give the * functions holding the lock time to release the page. Later we * use lock_page() to have a higher chance of acquiring the * lock. */ rc = -EAGAIN; if (pass > 2) lock_page(page); else if (TestSetPageLocked(page)) goto next; /* * Only wait on writeback if we have already done a pass where * we we may have triggered writeouts for lots of pages. */ if (pass > 0) { wait_on_page_writeback(page); } else { if (PageWriteback(page)) goto unlock_page; } /* * Anonymous pages must have swap cache references otherwise * the information contained in the page maps cannot be * preserved. */ if (PageAnon(page) && !PageSwapCache(page)) { if (!add_to_swap(page, GFP_KERNEL)) { rc = -ENOMEM; goto unlock_page; } } if (!to) { rc = swap_page(page); goto next; } /* * Establish swap ptes for anonymous pages or destroy pte * maps for files. * * In order to reestablish file backed mappings the fault handlers * will take the radix tree_lock which may then be used to stop * processses from accessing this page until the new page is ready. * * A process accessing via a swap pte (an anonymous page) will take a * page_lock on the old page which will block the process until the * migration attempt is complete. At that time the PageSwapCache bit * will be examined. If the page was migrated then the PageSwapCache * bit will be clear and the operation to retrieve the page will be * retried which will find the new page in the radix tree. Then a new * direct mapping may be generated based on the radix tree contents. * * If the page was not migrated then the PageSwapCache bit * is still set and the operation may continue. */ rc = -EPERM; if (try_to_unmap(page, 1) == SWAP_FAIL) /* A vma has VM_LOCKED set -> permanent failure */ goto unlock_page; rc = -EAGAIN; if (page_mapped(page)) goto unlock_page; newpage = lru_to_page(to); lock_page(newpage); /* Prepare mapping for the new page.*/ newpage->index = page->index; newpage->mapping = page->mapping; /* * Pages are properly locked and writeback is complete. * Try to migrate the page. */ mapping = page_mapping(page); if (!mapping) goto unlock_both; if (mapping->a_ops->migratepage) /* * Most pages have a mapping and most filesystems * should provide a migration function. Anonymous * pages are part of swap space which also has its * own migration function. This is the most common * path for page migration. */ rc = mapping->a_ops->migratepage(mapping, newpage, page); else rc = fallback_migrate_page(mapping, newpage, page); unlock_both: unlock_page(newpage); unlock_page: unlock_page(page); next: if (rc) { if (newpage) newpage->mapping = NULL; if (rc == -EAGAIN) retry++; else { /* Permanent failure */ list_move(&page->lru, failed); nr_failed++; } } else { if (newpage) { /* Successful migration. Return page to LRU */ move_to_lru(newpage); } list_move(&page->lru, moved); } } if (retry && pass++ < 10) goto redo; if (!swapwrite) current->flags &= ~PF_SWAPWRITE; return nr_failed + retry; } /* * Migrate the list 'pagelist' of pages to a certain destination. * * Specify destination with either non-NULL vma or dest_node >= 0 * Return the number of pages not migrated or error code */ int migrate_pages_to(struct list_head *pagelist, struct vm_area_struct *vma, int dest) { LIST_HEAD(newlist); LIST_HEAD(moved); LIST_HEAD(failed); int err = 0; unsigned long offset = 0; int nr_pages; struct page *page; struct list_head *p; redo: nr_pages = 0; list_for_each(p, pagelist) { if (vma) { /* * The address passed to alloc_page_vma is used to * generate the proper interleave behavior. We fake * the address here by an increasing offset in order * to get the proper distribution of pages. * * No decision has been made as to which page * a certain old page is moved to so we cannot * specify the correct address. */ page = alloc_page_vma(GFP_HIGHUSER, vma, offset + vma->vm_start); offset += PAGE_SIZE; } else page = alloc_pages_node(dest, GFP_HIGHUSER, 0); if (!page) { err = -ENOMEM; goto out; } list_add_tail(&page->lru, &newlist); nr_pages++; if (nr_pages > MIGRATE_CHUNK_SIZE) break; } err = migrate_pages(pagelist, &newlist, &moved, &failed); putback_lru_pages(&moved); /* Call release pages instead ?? */ if (err >= 0 && list_empty(&newlist) && !list_empty(pagelist)) goto redo; out: /* Return leftover allocated pages */ while (!list_empty(&newlist)) { page = list_entry(newlist.next, struct page, lru); list_del(&page->lru); __free_page(page); } list_splice(&failed, pagelist); if (err < 0) return err; /* Calculate number of leftover pages */ nr_pages = 0; list_for_each(p, pagelist) nr_pages++; return nr_pages; }