// SPDX-License-Identifier: GPL-2.0-only /* * mm/readahead.c - address_space-level file readahead. * * Copyright (C) 2002, Linus Torvalds * * 09Apr2002 Andrew Morton * Initial version. */ #include <linux/kernel.h> #include <linux/dax.h> #include <linux/gfp.h> #include <linux/export.h> #include <linux/blkdev.h> #include <linux/backing-dev.h> #include <linux/task_io_accounting_ops.h> #include <linux/pagevec.h> #include <linux/pagemap.h> #include <linux/syscalls.h> #include <linux/file.h> #include <linux/mm_inline.h> #include <linux/blk-cgroup.h> #include <linux/fadvise.h> #include <linux/sched/mm.h> #include "internal.h" /* * Initialise a struct file's readahead state. Assumes that the caller has * memset *ra to zero. */ void file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping) { ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages; ra->prev_pos = -1; } EXPORT_SYMBOL_GPL(file_ra_state_init); /* * see if a page needs releasing upon read_cache_pages() failure * - the caller of read_cache_pages() may have set PG_private or PG_fscache * before calling, such as the NFS fs marking pages that are cached locally * on disk, thus we need to give the fs a chance to clean up in the event of * an error */ static void read_cache_pages_invalidate_page(struct address_space *mapping, struct page *page) { if (page_has_private(page)) { if (!trylock_page(page)) BUG(); page->mapping = mapping; do_invalidatepage(page, 0, PAGE_SIZE); page->mapping = NULL; unlock_page(page); } put_page(page); } /* * release a list of pages, invalidating them first if need be */ static void read_cache_pages_invalidate_pages(struct address_space *mapping, struct list_head *pages) { struct page *victim; while (!list_empty(pages)) { victim = lru_to_page(pages); list_del(&victim->lru); read_cache_pages_invalidate_page(mapping, victim); } } /** * read_cache_pages - populate an address space with some pages & start reads against them * @mapping: the address_space * @pages: The address of a list_head which contains the target pages. These * pages have their ->index populated and are otherwise uninitialised. * @filler: callback routine for filling a single page. * @data: private data for the callback routine. * * Hides the details of the LRU cache etc from the filesystems. * * Returns: %0 on success, error return by @filler otherwise */ int read_cache_pages(struct address_space *mapping, struct list_head *pages, int (*filler)(void *, struct page *), void *data) { struct page *page; int ret = 0; while (!list_empty(pages)) { page = lru_to_page(pages); list_del(&page->lru); if (add_to_page_cache_lru(page, mapping, page->index, readahead_gfp_mask(mapping))) { read_cache_pages_invalidate_page(mapping, page); continue; } put_page(page); ret = filler(data, page); if (unlikely(ret)) { read_cache_pages_invalidate_pages(mapping, pages); break; } task_io_account_read(PAGE_SIZE); } return ret; } EXPORT_SYMBOL(read_cache_pages); static void read_pages(struct readahead_control *rac, struct list_head *pages, bool skip_page) { const struct address_space_operations *aops = rac->mapping->a_ops; struct page *page; struct blk_plug plug; if (!readahead_count(rac)) goto out; blk_start_plug(&plug); if (aops->readahead) { aops->readahead(rac); /* Clean up the remaining pages */ while ((page = readahead_page(rac))) { unlock_page(page); put_page(page); } } else if (aops->readpages) { aops->readpages(rac->file, rac->mapping, pages, readahead_count(rac)); /* Clean up the remaining pages */ put_pages_list(pages); rac->_index += rac->_nr_pages; rac->_nr_pages = 0; } else { while ((page = readahead_page(rac))) { aops->readpage(rac->file, page); put_page(page); } } blk_finish_plug(&plug); BUG_ON(!list_empty(pages)); BUG_ON(readahead_count(rac)); out: if (skip_page) rac->_index++; } /** * page_cache_readahead_unbounded - Start unchecked readahead. * @mapping: File address space. * @file: This instance of the open file; used for authentication. * @index: First page index to read. * @nr_to_read: The number of pages to read. * @lookahead_size: Where to start the next readahead. * * This function is for filesystems to call when they want to start * readahead beyond a file's stated i_size. This is almost certainly * not the function you want to call. Use page_cache_async_readahead() * or page_cache_sync_readahead() instead. * * Context: File is referenced by caller. Mutexes may be held by caller. * May sleep, but will not reenter filesystem to reclaim memory. */ void page_cache_readahead_unbounded(struct address_space *mapping, struct file *file, pgoff_t index, unsigned long nr_to_read, unsigned long lookahead_size) { LIST_HEAD(page_pool); gfp_t gfp_mask = readahead_gfp_mask(mapping); struct readahead_control rac = { .mapping = mapping, .file = file, ._index = index, }; unsigned long i; /* * Partway through the readahead operation, we will have added * locked pages to the page cache, but will not yet have submitted * them for I/O. Adding another page may need to allocate memory, * which can trigger memory reclaim. Telling the VM we're in * the middle of a filesystem operation will cause it to not * touch file-backed pages, preventing a deadlock. Most (all?) * filesystems already specify __GFP_NOFS in their mapping's * gfp_mask, but let's be explicit here. */ unsigned int nofs = memalloc_nofs_save(); /* * Preallocate as many pages as we will need. */ for (i = 0; i < nr_to_read; i++) { struct page *page = xa_load(&mapping->i_pages, index + i); BUG_ON(index + i != rac._index + rac._nr_pages); if (page && !xa_is_value(page)) { /* * Page already present? Kick off the current batch * of contiguous pages before continuing with the * next batch. This page may be the one we would * have intended to mark as Readahead, but we don't * have a stable reference to this page, and it's * not worth getting one just for that. */ read_pages(&rac, &page_pool, true); continue; } page = __page_cache_alloc(gfp_mask); if (!page) break; if (mapping->a_ops->readpages) { page->index = index + i; list_add(&page->lru, &page_pool); } else if (add_to_page_cache_lru(page, mapping, index + i, gfp_mask) < 0) { put_page(page); read_pages(&rac, &page_pool, true); continue; } if (i == nr_to_read - lookahead_size) SetPageReadahead(page); rac._nr_pages++; } /* * Now start the IO. We ignore I/O errors - if the page is not * uptodate then the caller will launch readpage again, and * will then handle the error. */ read_pages(&rac, &page_pool, false); memalloc_nofs_restore(nofs); } EXPORT_SYMBOL_GPL(page_cache_readahead_unbounded); /* * __do_page_cache_readahead() actually reads a chunk of disk. It allocates * the pages first, then submits them for I/O. This avoids the very bad * behaviour which would occur if page allocations are causing VM writeback. * We really don't want to intermingle reads and writes like that. */ void __do_page_cache_readahead(struct address_space *mapping, struct file *file, pgoff_t index, unsigned long nr_to_read, unsigned long lookahead_size) { struct inode *inode = mapping->host; loff_t isize = i_size_read(inode); pgoff_t end_index; /* The last page we want to read */ if (isize == 0) return; end_index = (isize - 1) >> PAGE_SHIFT; if (index > end_index) return; /* Don't read past the page containing the last byte of the file */ if (nr_to_read > end_index - index) nr_to_read = end_index - index + 1; page_cache_readahead_unbounded(mapping, file, index, nr_to_read, lookahead_size); } /* * Chunk the readahead into 2 megabyte units, so that we don't pin too much * memory at once. */ void force_page_cache_readahead(struct address_space *mapping, struct file *filp, pgoff_t index, unsigned long nr_to_read) { struct backing_dev_info *bdi = inode_to_bdi(mapping->host); struct file_ra_state *ra = &filp->f_ra; unsigned long max_pages; if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages && !mapping->a_ops->readahead)) return; /* * If the request exceeds the readahead window, allow the read to * be up to the optimal hardware IO size */ max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages); nr_to_read = min(nr_to_read, max_pages); while (nr_to_read) { unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE; if (this_chunk > nr_to_read) this_chunk = nr_to_read; __do_page_cache_readahead(mapping, filp, index, this_chunk, 0); index += this_chunk; nr_to_read -= this_chunk; } } /* * Set the initial window size, round to next power of 2 and square * for small size, x 4 for medium, and x 2 for large * for 128k (32 page) max ra * 1-8 page = 32k initial, > 8 page = 128k initial */ static unsigned long get_init_ra_size(unsigned long size, unsigned long max) { unsigned long newsize = roundup_pow_of_two(size); if (newsize <= max / 32) newsize = newsize * 4; else if (newsize <= max / 4) newsize = newsize * 2; else newsize = max; return newsize; } /* * Get the previous window size, ramp it up, and * return it as the new window size. */ static unsigned long get_next_ra_size(struct file_ra_state *ra, unsigned long max) { unsigned long cur = ra->size; if (cur < max / 16) return 4 * cur; if (cur <= max / 2) return 2 * cur; return max; } /* * On-demand readahead design. * * The fields in struct file_ra_state represent the most-recently-executed * readahead attempt: * * |<----- async_size ---------| * |------------------- size -------------------->| * |==================#===========================| * ^start ^page marked with PG_readahead * * To overlap application thinking time and disk I/O time, we do * `readahead pipelining': Do not wait until the application consumed all * readahead pages and stalled on the missing page at readahead_index; * Instead, submit an asynchronous readahead I/O as soon as there are * only async_size pages left in the readahead window. Normally async_size * will be equal to size, for maximum pipelining. * * In interleaved sequential reads, concurrent streams on the same fd can * be invalidating each other's readahead state. So we flag the new readahead * page at (start+size-async_size) with PG_readahead, and use it as readahead * indicator. The flag won't be set on already cached pages, to avoid the * readahead-for-nothing fuss, saving pointless page cache lookups. * * prev_pos tracks the last visited byte in the _previous_ read request. * It should be maintained by the caller, and will be used for detecting * small random reads. Note that the readahead algorithm checks loosely * for sequential patterns. Hence interleaved reads might be served as * sequential ones. * * There is a special-case: if the first page which the application tries to * read happens to be the first page of the file, it is assumed that a linear * read is about to happen and the window is immediately set to the initial size * based on I/O request size and the max_readahead. * * The code ramps up the readahead size aggressively at first, but slow down as * it approaches max_readhead. */ /* * Count contiguously cached pages from @index-1 to @index-@max, * this count is a conservative estimation of * - length of the sequential read sequence, or * - thrashing threshold in memory tight systems */ static pgoff_t count_history_pages(struct address_space *mapping, pgoff_t index, unsigned long max) { pgoff_t head; rcu_read_lock(); head = page_cache_prev_miss(mapping, index - 1, max); rcu_read_unlock(); return index - 1 - head; } /* * page cache context based read-ahead */ static int try_context_readahead(struct address_space *mapping, struct file_ra_state *ra, pgoff_t index, unsigned long req_size, unsigned long max) { pgoff_t size; size = count_history_pages(mapping, index, max); /* * not enough history pages: * it could be a random read */ if (size <= req_size) return 0; /* * starts from beginning of file: * it is a strong indication of long-run stream (or whole-file-read) */ if (size >= index) size *= 2; ra->start = index; ra->size = min(size + req_size, max); ra->async_size = 1; return 1; } /* * A minimal readahead algorithm for trivial sequential/random reads. */ static void ondemand_readahead(struct address_space *mapping, struct file_ra_state *ra, struct file *filp, bool hit_readahead_marker, pgoff_t index, unsigned long req_size) { struct backing_dev_info *bdi = inode_to_bdi(mapping->host); unsigned long max_pages = ra->ra_pages; unsigned long add_pages; pgoff_t prev_index; /* * If the request exceeds the readahead window, allow the read to * be up to the optimal hardware IO size */ if (req_size > max_pages && bdi->io_pages > max_pages) max_pages = min(req_size, bdi->io_pages); /* * start of file */ if (!index) goto initial_readahead; /* * It's the expected callback index, assume sequential access. * Ramp up sizes, and push forward the readahead window. */ if ((index == (ra->start + ra->size - ra->async_size) || index == (ra->start + ra->size))) { ra->start += ra->size; ra->size = get_next_ra_size(ra, max_pages); ra->async_size = ra->size; goto readit; } /* * Hit a marked page without valid readahead state. * E.g. interleaved reads. * Query the pagecache for async_size, which normally equals to * readahead size. Ramp it up and use it as the new readahead size. */ if (hit_readahead_marker) { pgoff_t start; rcu_read_lock(); start = page_cache_next_miss(mapping, index + 1, max_pages); rcu_read_unlock(); if (!start || start - index > max_pages) return; ra->start = start; ra->size = start - index; /* old async_size */ ra->size += req_size; ra->size = get_next_ra_size(ra, max_pages); ra->async_size = ra->size; goto readit; } /* * oversize read */ if (req_size > max_pages) goto initial_readahead; /* * sequential cache miss * trivial case: (index - prev_index) == 1 * unaligned reads: (index - prev_index) == 0 */ prev_index = (unsigned long long)ra->prev_pos >> PAGE_SHIFT; if (index - prev_index <= 1UL) goto initial_readahead; /* * Query the page cache and look for the traces(cached history pages) * that a sequential stream would leave behind. */ if (try_context_readahead(mapping, ra, index, req_size, max_pages)) goto readit; /* * standalone, small random read * Read as is, and do not pollute the readahead state. */ __do_page_cache_readahead(mapping, filp, index, req_size, 0); return; initial_readahead: ra->start = index; ra->size = get_init_ra_size(req_size, max_pages); ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size; readit: /* * Will this read hit the readahead marker made by itself? * If so, trigger the readahead marker hit now, and merge * the resulted next readahead window into the current one. * Take care of maximum IO pages as above. */ if (index == ra->start && ra->size == ra->async_size) { add_pages = get_next_ra_size(ra, max_pages); if (ra->size + add_pages <= max_pages) { ra->async_size = add_pages; ra->size += add_pages; } else { ra->size = max_pages; ra->async_size = max_pages >> 1; } } ra_submit(ra, mapping, filp); } /** * page_cache_sync_readahead - generic file readahead * @mapping: address_space which holds the pagecache and I/O vectors * @ra: file_ra_state which holds the readahead state * @filp: passed on to ->readpage() and ->readpages() * @index: Index of first page to be read. * @req_count: Total number of pages being read by the caller. * * page_cache_sync_readahead() should be called when a cache miss happened: * it will submit the read. The readahead logic may decide to piggyback more * pages onto the read request if access patterns suggest it will improve * performance. */ void page_cache_sync_readahead(struct address_space *mapping, struct file_ra_state *ra, struct file *filp, pgoff_t index, unsigned long req_count) { /* no read-ahead */ if (!ra->ra_pages) return; if (blk_cgroup_congested()) return; /* be dumb */ if (filp && (filp->f_mode & FMODE_RANDOM)) { force_page_cache_readahead(mapping, filp, index, req_count); return; } /* do read-ahead */ ondemand_readahead(mapping, ra, filp, false, index, req_count); } EXPORT_SYMBOL_GPL(page_cache_sync_readahead); /** * page_cache_async_readahead - file readahead for marked pages * @mapping: address_space which holds the pagecache and I/O vectors * @ra: file_ra_state which holds the readahead state * @filp: passed on to ->readpage() and ->readpages() * @page: The page at @index which triggered the readahead call. * @index: Index of first page to be read. * @req_count: Total number of pages being read by the caller. * * page_cache_async_readahead() should be called when a page is used which * is marked as PageReadahead; this is a marker to suggest that the application * has used up enough of the readahead window that we should start pulling in * more pages. */ void page_cache_async_readahead(struct address_space *mapping, struct file_ra_state *ra, struct file *filp, struct page *page, pgoff_t index, unsigned long req_count) { /* no read-ahead */ if (!ra->ra_pages) return; /* * Same bit is used for PG_readahead and PG_reclaim. */ if (PageWriteback(page)) return; ClearPageReadahead(page); /* * Defer asynchronous read-ahead on IO congestion. */ if (inode_read_congested(mapping->host)) return; if (blk_cgroup_congested()) return; /* do read-ahead */ ondemand_readahead(mapping, ra, filp, true, index, req_count); } EXPORT_SYMBOL_GPL(page_cache_async_readahead); ssize_t ksys_readahead(int fd, loff_t offset, size_t count) { ssize_t ret; struct fd f; ret = -EBADF; f = fdget(fd); if (!f.file || !(f.file->f_mode & FMODE_READ)) goto out; /* * The readahead() syscall is intended to run only on files * that can execute readahead. If readahead is not possible * on this file, then we must return -EINVAL. */ ret = -EINVAL; if (!f.file->f_mapping || !f.file->f_mapping->a_ops || !S_ISREG(file_inode(f.file)->i_mode)) goto out; ret = vfs_fadvise(f.file, offset, count, POSIX_FADV_WILLNEED); out: fdput(f); return ret; } SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count) { return ksys_readahead(fd, offset, count); }