#ifndef MM_SLAB_H #define MM_SLAB_H /* * Internal slab definitions */ #ifdef CONFIG_SLOB /* * Common fields provided in kmem_cache by all slab allocators * This struct is either used directly by the allocator (SLOB) * or the allocator must include definitions for all fields * provided in kmem_cache_common in their definition of kmem_cache. * * Once we can do anonymous structs (C11 standard) we could put a * anonymous struct definition in these allocators so that the * separate allocations in the kmem_cache structure of SLAB and * SLUB is no longer needed. */ struct kmem_cache { unsigned int object_size;/* The original size of the object */ unsigned int size; /* The aligned/padded/added on size */ unsigned int align; /* Alignment as calculated */ unsigned long flags; /* Active flags on the slab */ const char *name; /* Slab name for sysfs */ int refcount; /* Use counter */ void (*ctor)(void *); /* Called on object slot creation */ struct list_head list; /* List of all slab caches on the system */ }; #endif /* CONFIG_SLOB */ #ifdef CONFIG_SLAB #include <linux/slab_def.h> #endif #ifdef CONFIG_SLUB #include <linux/slub_def.h> #endif #include <linux/memcontrol.h> #include <linux/fault-inject.h> #include <linux/kmemcheck.h> #include <linux/kasan.h> #include <linux/kmemleak.h> /* * State of the slab allocator. * * This is used to describe the states of the allocator during bootup. * Allocators use this to gradually bootstrap themselves. Most allocators * have the problem that the structures used for managing slab caches are * allocated from slab caches themselves. */ enum slab_state { DOWN, /* No slab functionality yet */ PARTIAL, /* SLUB: kmem_cache_node available */ PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */ UP, /* Slab caches usable but not all extras yet */ FULL /* Everything is working */ }; extern enum slab_state slab_state; /* The slab cache mutex protects the management structures during changes */ extern struct mutex slab_mutex; /* The list of all slab caches on the system */ extern struct list_head slab_caches; /* The slab cache that manages slab cache information */ extern struct kmem_cache *kmem_cache; unsigned long calculate_alignment(unsigned long flags, unsigned long align, unsigned long size); #ifndef CONFIG_SLOB /* Kmalloc array related functions */ void setup_kmalloc_cache_index_table(void); void create_kmalloc_caches(unsigned long); /* Find the kmalloc slab corresponding for a certain size */ struct kmem_cache *kmalloc_slab(size_t, gfp_t); #endif /* Functions provided by the slab allocators */ extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags); extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size, unsigned long flags); extern void create_boot_cache(struct kmem_cache *, const char *name, size_t size, unsigned long flags); int slab_unmergeable(struct kmem_cache *s); struct kmem_cache *find_mergeable(size_t size, size_t align, unsigned long flags, const char *name, void (*ctor)(void *)); #ifndef CONFIG_SLOB struct kmem_cache * __kmem_cache_alias(const char *name, size_t size, size_t align, unsigned long flags, void (*ctor)(void *)); unsigned long kmem_cache_flags(unsigned long object_size, unsigned long flags, const char *name, void (*ctor)(void *)); #else static inline struct kmem_cache * __kmem_cache_alias(const char *name, size_t size, size_t align, unsigned long flags, void (*ctor)(void *)) { return NULL; } static inline unsigned long kmem_cache_flags(unsigned long object_size, unsigned long flags, const char *name, void (*ctor)(void *)) { return flags; } #endif /* Legal flag mask for kmem_cache_create(), for various configurations */ #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \ SLAB_DESTROY_BY_RCU | SLAB_DEBUG_OBJECTS ) #if defined(CONFIG_DEBUG_SLAB) #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) #elif defined(CONFIG_SLUB_DEBUG) #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ SLAB_TRACE | SLAB_CONSISTENCY_CHECKS) #else #define SLAB_DEBUG_FLAGS (0) #endif #if defined(CONFIG_SLAB) #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \ SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \ SLAB_NOTRACK | SLAB_ACCOUNT) #elif defined(CONFIG_SLUB) #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \ SLAB_TEMPORARY | SLAB_NOTRACK | SLAB_ACCOUNT) #else #define SLAB_CACHE_FLAGS (0) #endif #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS) int __kmem_cache_shutdown(struct kmem_cache *); void __kmem_cache_release(struct kmem_cache *); int __kmem_cache_shrink(struct kmem_cache *, bool); void slab_kmem_cache_release(struct kmem_cache *); struct seq_file; struct file; struct slabinfo { unsigned long active_objs; unsigned long num_objs; unsigned long active_slabs; unsigned long num_slabs; unsigned long shared_avail; unsigned int limit; unsigned int batchcount; unsigned int shared; unsigned int objects_per_slab; unsigned int cache_order; }; void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo); void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s); ssize_t slabinfo_write(struct file *file, const char __user *buffer, size_t count, loff_t *ppos); /* * Generic implementation of bulk operations * These are useful for situations in which the allocator cannot * perform optimizations. In that case segments of the object listed * may be allocated or freed using these operations. */ void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **); int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **); #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB) /* * Iterate over all memcg caches of the given root cache. The caller must hold * slab_mutex. */ #define for_each_memcg_cache(iter, root) \ list_for_each_entry(iter, &(root)->memcg_params.list, \ memcg_params.list) static inline bool is_root_cache(struct kmem_cache *s) { return s->memcg_params.is_root_cache; } static inline bool slab_equal_or_root(struct kmem_cache *s, struct kmem_cache *p) { return p == s || p == s->memcg_params.root_cache; } /* * We use suffixes to the name in memcg because we can't have caches * created in the system with the same name. But when we print them * locally, better refer to them with the base name */ static inline const char *cache_name(struct kmem_cache *s) { if (!is_root_cache(s)) s = s->memcg_params.root_cache; return s->name; } /* * Note, we protect with RCU only the memcg_caches array, not per-memcg caches. * That said the caller must assure the memcg's cache won't go away by either * taking a css reference to the owner cgroup, or holding the slab_mutex. */ static inline struct kmem_cache * cache_from_memcg_idx(struct kmem_cache *s, int idx) { struct kmem_cache *cachep; struct memcg_cache_array *arr; rcu_read_lock(); arr = rcu_dereference(s->memcg_params.memcg_caches); /* * Make sure we will access the up-to-date value. The code updating * memcg_caches issues a write barrier to match this (see * memcg_create_kmem_cache()). */ cachep = lockless_dereference(arr->entries[idx]); rcu_read_unlock(); return cachep; } static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s) { if (is_root_cache(s)) return s; return s->memcg_params.root_cache; } static __always_inline int memcg_charge_slab(struct page *page, gfp_t gfp, int order, struct kmem_cache *s) { int ret; if (!memcg_kmem_enabled()) return 0; if (is_root_cache(s)) return 0; ret = __memcg_kmem_charge_memcg(page, gfp, order, s->memcg_params.memcg); if (ret) return ret; memcg_kmem_update_page_stat(page, (s->flags & SLAB_RECLAIM_ACCOUNT) ? MEMCG_SLAB_RECLAIMABLE : MEMCG_SLAB_UNRECLAIMABLE, 1 << order); return 0; } static __always_inline void memcg_uncharge_slab(struct page *page, int order, struct kmem_cache *s) { memcg_kmem_update_page_stat(page, (s->flags & SLAB_RECLAIM_ACCOUNT) ? MEMCG_SLAB_RECLAIMABLE : MEMCG_SLAB_UNRECLAIMABLE, -(1 << order)); memcg_kmem_uncharge(page, order); } extern void slab_init_memcg_params(struct kmem_cache *); #else /* CONFIG_MEMCG && !CONFIG_SLOB */ #define for_each_memcg_cache(iter, root) \ for ((void)(iter), (void)(root); 0; ) static inline bool is_root_cache(struct kmem_cache *s) { return true; } static inline bool slab_equal_or_root(struct kmem_cache *s, struct kmem_cache *p) { return true; } static inline const char *cache_name(struct kmem_cache *s) { return s->name; } static inline struct kmem_cache * cache_from_memcg_idx(struct kmem_cache *s, int idx) { return NULL; } static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s) { return s; } static inline int memcg_charge_slab(struct page *page, gfp_t gfp, int order, struct kmem_cache *s) { return 0; } static inline void memcg_uncharge_slab(struct page *page, int order, struct kmem_cache *s) { } static inline void slab_init_memcg_params(struct kmem_cache *s) { } #endif /* CONFIG_MEMCG && !CONFIG_SLOB */ static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x) { struct kmem_cache *cachep; struct page *page; /* * When kmemcg is not being used, both assignments should return the * same value. but we don't want to pay the assignment price in that * case. If it is not compiled in, the compiler should be smart enough * to not do even the assignment. In that case, slab_equal_or_root * will also be a constant. */ if (!memcg_kmem_enabled() && !unlikely(s->flags & SLAB_CONSISTENCY_CHECKS)) return s; page = virt_to_head_page(x); cachep = page->slab_cache; if (slab_equal_or_root(cachep, s)) return cachep; pr_err("%s: Wrong slab cache. %s but object is from %s\n", __func__, s->name, cachep->name); WARN_ON_ONCE(1); return s; } static inline size_t slab_ksize(const struct kmem_cache *s) { #ifndef CONFIG_SLUB return s->object_size; #else /* CONFIG_SLUB */ # ifdef CONFIG_SLUB_DEBUG /* * Debugging requires use of the padding between object * and whatever may come after it. */ if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) return s->object_size; # endif /* * If we have the need to store the freelist pointer * back there or track user information then we can * only use the space before that information. */ if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) return s->inuse; /* * Else we can use all the padding etc for the allocation */ return s->size; #endif } static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) { flags &= gfp_allowed_mask; lockdep_trace_alloc(flags); might_sleep_if(gfpflags_allow_blocking(flags)); if (should_failslab(s, flags)) return NULL; return memcg_kmem_get_cache(s, flags); } static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, size_t size, void **p) { size_t i; flags &= gfp_allowed_mask; for (i = 0; i < size; i++) { void *object = p[i]; kmemcheck_slab_alloc(s, flags, object, slab_ksize(s)); kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags); kasan_slab_alloc(s, object, flags); } memcg_kmem_put_cache(s); } #ifndef CONFIG_SLOB /* * The slab lists for all objects. */ struct kmem_cache_node { spinlock_t list_lock; #ifdef CONFIG_SLAB struct list_head slabs_partial; /* partial list first, better asm code */ struct list_head slabs_full; struct list_head slabs_free; unsigned long free_objects; unsigned int free_limit; unsigned int colour_next; /* Per-node cache coloring */ struct array_cache *shared; /* shared per node */ struct alien_cache **alien; /* on other nodes */ unsigned long next_reap; /* updated without locking */ int free_touched; /* updated without locking */ #endif #ifdef CONFIG_SLUB unsigned long nr_partial; struct list_head partial; #ifdef CONFIG_SLUB_DEBUG atomic_long_t nr_slabs; atomic_long_t total_objects; struct list_head full; #endif #endif }; static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) { return s->node[node]; } /* * Iterator over all nodes. The body will be executed for each node that has * a kmem_cache_node structure allocated (which is true for all online nodes) */ #define for_each_kmem_cache_node(__s, __node, __n) \ for (__node = 0; __node < nr_node_ids; __node++) \ if ((__n = get_node(__s, __node))) #endif void *slab_start(struct seq_file *m, loff_t *pos); void *slab_next(struct seq_file *m, void *p, loff_t *pos); void slab_stop(struct seq_file *m, void *p); int memcg_slab_show(struct seq_file *m, void *p); #endif /* MM_SLAB_H */